首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anaphase-promoting complex or cyclosome (APC/C) controls sister chromatid segregation and the exit from mitosis by catalysing the ubiquitylation of cyclins and other cell cycle regulatory proteins. This unusually large E3 RING-cullin ubiquitin ligase is assembled from 13 different proteins. Selection of APC/C targets is controlled through recognition of short destruction motifs, predominantly the D box and KEN box. APC/C-mediated coordination of cell cycle progression is achieved through the temporal regulation of APC/C activity and substrate specificity, exerted through a combination of co-activator subunits, reversible phosphorylation and inhibitory proteins and complexes. Recent structural and biochemical studies of the APC/C are beginning to reveal an understanding of the roles of individual APC/C subunits and co-activators and how they mutually interact to mediate APC/C functions. This review focuses on the findings showing how information on the structural organization of the APC/C provides insights into the role of co-activators and core APC/C subunits in mediating substrate recognition. Mechanisms of regulating and modulating substrate recognition are discussed in the context of controlling the binding of the co-activator to the APC/C, and the accessibility and conformation of the co-activator when bound to the APC/C.  相似文献   

2.
Subunits and substrates of the anaphase-promoting complex   总被引:13,自引:0,他引:13  
The initiation of anaphase and exit from mitosis depend on a ubiquitination complex called the anaphase-promoting complex (APC) or cyclosome. The APC is composed of more than 10 constitutive subunits and associates with additional regulatory factors in mitosis and during the G1 phase of the cell cycle. At the metaphase-anaphase transition the APC ubiquitinates proteins such as Pds1 in budding yeast and Cut2 in fission yeast whose subsequent degradation by the 26S proteasome is essential for the initiation of sister chromatid separation. Later in anaphase and telophase the APC promotes the inactivation of the mitotic cyclin-dependent protein kinase 1 by ubiquitinating its activating subunit cyclin B. The APC also mediates the ubiquitin-dependent proteolysis of several other mitotic regulators, including other protein kinases, APC activators, spindle-associated proteins, and inhibitors of DNA replication.  相似文献   

3.
4.
The retinoblastoma pathway in plant cell cycle and development   总被引:9,自引:0,他引:9  
The activity of cyclin-dependent kinases (CDKs) on specific targets mediates the temporal regulation of plant cell cycle transitions. The sequential activity of CDKs and the spatial regulation of cell proliferation during plant development, however, are still poorly understood. Understanding these aspects depends on the identification of the downstream targets and upstream modulators of CDKs and their regulation in response to mitogenic and/or differentiation signals. Current efforts to elucidate the answers to these questions are very promising; in particular, recent works reveal the essential role that the retinoblastoma pathway plays in controlling cell cycle progression and, presumably, some developmental events.  相似文献   

5.
6.
7.
8.
A positive-feedback loop is a simple motif that is ubiquitous to the modules and networks that comprise cellular signaling systems. Signaling behaviors that are synonymous with positive feedback include amplification and rapid switching, maintenance, and the coherence of outputs. Recent advances have been made towards understanding how positive-feedback loops function, as well as their mechanistic basis in controlling eukaryotic cell cycle progression. Some of these advances will be reviewed here, including: how cyclin controls passage through Start and maintains coherence of G1/S regulon expression in yeast; how Polo-like kinase 1 activation is driven by Bora and Aurora A, and its expression is stimulated by Forkhead Box M1 in mammalian cells; and how some of the various dynamic behaviors of spindle assembly and anaphase onset can be produced.  相似文献   

9.
10.
We report here results of screening directed to finding new anti-leishmanial drugs among 2,6-disubstituted purines and corresponding 3,7-disubstituted pyrazolo[4,3-d]pyrimidines. These compounds have previously been shown to moderately inhibit human cyclin-dependent kinases. Since some compounds reduced viability of axenic amastigotes of Leishmania donovani, we screened them for interaction with recombinant leishmanial cdc-2 related protein kinase (CRK3/CYC6), an important cell cycle regulator of the parasitic protozoan. Eighteen pairs of corresponding isomers were tested for viability of amastigotes and for inhibition of CRK3/CYC6 kinase activity. Some compounds (9A, 12A and 13A) show activity against amastigotes with EC50 in a range 1.5-12.4 μM. Structure-activity relationships for the tested compounds are discussed and related to the lipophilicity of the compounds.  相似文献   

