首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulosic fabric samples of cotton, viscose, lyocell and modal were pretreated with steam and dry heat in the range of 100–190°C. The samples were then treated with a Trichoderma reesei cellulase preparation (total culture filtrate – TC), with mechanical agitation, at a high enzyme dosage of 75% by weight of fabric, for 8 hours. Generally, viscose proved to be easily degradable, followed by cotton and modal. The degree of hydrolysis was the least for Lyocell. Dry heat pretreatments exerted a lower influence on degradation rate than steam pretreatments which showed a distinct maximum at a steam temperature of 130°C. The hydrolysis rate varied strongly depending on treatment conditions and fibre type. Water retention values in treated substrates were changed by up to 20% of initial values.  相似文献   

2.
Surface activation of fabric made from cellulose fibres, such as viscose, lyocell, modal fibres and cotton, can be achieved by printing of a concentrated NaOH-containing paste. From the concentration of reducing sugars formed in solution, an increase in intensity of the cellulase hydrolysis by a factor of six to eight was observed, which was mainly concentrated at the activated parts of the fabric surface. This method of local activation is of particular interest for modification of materials that have been dyed with special processes to attain an uneven distribution of dyestuff within the yarn cross-section, e.g., indigo ring-dyed denim yarn for jeans production. Fabrics made from regenerated cellulose fibres were used as model substrate to express the effects of surface activation on indigo-dyed material. Wash-down experiments on indigo-dyed denim demonstrated significant colour removal from the activated surface at low overall weight loss of 4-5%. The method is of relevance for a more eco-friendly processing of jeans in the garment industry.  相似文献   

3.
In this work the possibility and potential of treating cotton fibers and yarns instead of fabrics with monocomponent cellulases was investigated. Different pretreatments on fibers were performed and tested in order to improve the accessibility of cotton to enzymatic modification. The enzymatic treatments were evaluated microscopically and by analysing the effects of treated fibers on spinnability, yarn evenness, tenacity and pilling. The accessibility of the cotton fibers for cellulases could be increased by different pretreatments. Steaming of fibers prior to enzymatic treatment was found to be an efficient way to increase hydrolysis levels. Cellulase treatments of carded yarns resulted in modification of yarn properties. Decrease in yarn hairiness was observed and the knitted fabric made of the treated yarn showed a lowered tendency towards pilling. In all cases endoglucanase activity rather than cellobiohydrolase activity was responsible for these modifications.  相似文献   

4.
Implementation of batchwise bioscouring of cotton knits   总被引:3,自引:0,他引:3  
The examination of critical factors determining the performance of bioscouring showed that a short treatment of the fabric at greater than 80°C after pectinase treatment at 60°C was essential for removal of waxes from the fabric as demonstrated by diminished intensities of methylene peaks in FT-IR measurements. Batch-wise bioscouring of cotton knits was carried out several times with post-treatment at 80°C using a rapid dyeing machine. The dye-ability of bioscoured knits was as good as the company's alkaline scoured ones with slightly higher K/S values. Water pollution caused by effluents of bioscouring and alkaline processes were estimated, as well as that due to the input of chemicals and enzymes. Higher BOD:CODCr ratios for enzymes indicated their biodegradable character. After calculation of energy consumption using a simulation program, an economic evaluation of the two processes was done on the basis of one ton production by considering the costs of chemicals and enzyme, water usage, energy consumption and waste water treatment charge.  相似文献   

