首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies have shown that atrial natriuretic factor (ANF) inhibits renin secretion whereas cilazapril blocks angiotensin II generation via converting enzyme inhibition. Both agents enhance renal excretory function. The present study was conducted to test whether the renin-angiotension system is involved in the ANF-induced renal effects. ANF was administered to anesthetized normal rats (n = 16) with or without a simultaneous infusion of cilazapril. Single bolus injections of ANF at doses of 2.5 micrograms/kg and 5.0 micrograms/kg significantly decreased mean arterial blood pressure by 6.8 +/- 2.3% and 9.4 +/- 2.2%, respectively. The corresponding increases in glomerular filtration rate were 5.6 +/- 3.7% and 8.4 +/- 2.8%, in absolute sodium excretion were 55.0 +/- 18.5% and 105.2 +/- 39.9%, and in urine flow were 24.8 +/- 9.3% and 35.6 +/- 14.6%. Intravenous infusion of cilazapril (33 micrograms/kg.min) reduced the arterial blood pressure, elevated the glomerular filtration rate and increased sodium and water excretion. The corresponding doses of ANF administration during continuous infusion of cilazapril further decreased blood pressure by 8.3 +/- 1.9% and 10.9 +/- 5.4%, respectively. However, there were no significant changes in the glomerular filtration rate and sodium and water excretion. The failure of ANF to exhibit a renal effect was irrelevant to the lowering blood pressure induced by cilazapril. These results suggest that reduced endogenous angiotensin II generation contributes to the renal, but not the hypotensive, effect of ANF.  相似文献   

2.
The purpose of the present investigation was to study the effects of inhibition of monoamine oxidase (MAO) and/or catechol-O-methyltransferase (COMT), enzymes involved in the degradation of dopamine (DA) and serotonin (5-HT), on intrarenal DA and 5-HT, as reflected in the renal interstitial fluid (RIF) microdialysate and urine, and on renal function. Inhibition of MAO selectively increased RIF 5-HT from 3.16 +/- 0.38 to 8.03 +/- 1.83 pg/min (n = 7, P < 0.05), concomitant with decreases in mean arterial blood pressure and glomerular filtration rate (2.09 +/- 0. 18 to 1.57 +/- 0.22 ml/min, n = 7, P < 0.05). Inhibition of COMT significantly increased RIF DA (3.47 +/- 0.70 to 8.68 +/- 1.96 pg/min, n = 9, P < 0.05), urinary DA (2.00 +/- 0.16 to 2.76 +/- 0.26 ng/min, n = 9, P < 0.05), and absolute excretion of sodium (6.42 +/- 2.00 to 9.82 +/- 1.62 micromol/min, n = 10, P < 0.05). Combined inhibition of MAO and COMT significantly increased RIF DA, urinary DA, and urinary 5-HT, which was accompanied with increases in urine flow rate, and absolute (3.03 +/- 0.59 to 8.40 +/- 1.61 micromol/min, n = 9, P < 0.01) and fractional excretion of sodium. We conclude that inhibition of MAO selectively increases RIF 5-HT. COMT appears to be more important than MAO in the metabolism of intrarenal DA. Physiological increases in intrarenal DA/5-HT induced by inhibition of their degrading enzymes are accompanied with significant alterations of renal function.  相似文献   

