首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through increments in blood volume and atrial pressure are thought to be the primary stimuli for ANF secretion, plasma levels of this peptide do not always behave as a simple function of volume status. To outline the relationship between the latter and cardiac ANF release, we used five different volume-expansion protocols in anesthetized dogs. A stepwise expansion of plasma volume (PV) was achieved by two consecutive infusions: 0.9% saline followed or preceded by 4 or 25% bovine serum albumin (BSA), 4 or 25% dextran (Dx), or homologous plasma. Saline expansion led to a two- to four-fold increase in arterial plasma ANF level in all five protocols. Both 4 and 25% BSA caused no or very modest increase in plasma ANF, while all other colloid expanders caused the expected ANF release. In all protocols, plasma ANF closely correlated with central venous pressure (CVP). BSA expansion was the only protocol with no correlation between PV and ANF release. Changes in serum Ca2+ could not explain this finding. During BSA expansion, the lack of atrial response was related to the absence of increment (or even fall) in CVP despite the expanded PV. Similarly, urinary Na+ excretion was correlated both with CVP and ANF level but not with PV in BSA expansion. When the dogs were depleted of histamine before BSA infusion, the atrial secretory response was restored, suggesting that this colloid was associated with augmented capillary leakiness and vascular fluid efflux. These results show that the expansion of PV leads neither to ANF release nor to Na+ excretion if it is not accompanied by an expanded central blood volume with elevated atrial pressure.  相似文献   

2.
Effects of ANF(8-33) and Auriculin A on renal variables were investigated in conscious water-diuretic dogs. The two substances were injected intravenously (1.08 micrograms/kg in 3 min) or ANF(8-33) was infused (0.2 microgram/kg X min in 20 min). The effects were compared to those of an equinatriuretic dose of furosemide (1.0 microgram/kg X min). Injections caused increases in sodium excretion, diuresis, and osmolar clearance. No significant change in exogenous creatine clearance (CCREA) occurred. Infusion of ANF(8-33) decreased blood pressure by 14% (P less than 0.01) and increased sodium excretion by a factor of 10 (P less than 0.01). The natriuresis was a function of increases in diuresis and urinary sodium concentration, the latter by a factor of 6 (P less than 0.01). Diuresis and free-water clearance (CH2O) increased by 60% (P less than 0.01), but urine osmolality did not change significantly. After the infusion a significant decrease in PAH clearance (CPAH) (P less than 0.01) was observed. Filtration fraction (FF) did not change. The furosemide natriuresis appeared later than that of ANF without significant deviations in diuresis, CH2O, CCREA, CPAH, and FF; urine osmolality increased by 35% (P less than 0.01). The effects of ANF(8-33) differ from those of furosemide in several ways. First, the onset of natriuresis is faster, second, the natriuresis is associated by marked increases in diuresis and free-water clearance but not in urine osmolality; and third, natriuresis is followed by a reduction in renal blood flow. The rapid natriuresis of ANF can occur without changes in glomerular filtration rate.  相似文献   

3.
Atrial natriuretic factor (ANF 101-126) was compared to the standard diuretics, furosemide and hydrochlorothiazide, and to the vasodilator, acetylcholine in hydrated and dehydrated anesthetized dogs. ANF 101-126 (20 pmole/kg/min, ira) modestly reduced solute-free water clearance in water-loaded dogs and slightly lowered free water reabsorption in dehydrated animals. This pattern of responses most closely resembled those produce by 10 mg/kg, ira of the distally-acting diuretic, hydrochlorothiazide and a natriuretic dose of acetylcholine (2.5 micrograms/kg/min, ira). In contrast, the loop diuretic, furosemide (1 mg/kg, ira) drastically suppressed both free water clearance and reabsorption. ANF 101-126 produced changes in free water handling which were not readily distinguishable from those induced by either hydrochlorothiazide, a distally-acting diuretic, or acetylcholine, a vasodilator.  相似文献   