5.
Penicillium funiculosum produces a complete cellulase which brings about 97% hydrolysis of cotton and has high beta-glucosidase, xylanase, laminarinase, and lichenase activities. This article deals with the effect of different pretreatments on the hydrolysis of sugarcane bagasse by P. funiculosum enzymes and the recovery of enzyme from the insoluble residues. Enzymic saccharification of bagasse pretreated with hot 1N NaOH followed by neutralization with HCI and steam treated under pressure (7 kg/cm(2)) gave 63 and 59% saccharification, respectively, in 48 h. Hemicellulose is not lost in these pretreatments. With a 30% slurry of steam-treated bagasse, a semisolid mass containing 14% sugar was obtained. A 90% recovery of CMCase, beta-glucosidase, and filter paper activity from the hydrolysates was obtained under the following conditions: (1) maintaining the ratio of enzyme to substrate high by stepwise addition of substrate, (2) brief grinding of the residual substrate with glass powder, and (3) addition of 0.4% Tween-80 to the eluting buffer. The high recovery of cellulolytic enzymes indicates that the adsorption of these enzymes on cellulose is not irreversible.  相似文献   

6.
Unbleached cotton fabrics (UCF) with 12.5% polypropylene scrim treated with two phosphate-urea based fire-retardant (FR) formulations were evaluated for FR properties using thermogravimetry/differential thermogravimetry/differential thermal analysis (TG/DTG/DTA) method. In addition to testing the two FR-treated unbleached cotton fabrics (CF-FR1 and CF-FR2), bleached cotton fabric (BCF) treated with the two FR formulations (BCF-FR1 and BCF-FR2) was evaluated. Both formulations were washable with add-on of FR chemicals at 18.7% (FR1) or 17.4% (FR2) for UCF and 22.5% (FR1) or 24.9% (FR2) for BCF. The decreasing order of sums at maximal rates of samples degradation in air environment according to DTG method was: BCF (21.40%/min)>UCF (12.91%/min)>BCF-FR2 (12.83%/min)>BCF-FR1 (11.68%/min)>CF-FR2 (10.20%/min)>CF-FR1 (9.73%/min). It indicates that both formulations cause the decrease of thermooxidation of the products at slower rates than the starting material. Several endo- and exothermic peaks observed by DTA in inert and oxidative environment gives additional information about the degradation process. The order of decreasing thermal responses of the studied samples based on sums of DTA peak values of endothermic and exothermic peaks in air environment is: UCF (0.597°C/mg)>BCF (0.120°C/mg)>CF-FR1 (0.089°C/mg)>BCF-FR1 (0.077°C/mg)>CF-FR2 (0.062°C/mg)>BCF-FR2 (0.053°C/mg). This is in agreement with the cone calorimeter results according to which the flammability properties are improving with the decreasing heat release rates or ignition time prolongation in order: UCF>CF-FR1>CF-FR2. The advantage of TG/DTG/DTA method is slower linear heating rate, which allows the more detailed evaluation of the light and flammable cotton fabric.  相似文献   

7.
Enzymes and chelating agent in cotton pretreatment   总被引:6,自引:0,他引:6  
Desized cotton fabric and cotton seed-coat fragments (impurities) have been treated with commercial cellulase (Celluclast 1.5 L), hemicellulase–pectinase (Viscozyme 120 L) and xylanase (Pulpzyme HC) enzymes. Seed-coat fragments hydrolyzed much faster than the cotton fabric itself. This relative difference in hydrolysis rates makes possible a direct enzymatic removal of seed-coat fragments from desized cotton fabric. Addition of chelating agents such as ethylenediamine-tetra-acetic acid (EDTA) markedly enhanced the directed enzyme action. Pretreatments carried out in acidic solution at pH 5 increased the lightness of seed-coat fragments, contrary to the samples treated in neutral medium at pH 7. Alkaline scouring resulted in darker seed-coat fragments except for the samples pretreated with Pulpzyme HC plus EDTA. This effect is similar to that observed in the biobleaching process in pulp and paper industry.  相似文献   