3.
Plasma levels of atrial natriuretic factor (ANP) were examined in 12 patients with liver cirrhosis (6 with ascites) and 6 controls before and after the administration of the infusion of 2000 ml of saline solution per 70 kg of body weight during 2 hours. Basal concentration of ANF tended to be slightly, but nonsignificantly higher in patients with ascitic liver cirrhosis (5.5 +/- 1.3 fmol/ml) than in controls (3.0 +/- 1.0 fmol/ml) and in patients with non-ascitic liver cirrhosis (4.6 +/- 1.3 fmol/ml). Saline administration led to the comparable increase of plasma ANF in ascitic (14.2 +/- 4.0 fmol/ml) and non-ascitic cirrhotics (15.7 +/- 3.7 fmol/ml) and in controls (12.4 +/- 4.3 fmol/ml). The increase of plasma ANF was accompanied by the suppression of plasma renin activity (PRA) and plasma aldosterone (PA) in all groups; in ascitic patients, however, PRA and PA remained above the normal range. While in controls and non-ascitic cirrhotics saline administration led to the increase of urine flow rate /from 0.74 +/- 0.13 to 2.04 +/- 0.44 ml/min, P less than 0.01, in controls; from 0.83 +/- 0.05 to 1.28 +/- 0.07 ml/min, P less than 0.01, in non-ascitic cirrhotics) and urinary sodium excretion (from 110.7 +/- 21.3 to 364.8 +/- 74.4 umol/min, P less than 0.01, in controls; from 125.0 +/- 16.7 to 218.7 +/- 24.3 umol/min, P less than 0.01 in non-ascitic cirrhotics), in patients with ascitic liver cirrhosis neither urine flow rate (from 0.66 +/- 0.1 to 0.72 +/- 0.15 ml/min, n.s.), nor urinary sodium excretion (from 16.7 +/- 9.9 to 54.2 +/- 40.3 umol/min, n.s.) changed significantly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of synthetic Atrial Natriuretic Factor (ANF) on urine flow rate, sodium excretion, potassium excretion and arterial blood pressure were studied in 10-12 days-old female calves. In four female calves fitted with a Foley catheter, an intravenous administration of ANF (Ile-ANF 26; 1.6 micrograms/kg body wt during 30 min) induced an increase (P less than 0.01) in urine flow rate (from 1.8 +/- 0.2 to 12.8 +/- 1.1 ml/min), sodium excretion (from 0.15 +/- 0.02 to 0.81 +/- 0.06 mmol/min) and free water clearance (from 0.13 +/- 0.9 to 5.16 +/- 0.5 ml/min). It had no significant effect on potassium excretion. In four calves chronically-instrumented with a carotid catheter, an intravenous administration of synthetic ANF alone (1.6 micrograms/kg body wt during 30 min) induced a gradual decrease (P less than 0.01) in systolic, diastolic and mean arterial blood pressure (from 112 +/- 4 to 72, from 72 +/- 2 to 61 +/- 1 and from 90 +/- 2 to 65 +/- 2 mmHg respectively, at the end of ANF infusion). An intravenous administration of angiotensin II (AII) (0.5 micrograms/kg body wt during 45 min) induced a significant increase in systolic, diastolic and mean arterial blood pressure which was antagonized by an i.v. bolus injection of ANF (0.125 micrograms/kg body wt). However, during a simultaneous administration of AII (0.3 micrograms/kg body wt during 30 min) and ANF (1.6 micrograms/kg body wt. during 30 min), the atrial peptide did not influence the pressure action of AII. These findings indicate that the conscious newborn calf is sensitive to diuretic, natriuretic and hypotensive effects of synthetic ANF.  相似文献   

5.
Effects of ANF(8-33) and Auriculin A on renal variables were investigated in conscious water-diuretic dogs. The two substances were injected intravenously (1.08 micrograms/kg in 3 min) or ANF(8-33) was infused (0.2 microgram/kg X min in 20 min). The effects were compared to those of an equinatriuretic dose of furosemide (1.0 microgram/kg X min). Injections caused increases in sodium excretion, diuresis, and osmolar clearance. No significant change in exogenous creatine clearance (CCREA) occurred. Infusion of ANF(8-33) decreased blood pressure by 14% (P less than 0.01) and increased sodium excretion by a factor of 10 (P less than 0.01). The natriuresis was a function of increases in diuresis and urinary sodium concentration, the latter by a factor of 6 (P less than 0.01). Diuresis and free-water clearance (CH2O) increased by 60% (P less than 0.01), but urine osmolality did not change significantly. After the infusion a significant decrease in PAH clearance (CPAH) (P less than 0.01) was observed. Filtration fraction (FF) did not change. The furosemide natriuresis appeared later than that of ANF without significant deviations in diuresis, CH2O, CCREA, CPAH, and FF; urine osmolality increased by 35% (P less than 0.01). The effects of ANF(8-33) differ from those of furosemide in several ways. First, the onset of natriuresis is faster, second, the natriuresis is associated by marked increases in diuresis and free-water clearance but not in urine osmolality; and third, natriuresis is followed by a reduction in renal blood flow. The rapid natriuresis of ANF can occur without changes in glomerular filtration rate.  相似文献   