4.
5.
Effects of atrial natriuretic factor on human platelet function   总被引:1,自引:0,他引:1  
We examined the hypothesis that atrial natriuretic factor (ANF), a substance with known vasorelaxant activities, shares with other vasodilators the property of inhibiting platelet function. Aggregation of citrated platelet-rich plasma (PRP) from 23 healthy volunteers induced by ADP, adrenaline, arachidonic acid, collagen, gamma-thrombin, the endoperoxide analogue U-44069, serotonin, the calcium ionophore A-23187 or platelet aggregating factor was measured after incubation of PRP with ANF for 3 minutes at concentrations of 4 X 10(-9), 4 X 10(-8) and 4 X 10(-7) M or vehicle as control. ANF decreased ADP-induced aggregation significantly (P less than 0.02), but only at the highest concentration used and to a minor extent (control: 73.6 +/- 11.2%; after ANF 4 X 10(-7) M: 60.0 +/- 17.1%, mean +/- S.D., n = 39) by a selective inhibitory effect on the secondary wave; neither aggregation by all other agents tested nor thromboxane B2 generation induced by ADP and adrenaline was altered by incubation with ANF. Although ANF thus has detectable effects on ADP-induced platelet aggregation in vitro, these data suggest that ANF is unlikely to be a physiologically significant modulator of platelet function.  相似文献   

6.
The effect of atrial natriuretic peptide (ANP) on adrenal renin and aldosterone was investigated in anesthetized rats. Under pentobarbital anesthesia 40 mg/kg), intravenous infusion of ANP (0.25 micrograms/kg/min) for 45 min failed to alter the adrenal renin, adrenal aldosterone, and plasma aldosterone (PA). In this condition, intraperitoneal injection of ACTH (10 micrograms/kg) significantly increased the adrenal renin (from 2.4 +/- 0.1 to 5.0 +/- 0.08 ng/mg protein/h, P less than 0.05), adrenal aldosterone (from 13.6 +/- 1.3 to 22.7 +/- 2.3 ng/mg protein, P less than 0.01) and PA (from 59.8 +/- 5.8 to 75.5 +/- 7.4 ng/dl, P less than 0.05), respectively. Under ACTH stimulation, ANP infusion induced significant decreases in adrenal renin (from 5.0 +/- 0.08 to 2.8 +/- 0.2 ng/mg protein/h, P less than 0.05), adrenal aldosterone (from 22.7 +/- 2.3 to 16.2 +/- 1.8 ng/mg protein, P less than 0.05) and PA (from 75.5 +/- 7.4 to 61.6 +/- 4.9 ng/dl). These results suggest a possible role for adrenal renin in the mechanism underlying the inhibitory effect of ANP on aldosterone production in vivo.  相似文献   

7.
Atrial natriuretic factor (ANF) is a potent endogenous vaso-dilator and diuretic peptide of uncertain physiologic relevance. In this study, the effects of ANF on normal and angiotensin II constricted placental, uterine and renal vessels were examined in pregnant sheep. Ewes were equipped with catheters to monitor vascular pressures, infuse drugs and measure blood flow by the microsphere technique. An electromagnetic flow sensor was placed around the middle uterine artery and electromyogram electrodes were attached to the uterus. ANF was administered into a branch of the uterine artery to minimize its systemic effects. The experiment included two protocols. First, blood flows and pressures were measured after a 5-min period of saline infusion into the uterine artery. These measurements were repeated at the end of a 5-min infusion of ANF (6.25 micrograms.min-1) into the uterine artery. During the second protocol, angiotensin II (AII) was infused via the jugular vein at 5 micrograms.min-1 for 10 min and ANF (6.25 micrograms.min-1) was infused through the uterine artery during the second half of the AII infusion. In the absence of AII, ANF lowered blood pressure from 97 +/- 6 to 90 +/- 6 mmHg (P less than 0.05); and placental resistance from 67.8 +/- 11.3 to 57.3 +/- 10.4 mmHg.min.ml-1 per g (P less than 0.01). Uterine resistance did not change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The present study was designed to determine the plasma clearance rate of atrial natriuretic factor (ANF) during development in chronically-instrumented fetal, newborn and adult non-pregnant sheep. To determine the contribution of the kidney in the metabolism of ANF, urinary clearance of ANF was also measured. Intravenous infusion of ANF (0.025 and 0.1 microgram.min-1.kg-1) produced a significant decrease in mean arterial blood pressure in newborn lambs and in adult non-pregnant sheep. Estimated plasma ANF clearance rate for the 0.025 and 0.1 microgram.min-1.kg-1 ANF infusion rate were respectively 177 +/- 55 and 155 +/- 34 ml.min-1.kg-1 in fetuses, 138 +/- 26 and 97 +/- 13 ml.min-1.kg-1 in newborn lambs and, 148 +/- 33 and 103 +/- 25 ml.min-1.kg-1 in adult nonpregnant ewes. Fetal, newborn and adult ANF plasma clearance rates during high ANF infusion rate (0.1 microgram.min-1.kg-1) were not significantly different. Low or high ANF infusion rate was not associated with significant changes in urinary ANF concentration or urinary ANF excretion rate. Taken together, the present study demonstrates that ANF plasma clearance rate is similar in fetal, newborn and adult non-pregnant sheep and that the excretory function of the kidney contributes only minimally to ANF plasma clearance rate.  相似文献   