11.
12.
13.
Cyclin-dependent kinases (CDKs) play an essential role in cell cycle regulation during the embryonic and post-embryonic development of various organisms. Full activation of CDKs requires not only binding to cyclins but also phosphorylation of the T-loop domain. This phosphorylation is catalysed by CDK-activating kinases (CAKs). Plants have two distinct types of CAKs, namely CDKD and CDKF; in Arabidopsis, CDKF;1 exhibits the highest CDK kinase activity in vitro . We have previously shown that CDKF;1 also functions in the activation of CDKD;2 and CDKD;3 by T-loop phosphorylation. Here, we isolated the knockout mutants of CDKF;1 and showed that they had severe defects in cell division, cell elongation and endoreduplication. No defect was observed during embryogenesis, suggesting that CDKF;1 function is primarily required for post-embryonic development. In the cdkf;1 mutants, T-loop phosphorylation of CDKA;1, an orthologue of yeast Cdc2/Cdc28p, was comparable to that in wild-type plants, and its kinase activity did not decrease. In contrast, the protein level and kinase activity of CDKD;2 were significantly reduced in the mutants. Substitution of threonine-168 with a non-phosphorylatable alanine residue made CDKD;2 unstable in Arabidopsis tissues. These results indicate that CDKF;1 is dispensable for CDKA;1 activation but is essential for maintaining a steady-state level of CDKD;2, thereby suggesting the quantitative regulation of a vertebrate-type CAK in a plant-specific manner.  相似文献   

14.
The enzymatic activity of the CDK2/Cyclin A complex increases upon the specific phosphorylation of Thr160@CDK2. In the present study, we have performed a comparative molecular dynamics (MD) study of models of the complex CDK2/Cyclin A/Substrate, which differ for the presence or absence of the phosphate group bound to Thr160. The models are based on two X-ray structures available for CDK2/CyclinA and pCDK2/CyclinA/Substrate complexes. In this way, we analyze the influence of the phosphorylated Thr160 (pThr160) on both the flexibility of CDK2 activation loop (AL) and substrate binding in CDK2. Our calculations point to a decreased flexibility of the AL in the phosphorylated model, in fairly good agreement with experimental data, and to a key role of pThr160 for substrate recognition and stability. Multiple alignments of the CDKs sequences point to the very high conservation of the AL sequence among the CDKs, thus extending our results to all CDKs.  相似文献   

15.
16.
17.
Human disc-large (hDlg) is a scaffold protein critical for the maintenance of cell polarity and adhesion. hDlg is thought to be a tumour suppressor that regulates the cell cycle and proliferation. However, the mechanism and pathways involved in hDlg regulation during these processes is still unclear. Here we report that hDlg is phosphorylated during mitosis, and we establish the identity of at least three residues phosphorylated in hDlg; some are previously unreported. Phosphorylation affects hDlg localisation excluding it from the contact point between the two daughter cells. Our results reveal a previously unreported pathway for hDlg phosphorylation in mitosis and show that ERK5 pathway mediates hDlg cell cycle dependent phosphorylation. This is likely to have important implications in the correct timely mitotic entry and mitosis progression.  相似文献   

18.
The logic of TGFbeta signaling   总被引:1,自引:0,他引:1  
Massagué J  Gomis RR 《FEBS letters》2006,580(12):2811-2820
  相似文献   

19.
Phosphorylation of Orc2, one of the six subunits of the origin recognition complex (ORC), by cyclin A/CDK2 during S phase leads to the dissociation of Orc2, Orc3, Orc4, and Orc5 subunits (Orc2–5) from human chromatin and replication origins. Dephosphorylation of the phosphorylated Orc2 by protein phosphatase 1 (PP1) is accompanied by the binding of the dissociated subunits to chromatin. Here we show that PP1 physically interacts with Orc2. The binding of PP1 to Orc2 and the dephosphorylation of Orc2 by PP1 occurred in a cell cycle-dependent manner through an interaction with 119-KSVSF-123, which is the consensus motif for the binding of PP1, of Orc2. The dephosphorylation of Orc2 by PP1 is required for the binding of Orc2 to chromatin. These results support that PP1 dephosphorylates Orc2 to promote the binding of ORC to chromatin and replication origins for the subsequent round of the cell cycle.  相似文献   

20.
Adenovirus early region 4 open reading frame 4 (E4orf4) protein has been reported to induce p53-independent, protein phosphatase 2A (PP2A)-dependent apoptosis in transformed mammalian cells. In this report, we show that E4orf4 induces an irreversible growth arrest in Saccharomyces cerevisiae at the G2/M phase of the cell cycle. Growth inhibition requires the presence of yeast PP2A-Cdc55, and is accompanied by accumulation of reactive oxygen species. E4orf4 expression is synthetically lethal with mutants defective in mitosis, including Cdc28/Cdk1 and anaphase-promoting complex/cyclosome (APC/C) mutants. Although APC/C activity is inhibited in the presence of E4orf4, Cdc28/Cdk1 is activated and partially counteracts the E4orf4-induced cell cycle arrest. The E4orf4-PP2A complex physically interacts with the APC/C, suggesting that E4orf4 functions by directly targeting PP2A to the APC/C, thereby leading to its inactivation. Finally, we show that E4orf4 can induce G2/M arrest in mammalian cells before apoptosis, indicating that E4orf4-induced events in yeast and mammalian cells are highly conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号