6.
The effect of micropuncture of the renal papilla through an intact ureter on urinary concentrating ability of rats was examined. Micropuncture of the renal papilla caused a fall in urine osmolality in the punctured kidney from 1718 +/- 106 to 1035 +/- 79 mosmol/kg X H2O. In order to investigate the role of renal prostaglandins in this process, PGE2 excretion was measured and found to increase from 63.4 +/- 14.0 to 205.5 +/- 57.1 pg/min. Urine osmolality and PGE2 excretion from the contralateral kidney were not significantly altered. In animals given meclofenamate (2 mg/kg X hr), renal PGE2 excretion was reduced to 22.3 +/- 5.1 pg/min prior to micropuncture and it remained low at 8.9 +/- 1.8 pg/min after papillary micropuncture. Meclofenamate also blocked the fall in urine osmolality caused by micropuncture of the renal papilla, with urine osmolality averaging 1940 +/- 122 before and 1782 +/- 96 mosmol/kg X H2O after the micropuncture. These results indicated that papillary micropuncture through an intact ureter increased renal PGE2 excretion and that a rise in renal production of PGE2 or some other prostanoid is associated with a fall in urine concentrating ability.  相似文献   

7.
We tested whether supplementation with L-arginine can augment aerobic capacity, particularly in conditions where endothelium-derived nitric oxide (EDNO) activity is reduced. Eight-week-old wild-type (E(+)) and apolipoprotein E-deficient mice (E(-)) were divided into six groups; two groups (LE(+) and LE(-)) were given L-arginine (6% in drinking water), two were given D-arginine (DE(+) and DE(-)), and two control groups (NE(+) and NE(-)) received no arginine supplementation. At 12-16 wk of age, the mice were treadmill tested, and urine was collected after exercise for determination of EDNO production. NE(-) mice demonstrated a reduced aerobic capacity compared with NE(+) controls [maximal oxygen uptake (VO(2 max)) of NE(-) = 110 +/- 2 (SE) vs. NE(+) = 122 +/- 3 ml O(2). min(-1). kg(-1), P < 0.001]. This decline in aerobic capacity was associated with a diminished postexercise urinary nitrate excretion. Mice given L-arginine demonstrated an increase in postexercise urinary nitrate excretion and aerobic capacity in both groups (VO(2 max) of LE(-) = 120 +/- 1 ml O(2). min(-1). kg(-1), P < 0.05 vs. NE(-); VO(2 max) of LE(+) = 133 +/- 4 ml O(2). min(-1). kg(-1), P < 0.01 vs. NE(+)). Mice administered D-arginine demonstrated an intermediate increase in aerobic capacity in both groups. We conclude that administration of L-arginine restores exercise-induced EDNO synthesis and normalizes aerobic capacity in hypercholesterolemic mice. In normal mice, L-arginine enhances exercise-induced EDNO synthesis and aerobic capacity.  相似文献   

8.
Renal and systemic effects of synthetic atrial natriuretic factor   总被引:3,自引:0,他引:3  
A synthetic peptide corresponding to a sequence of 26 amino acids contained in endogenous rat atrial natriuretic factor (ANF), was infused into one renal artery of anesthetized dogs for a comprehensive in vivo evaluation of the renal and systemic effects of pure ANF. The results proved conclusively that ANF acted directly on the kidney since urine volume and fractional excretion of sodium, potassium, chloride and calcium were elevated in a dose-related manner in the ANF-treated kidney, but were not significantly affected in the contralateral saline-infused organ. The maximum effects achieved with the synthetic ANF were higher than any reported following intravenous administration of crude extracts of rat atria and were similar to those produced by thiazide diuretics. In four of the five dogs studied, renal vascular resistance fell progressively as doses of ANF were increased. Glomerular filtration rate was not significantly elevated during ANF infusion, but was correlated with sodium excretion rates. Even though mean arterial pressure was progressively reduced, there was no significant change in heart rate and no stimulation of renin secretion. Arterial cyclic GMP concentration was higher in the basal state and rose more rapidly than did renal venous levels, indicating that increases in circulating concentrations of arterial cyclic GMP originated from an extrarenal source. Dose-related elevations in urinary cyclic GMP excretion could be explained by increased cyclic GMP filtration, by enhanced production in tubular cells, or by renal tubular secretion. Especially in the saline-infused kidney, there was a clear dissociation between excretion of cyclic GMP and fractional sodium excretion. We conclude that the synthetic ANF increased electrolyte excretion via a direct renal action which was not solely dependent upon changes in renal vasculature, renin secretion or cyclic GMP levels.  相似文献   