9.
Studies in intact animals have suggested that angiotensin II (AII) and antidiuretic hormone (ADH) increase the plasma concentration of atrial natriuretic factor (ANF). The purpose of these studies was to examine the effects of AII and ADH on ANF secretion in a rat heart-lung preparation under conditions where aortic pressure could be regulated and other indirect effects of these hormones eliminated. ANF secretion was estimated as the total amount of ANF present in a perfusion reservoir at the end of each 30-min period. A pump was used to deliver a fluorocarbon perfusate to the right atrium at rates of either 2 or 5 ml/min. In a time control series where venous return was maintained at 2 ml/min for three 30-min periods ANF secretion was 672 +/- 114, 794 +/- 91, and 793 +/- 125 pg/min (n = 6, P greater than 0.05). When venous return was increased from 2 to 5 ml/min ANF secretion increased from 669 +/- 81 to 1089 +/- 127 pg/min (P less than 0.01). The addition of AII to the perfusate in concentrations of 50, 100, or 200 pg/ml (n = 6 in each group) had no significant effect on basal ANF secretion or the ANF response to increasing venous return. Similarly, the addition of ADH to the perfusate in concentrations of 5, 25, or 100 pg/ml had no significant effect on ANF release from the heart. These results suggest that the ability of AII and ADH to increase plasma ANF concentration in vivo may be due to the effects of these hormones on right or left atrial pressure.  相似文献   

10.
Atrial natriuretic peptide (ANP) has been identified in the central nervous system and its participation in regulation of various regulatory brain functions has been postulated. To elucidate whether central ANP influences endocrine systems related to blood pressure regulation and renal excretory functions, effects of infusion of ANP at a rate of 120 ng.min-1 into the third cerebral ventricle on plasma level of epinephrine (E), norepinephrine (NE), renin, vasopressin and beta-endorphin as well as on excretion of urine, sodium, potassium (UKV) solutes and free water (CH2O) were investigated in conscious dogs. Significant decrease of plasma E from 77.6 +/- 7.0 to 62.1 +/- 4.8 pg.ml-1 and of NE from 345.5 +/- 20.7 to 286.4 +/- 15.0 pg.ml-1 was found at the end of 30 min lasting ANP infusion. Significant elevation of PRA and UKV and a decrease in CH2O were found 60 min after ANP infusion. No significant changes in other variables were found. In time control experiments plasma hormones concentration and renal excretory functions were not significantly influenced. The results suggest that central ANP may affect the sympatho-adrenal outflow.  相似文献   

11.
12.
This study examined the changes in the circulating level of endogenous atrial natriuretic factor during diuresis and natriuresis produced by acute volume expansion in anesthetized rats with either bilateral atrial appendectomy (n = 9) or sham operation (n = 9). Following control measurements in the sham-operated rats, 1% body weight volume expansion with isotonic saline produced an increment in urinary sodium excretion of over 4 mueq/min (P less than 0.05) while urine volume increased by more than 20 microliter/min (P less than 0.05). These responses were associated with a significant increase in immunoreactive plasma atrial natriuretic factor from a baseline value of 82 +/- 10 pg/ml to a level of 120 +/- 14 pg/ml (P less than 0.05). In contrast, in the group of rats with bilateral atrial appendectomy an identical degree of volume expansion increased urinary sodium excretion and urine volume by only 0.61 mueq/min (P less than 0.05) and 3.07 microliter/min (P less than 0.05), respectively. In this group, immunoreactive plasma atrial natriuretic factor remained statistically unchanged from a control value of 70 +/- 12 pg/ml to a level of 82 +/- 16 pg/ml (P greater than 0.05). Comparison of the two groups indicates that the natriuresis, diuresis, and plasma atrial natriuretic factor levels during volume expansion were significantly reduced in the rats with bilateral atrial appendectomy. No differences in mean arterial pressure and heart rate were observed between the two groups. These data demonstrate that removal of both atrial appendages in the rat attenuated the release of atrial natriuretic factor during volume expansion; and this effect, in turn, was associated with a reduction in the natriuretic and diuretic responses.  相似文献   