9.
Head-down bed rest at an angle of 6 degrees was used as an experimental model to simulate the hemodynamic effects of microgravity, i.e., the shift of fluids from the lower to the upper part of the body. The sympathoadrenal activity during acute (from 0.5 to 10 h) and prolonged (4 days) head-down bed rest was assessed in eight healthy men (24 +/- 1 yr) by measuring epinephrine (E), norepinephrine (NE), dopamine (DA), and methoxylated metabolite levels in their plasma and urine. Catecholamine (CA) and methoxyamine levels were essentially unaltered at any time of bed rest. Maximal changes in plasma were on the second day (D2): NE, 547 +/- 84 vs. 384 +/- 55 pg/ml; DA, 192 +/- 32 vs. 141 +/- 16 pg/ml; NS. After 24 h of bed rest, heart rate decreased from 71 +/- 1 to 63 +/- 3/min (P less than 0.01). Daily dynamic leg exercise [50% maximum O2 uptake (VO2 max)] used as a countermeasure did not alter the pattern of plasma CA during bed rest but resulted in a higher urinary NE excretion during postexercise recovery (+45% on D2; P less than 0.05). The data indicate no evident relationship between sympathoadrenal function and stimulation of cardiopulmonary receptors or neuroendocrine changes induced by central hypervolemia during head-down bed rest.  相似文献   

10.
Dopamine affects renal hemodynamics, renal tubular functions, and the secretion of renin. We have studied the renal effects of SK&F 82526 (an agonist which is selective for the DA1 subclass of dopamine receptors) in anesthetized rats. Infused intravenously at 0.005 mumol/min/kg, this drug increased renal plasma flow and the clearances of PAH and insulin, effects which are consistent with decreased renovascular resistance. Concomitantly, urine flow and K excretion increased, and Na excretion tended to increase. All these effects of SK&F 82526 were antagonized by intravenous metoclopramide (1 mumol/min/kg). Despite its diuretic effect and despite its lack of effect on arterial blood pressure, SK&F 82526 increased arterial plasma renin concentration, suggesting a stimulatory effect on renin secretory rate. Taken together, our results demonstrate that the renal effects of SK&F 82526 mimic those of dopamine.  相似文献   

11.
The interaction between nitric oxide (NO) and renin is controversial. cAMP is a stimulating messenger for renin, which is degraded by phosphodiesterase (PDE)-3. PDE-3 is inhibited by cGMP, whereas PDE-5 degrades cGMP. We hypothesized that if endogenous cGMP was increased by inhibiting PDE-5, it could inhibit PDE-3, increasing endogenous cAMP, and thereby stimulate renin. We used the selective PDE-5 inhibitor zaprinast at 20 mg/kg body wt ip, which we determined would not change blood pressure (BP) or renal blood flow (RBF). In thiobutabarbital (Inactin)-anesthetized rats, renin secretion rate (RSR) was determined before and 75 min after administration of zaprinast or vehicle. Zaprinast increased cGMP excretion from 12.75 +/- 1.57 to 18.67 +/- 1.87 pmol/min (P < 0.003), whereas vehicle had no effect. Zaprinast increased RSR sixfold (from 2.95 +/- 1.74 to 17.62 +/- 5.46 ng ANG I. h(-1) x min(-1), P < 0.024), while vehicle had no effect (from 4.08 +/- 2.02 to 3.87 +/- 1.53 ng ANG I x h(-1) x min(-1)). There were no changes in BP or RBF. We then tested whether the increase in cGMP could be partially due to the activity of the neuronal isoform of NO synthase (nNOS). Pretreatment with the nNOS inhibitor 7-nitroindazole (7-NI; 50 mg/kg body wt) did not change BP or RBF but attenuated the renin-stimulating effect of zaprinast by 40% compared with vehicle. In 7-NI-treated animals, zaprinast-stimulated cGMP excretion was attenuated by 48%, from 9.17 +/- 1.85 to 13.60 +/- 2.15 pmol/min, compared with an increase from 10.94 +/- 1.90 to 26.38 +/- 3.61 pmol/min with zaprinast without 7-NI (P < 0.04). This suggests that changes in endogenous cGMP production at levels not associated with renal hemodynamic changes are involved in a renin-stimulatory pathway. One source of this cGMP may be nNOS generation of NO in the kidney.  相似文献   

12.
The present study was undertaken to assess the influence of acute metabolic acidosis on the activity of renin-angiotensin-aldosterone system and renal function in a group of seven one-week-old neonates with mean birth weight of 2164 g (range: 1300-3750 g) and mean gestational age of 34 weeks (range: 28-40 weeks) undergoing oral NH4Cl load. NH4Cl was given in a dose of 2.8 mEq/kg to evaluate renal acidification. Prior to and following NH4Cl administration blood acid-base parameters, plasma urinary electrolytes, creatinine and aldosterone concentration as well as plasma renin activity, glomerular filtration rate, urine flow rate and net acid secretion were measured. NH4Cl administration significantly depressed blood pH (P < 0.05), total CO2 content (P < 0.01) and base excess (P < 0.01) and resulted in a significant elevation of plasma potassium concentration (P < 0.05). Furthermore, NH4Cl ingestion significantly increased urine flow rate, sodium, chloride and net acid excretion. In response to NH4Cl acidosis no consistent change in plasma renin activity and plasma aldosterone concentration could be detected. There was, however, an about 50% increase in urinary aldosterone excretion from the control value of 4.1 +/- 1.2 micrograms/day to 6.8 +/- 2.3 micrograms/day (P < 0.05) after NH4Cl administration. These data suggest that the responsiveness of neonatal adrenals to stimulation by metabolic acidosis is blunted, acidosis therefore, may play a minor role in the neonatal hyperfunction of renin-angiotensin-aldosterone system.  相似文献   

13.
C-ANF (4-23) and neutral metalloendopeptidase (NEP) inhibitors have been shown to prevent ANF metabolism and lower blood pressure presumably by the accumulation of ANF in the circulation. In the present study, we examined the interaction between C-ANF (4-23) and SCH 34826, an inhibitor of NEP, and ensuing effects on blood pressure, excretion of urine and sodium, and cGMP in the plasma and urine in conscious DOCA-salt hypertensive rats. C-ANF (100 micrograms/kg, iv bolus plus 10 micrograms/kg/min X 30) or SCH 34826 (90 mg/kg, sc) alone caused significant reductions in blood pressure and increases in plasma and urinary excretion of cGMP, a biochemical marker of endogenous ANF activity, at one hour post-drug. C-ANF (4-23) alone elicited a significant diuresis and natriuresis. SCH 34826 also enhanced sodium excretion and tended to increase urine volume. In comparison, the combination of C-ANF (4-23) and SCH 34826 produced a greater reduction in blood pressure and increases in plasma and urinary excretion of cGMP than either agent alone. The combination also caused significant diuresis and natriuresis. It is suggested that the greater blood pressure and renal responses to a combination of SCH 34826 and C-ANF than either agent alone reflect greater accumulation of endogenous ANF due to concomitant inhibition of both receptor-mediated clearance and NEP.  相似文献   

14.
To investigate the source of urinary Met-enkephalin-like immunoreactivity (MELI), 24-h urinary excretion of MELI and catecholamines (CAs) were examined in normal subjects and patients with tuberculous Addison's disease. MELI was present in urine and 24-h urinary excretion of MELI averaged 813.8 +/- 446.9 ng/day in normal subjects (N = 33, Mean +/- SD). 24-h urinary excretion of MELI in normal subjects significantly showed positive correlation with 24-h urinary epinephrine (E) (R = 0.392, P less than 0.05) but no correlation with that of norepinephrine (NE) or dopamine (DA). In two patients with tuberculous Addison's disease, 24-h urinary excretion of MELI and that of E were significantly lower than those of normal subjects. These results indicate that the main source of urinary MELI may be adrenal medulla.  相似文献   