13.
Atrial natriuretic factor (ANF) antagonizes vasoconstriction induced by numerous smooth muscle agonists and also lowers blood pressure in intact animals. ANF has particularly marked relaxant effects on angiotensin II-contracted vessels in vitro. Sensitivity to the blood pressure-lowering effect of ANF in vivo appears to be enhanced in renin-dependent models of renovascular hypertension compared with other experimental hypertensive models. The depressor action of low, possibly physiological doses of ANF in two-kidney, one-clip Goldblatt rats is due to a decrease in total peripheral resistance. On the other hand, high doses of ANF can lower cardiac output, particularly in volume-expanded models such as deoxycorticosterone-salt hypertension. ANF markedly inhibits renin secretion in intact animals, probably via increased glomerular filtration rate and load of sodium chloride to the macula densa. This effect is masked when renal perfusion is impaired (e.g., via unilateral renal artery constriction), in which case ANF may stimulate renin secretion slightly. ANF also reduces plasma aldosterone in vivo and inhibits basal and agonist-induced aldosterone release from isolated adrenal cortical cells. This effect appears to be especially marked for angiotensin-induced aldosterone production in vivo and in vitro. These findings indicate that ANF has potentially important interactions with the renin-angiotensin-aldosterone system and suggest a role for ANF in the homeostatic control of blood pressure as well as of extracellular fluid volume.  相似文献   

14.
Anesthetized beagle dogs received increasing doses of continuous infusions of a 26-amino-acid synthetic atrial natriuretic factor (ANF). Urinary sodium excretion rose in a dose-dependent manner to a maximum level similar to that seen after hydrochlorothiazide administration. Mean arterial blood pressure decreased, but only modestly, and not in a dose-dependent fashion. Dogs chronically retaining NaCl secondary to constriction of the thoracic inferior vena cava showed only modestly enhanced natriuresis when infused with similar levels of ANF. When ANF was infused directly into the renal artery of anesthetized beagles, a dose-dependent natriuresis and calciuresis were observed with maximal fractional sodium excretion averaging approximately 8%. Although glomerular filtration tended to increase, the average dose-related changes were not significant. Cyclic GMP excretion was increased during intra-renal-arterial infusion of ANF. Excretion of cyclic GMP by both the infused and noninfused kidneys was equal, which suggests that urinary cyclic GMP was not nephrogenous but derived from the elevated circulating levels. These and other data from rats dissociate changes in urinary cyclic GMP excretion and sodium excretion.  相似文献   

15.
Renal hemodynamic and natriuretic effects of atrial natriuretic factor   总被引:1,自引:0,他引:1  
In this article we review the renal hemodynamic and excretory actions of atrial natriuretic factor (ANF) and consider some of the mechanisms of its vascular and natriuretic effects. ANF leads to a marked, sustained, and parallel increase in whole-organ and superficial single-nephron glomerular filtration rate (GFR) while mean blood pressure is decreased and renal blood flow (RBF) is unchanged or even decreased. The increase in GFR is caused by an efferent arteriolar vasoconstriction or by a combination of afferent vasodilation and efferent vasoconstriction. ANF also leads to a decrease in the hypertonicity of the innermedullary interstitium. Together with the increase in GFR, this phenomenon accounts wholly or in great part for the ANF-induced natriuresis. The overall renal vascular effects of ANF are complex and may tentatively be conceptualized as a behavior of a functional partial agonist: slight vasoconstriction in vasodilated kidneys, no sustained effects on the vascular resistance in normal kidneys, and vasodilation in vasoconstricted kidneys. The vasoconstrictor effect of ANF may be direct or indirect and depends on extracellular calcium whereas the antagonist effect likely results from alterations in intracellular calcium homeostasis. The data raise the perspective that ANF is not only a powerful natriuretic substance but has the potential of being an important modulator of GFR and RBF in intact animals.  相似文献   