15.
The renal effects of dopexamine, a new dopaminergic agonist with marked beta 2-adrenergic agonist properties, but no alpha-adrenergic effect, has been studied in 8 newborn New Zealand rabbits, whose renal functional characteristics show close similarities with those of premature infants. Six animals were used as controls. After a control period, dopexamine was infused intravenously at a rate of 4 micrograms/kg per min and after a wash-out period, at 10 micrograms/kg per min. The renal effects of dopamine were studied in similar conditions. Glomerular filtration rate (GFR) and renal plasma flow (RPF) were determined by inulin and para-aminohippuric acid clearances, respectively. Dopexamine, 4 micrograms/kg per min, did not induce changes in cardiovascular and renal hemodynamics or in renal functions. At 10 micrograms/kg per min, a significant increase in urine flow rate (25 +/- 5%; p less than 0.01), urine sodium excretion (77 +/- 17%; p less than 0.01) and fractional sodium excretion (69 +/- 25%; p less than 0.05) was observed. The GFR, RPF and renal vascular resistance (RVR) were not affected. Heart rate increased slightly but significantly (8 +/- 3%; p less than 0.05), without change in mean blood pressure (MBP). Dopamine, 4 micrograms/kg per min, decreased slightly albeit significantly MBP (3 +/- 1%; p less than 0.05). At 10 micrograms/kg per min the only renal effect was a significant increase in RVR (19 +/- 6%; p less than 0.02). The different actions of these two dopaminergic agonists in this immature model could be explained by their respective ability to activate electively the adrenergic and dopaminergic peripheral receptors. The natriuretic and diuretic effect of dopexamine in normal immature rabbits, in the absence of changes in RPF or GFR is probably mediated by a direct action of this agent on dopaminergic tubular receptors. Failure of these two drugs to increase RPF may be related to an immaturity of the dopaminergic vascular receptors.  相似文献   

16.
The object of this study was to assess the effect of moderate acute hypoxemia on plasma concentrations of atrial natriuretic factor (ANF), arginine vasopressin (AVP), plasma renin activity (PRA) and urinary excretion of prostaglandin E2 (UPGE2V). Eight volunteers were exposed for 2 hours to a gas mixture containing 10% O2, 4.5% CO2 and 85.5% N2. Hypoxia increased diastolic blood pressure and free water clearance. Hypoxia did not change the AVP, PRA or UPG2V, although increased ANF from 17.7 +/- 3.4 pg/mL to 27.2 +/- 1.7 pg/mL (p less than 0.005) at 120 minutes. ANF changes were closely associated with the rise in blood pressure.  相似文献   

17.
The continuous infusion or bolus injection of the platelet-activating factor (PAF) is associated with profound hypotension, marked reductions of renal plasma flow, glomerular filtration, and urinary sodium excretion. All these effects are inhibited by blocking PAF receptors. To examine further the potential mediators of PAF on renal function, we utilized L-655,240 (6 mg/kg, intravenously), a thromboxane-prostaglandin endoperoxide antagonist, to study the systemic and renal response to PAF (0.8 micrograms/kg, intravenously) in the anesthetized dog, using clearance methodology. PAF decreased blood pressure from 115 +/- 7 to 54 +/- 4 mmHg (1 mmHg = 133.3 Pa), renal plasma flow from 105 +/- 6 to 74 +/- 56 mL/min, and glomerular filtration from 43 +/- 3 to 32 +/- 1 mL/min. PAF also reduced urine volume from 1.1 +/- 0.2 to 0.4 +/- 0.1 mL/min, and urinary sodium from 158 +/- 7 to 86 +/- 7 mu equiv./min. L-655,240 alone had no significant effect on blood pressure, renal plasma flow, and filtration rate, at any dose. However, the 6-mg/kg dose resulted in a slight elevation of diuresis, from 1.1 +/- 0.2 to 1.9 +/- 0.1 mL/min, and urinary sodium, from 134 +/- 13 to 212 +/- 19 mu equiv./min. All doses of L-655,240 blocked the effect of PAF on blood pressure. However, the two lower doses of this antagonist (1 and 3 mg/kg) failed to prevent the PAF-induced fall of renal plasma flow and filtration rate, and attenuated the effect on urinary sodium in a dose-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
To investigate the possible involvement of histamine H(3) receptors in renal noradrenergic neurotransmission, effects of (R)alpha-methylhistamine (R-HA), a selective H3-receptor agonist, and thioperamide (Thiop), a selective H3-receptor antagonist, on renal nerve stimulation (RNS)-induced changes in renal function and norepinephrine (NE) overflow in anesthetized dogs were examined. RNS (0.5-2.0 Hz) produced significant decreases in urine flow and urinary sodium excretion and increases in NE overflow rate (NEOR), without affecting renal hemodynamics. When R-HA (1 microg x kg(-1) x min(-1)) was infused intravenously, mean arterial pressure and heart rate were significantly decreased, and there was a tendency to reduce basal values of urine flow and urinary sodium excretion. During R-HA infusion, RNS-induced antidiuretic action and increases in NEOR were markedly attenuated. Thiop infusion (5 microg x kg(-1) x min(-1)) did not affect basal hemodynamic and excretory parameters. Thiop infusion caused RNS-induced antidiuretic action and increases in NEOR similar to the basal condition. When R-HA was administered concomitantly with Thiop infusion, R-HA failed to attenuate the RNS-induced antidiuretic action and increases in NEOR. However, in the presence of pyrilamine (a selective H1-receptor antagonist) or cimetidine (a selective H2-receptor antagonist) infusion, R-HA attenuated the RNS-induced actions, similarly to the case without these antagonists. Thus functional histamine H3 receptors, possibly located on renal noradrenergic nerve endings, may play the role of inhibitory modulators of renal noradrenergic neurotransmission.  相似文献   