16.
Effects of atrial natriuretic peptide (ANP) on renin release in isolated rat glomeruli were investigated. ANP suppressed renin release by 25% at 5 x 10(-8) M when glomeruli were incubated in a medium containing 1.26 mM calcium (p = 0.0019). When glomeruli were incubated in a calcium free medium containing 2 mM EGTA, ANP suppressed stimulated renin release significantly at 5 x 10(-8) and 5 x 10(-9) M by 25% (p = 0.0204, and p = 0.0101, respectively). These results indicate that ANP suppresses renin release in a dose dependent manner, probably through a calcium independent process.  相似文献   

17.
The intravenous injection of an extract of atrial myocardium into anesthetized rats during a hypotonic diuresis resulted in an increase in the renal excretion of water, sodium, potassium, calcium, magnesium, and phosphate. There was an increase in urine concentration which was probably a result of the secretion of vasopressin since it did not occur in Brattleboro (di/di) rats. A transient increase in glomerular filtration rate and renal plasma flow occurred during the first five minutes with a more sustained rise in filtration fraction. Injection of atrial extract also caused a partial inhibition of solute-free water formation in Brattleboro rats subjected to water diuresis and a partial inhibition of solute-free water reabsorption in rats subjected to maximal antidiuresis by infusing vasopressin. In neither case was the degree of inhibition as profound as that observed after injecting furosemide in a dose which caused a comparable natriuretic response. A large dose of furosemide blocked the natriuretic response to atrial extracts whereas, when a comparable level of sodium and water output was produced by massive infusions of saline, the natriuretic response to atrial extract was increased. It is suggested that atrial natriuretic factor might inhibit sodium transport in nephron segments beyond the medullary thick ascending limb. Furosemide might also act at the same tubular site or inhibit tubular secretion of the atrial natriuretic factor.  相似文献   

18.
The effects of atrial natriuretic factor on the mechanisms involved in norepinephrine release were studied 'in vitro' in slices of Wistar rat hypothalamus. Atrial natriuretic factor (10, 50 and 100 nM) decreased spontaneous [3H]norepinephrine secretion in a concentration dependent way. In addition, the peptide (10 nM) also reduced acetylcholine induced output of norepinephrine. The atrial factor (10 nM) was unable to alter the amine secretion when the incubation medium was deprived of calcium or when a calcium channel blocker such as diltiazem (100 microM) was added. In conclusion, atrial natriuretic factor reduced both spontaneous and acetylcholine evoked [3H]norepinephrine release in the rat hypothalamus. These findings suggest that the atrial natriuretic factor may alter catecholamine secretion by modifying the calcium available for the exocytotic process of catecholamine output.  相似文献   

19.
Blood-brain barrier and atrial natriuretic factor   总被引:1,自引:0,他引:1  
In brain, binding sites for atrial natriuretic factor (ANF) have been characterized in areas such as circumventricular organs that lack the tight capillary endothelial junctions of the blood-brain barrier and therefore are exposed to circulating peptides. Since atrial natriuretic factor acts directly on vascular endothelium and has been proposed to be actively involved in blood pressure regulation and fluid homeostasis, it is interesting to know whether ANF receptors exist on brain capillaries that constitute the blood-brain barrier and participate in the constant fluid exchange between blood and brain. The present paper reports recent evidence of the presence of ANF receptors located on the structure. It assesses the specific binding of 125I-labelled ANF on bovine brain microvessel preparations and its coupling with a guanylate cyclase system. The potential physiological role of ANF on brain microcirculation and blood-brain barrier functions is discussed.  相似文献   

20.
d, 1-propranolol was infused into salt-depleted, conscious dogs at two dosages: 1 mg/kg followed by 0.60 ? 0.67 mg/kg/hr, and 5 mg/kg followed by 1.57 ? 1.76 mg/kg/hr. At both dosages, propranolol decreased plasma renin activity (PRA), plasma aldosterone concentration, and heart rate significantly. Renin substrate concentration remained unchanged. PRA was suppressed with the higher dosage but not with the lower dosage, to values found with dietary salt loading. Mean arterial blood pressure (MABP) remained unchanged with the low-dose infusions, but decreased significantly with the high-dose infusions. The data suggest that the mechanism(s) for the increase in PRA with low-salt diets is sensitive to propranolol and that the effect of propranolol on MABP is dependent on the salt intake and on the dose administered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号