19.
To determine the role of superoxide (O(2)(-)) formation in the kidney during alterations in the renin-angiotensin system, we evaluated responses to the intra-arterial infusion of an O(2)(-) - scavenging agent, tempol, in the denervated kidney of anesthetized salt-depleted (SD, n=6) dogs and salt-replete (SR, n=6) dogs. As expected, basal plasma renin activity was higher in SD than in SR dogs (8.4 +/- 1.0 vs. 2.3 +/- 0.6 ng angiotensin 1/ml/hr). Interestingly, the basal level of urinary F(2)-isoprostanes excretion (marker for endogenous O(2)(-) activity) relative to creatinine (Cr) excretion was also significantly higher in SD compared to SR dogs (9.1 +/- 2.8 vs. 1.6 +/- 0.4 ng F(2)-isoprostanes/mg of Cr). There was a significant increase in renal blood flow (4.3 +/- 0.5 to 4.9 +/- 0.6 ml/min/g) and decreases in renal vascular resistance (38.2 +/- 5.8 to 33.2 +/- 4.7 mm Hg/ml/min/g) and mean systemic arterial pressure (148 +/- 6 to 112 +/- 10 mm Hg) in SD dogs but not in SR dogs during infusion of tempol at 1 mg/kg/min for 30 mins. Glomerular filtration rate and urinary sodium excretion (U(Na)V) did not change significantly during tempol infusion in both groups of dogs. Administration of the nitric oxide synthase inhibitor nitro-L-arginine (50 mug/kg/min) during tempol infusion caused a reduction in U(Na)V in SR dogs (47% +/- 12%) but did not cause a decrease in SD dogs. These data show that low salt intake enhances O(2)(-) activity that influences renal and systemic hemodynamics and thus may contribute to the regulation of arterial pressure in the salt-restricted state.  相似文献   

20.
We performed paired series of stop-flow studies on six mongrel dogs to determine a possible nephron site of action of synthetic atrial natriuretic factor (ANF). The initial free-flow response to intrarenal infusion of 5 micrograms/min of synthetic ANF into mannitol-expanded dogs resulted in an increased urine flow rate (6.81 +/- 0.88 to 9.00 +/- 1.17 ml/min, P less than 0.05) and a 40% increase in sodium excretion (496 +/- 110 to 694 +/- 166 meq/min, P less than 0.025) when compared to paired control periods. Renal blood flow did not change, but the glomerular filtration rate increased 4% (47 +/- 5 to 49 +/- 6 ml/min, P less than 0.05). The filtered load of sodium increased 4% (P less than 0.05), and the fractional sodium excretion increased by 35% (P less than 0.01). Stop-flow experiments showed no difference in tubular sodium concentration or in the fractional sodium-to-inulin ratio at the nadir of sodium concentration, suggesting that no differences existed in distal tubular sodium handling. Further, no apparent differences were detected in collections representing the more proximal portions of the nephron. While we were able to demonstrate marked natriuresis in response to synthetic ANF, no tubular effect was discernible, and the natriuresis obtained appears to be predominantly a function of hemodynamic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号