8.
Paper tube residual was utilized as a raw material for ethanol production. The effects of two pretreatment methods namely dilute acid steam explosion (DASE) and concentrate phosphoric acid (CPA) on enzymatic hydrolysis and SSF were studied. Cellulose, lignin, glue (PVA), and xylan were the main components of paper tube accounting for 52%, 20%, 9% and 7% of dry matter, respectively. Presence of PVA delayed the growth of yeast cells but showed no effect on ultimate yield of ethanol. Higher cellulase concentration as well as pretreatments increased hydrolysis rate and ultimate yield of ethanol. Enzymatic hydrolysis of native paper tube for 72 h resulted in 49% of theoretical glucose conversion while pretreatments by DASE and CPA increased this value to 67% and 93%, respectively. The best result of SSF process was from the CPA-pretreated paper tubes with an ethanol yield of 0.42 g/g after 48 h. Under optimal condition, 308 ml ethanol per kg paper tube could be produced.  相似文献   

9.
New immobilized biocatalysts based on phosphotriesterase and porous fabric materials impregnated with chemically cross-linked chitosan and sulphate chitosan gels were investigated. Analysis of the rheological characteristics of enzyme-containing gels confirmed their high plasticity and mechanical strength, while scanning electron microscopy verified their macroporous structure. The fabric matrix could absorb and retain a large amount of liquid thereby increasing its own weight 3.5-4.5 fold. The catalytic characteristics of the immobilized biocatalyst hydrolyzing Paraoxon, Coumaphos, Chlorpyrifos and Diisopropyl fluorophosphate were investigated. The catalytic efficacy of the soluble enzyme was 3.0-5.5-times higher compared to the immobilized form mainly due to the lower Km values. With constant 55-60% humidity the biocatalyst retained 77% and 67-70% activity after 50-day storage at 4°C and 23°C, respectively. Benzalkonium chloride appeared to be an appropriate preservative for long-term storage of immobilized biocatalyst in a wet state.  相似文献   

10.
Cotton fabric samples were treated with a formulation of a total crude Trichoderma reesei cellulase in a two-step procedure. In the first step, samples were treated at a low liquor ratio by padding through the enzyme formulation at 21°C and 55°C with a wet pickup of 100% and batched for 12 h. The samples were then treated at a high liquor ratio (1:25) with an identical enzyme formulation at 55°C, with intensive agitation. The pre-treatment influenced the overall weight loss and rate of hydrolysis in samples, and the protein concentration in the liquor of the second step. The overall weight loss was 25–28% (w/w) in the two-step procedure compared to a weight loss of 22% (w/w) in the one-step batch hydrolysis.  相似文献   

11.
Biosensors based on whole-cell bioluminescence have the potential to become a cost-effective alternative to conventional detection methods upon validation of target selectivity and sensitivity. However, quantitative analysis of bioluminescence is greatly hindered due to lack of control over the total number of cells in a suspending culture. In this study, the effect of surface properties of genetically engineered luminous E. coli cells and fibrous matrices on the immobilization capacity and effectiveness under various environmental conditions were characterized. Four different fibers, including cotton, polyester, viscose rayon, and silk, were investigated. Although cell adhesion was observed on untreated viscose and cotton fibers, viscose fiber pretreated with 0.667% polyethyleneimine (PEI) was found capable of immobilizing the most viable E. coli DPD2234 cells, followed by viscose treated with 0.33% and 1% PEI. The cells immobilized on PEI-treated viscose remained viable and yielded 20% or more bioluminescence signals immediately upon contact with the inducer up to 72 h without feeding nutrients to the cells, suggesting that viscose treated with 0.667% PEI could provide a stable immobilization mechanism for bioluminescent E. coli cells with long sensing period, quick response time, and good signal reproducibility.  相似文献   

12.
A high accessibility is an essential prerequisite for a homogeneous substitution of cellulose material. In this study, chemical and enzymatic pretreatments to increase the accessibility of cellulose materials have been investigated. Dissolving pulp has been treated with a monocomponent endoglucanase. Fock's method, a microscale process similar to the viscose process, showed an increase in cellulose yield. Simultaneously, the viscosity decreased. To clarify whether the increase in reactivity was due solely to the decrease in the degree of polymerization, the dissolving pulp was also subjected to acid hydrolysis. At a given viscosity level, the enzymatic pretreated pulp had a higher reactivity than the pulp subjected to acid hydrolysis. To achieve 100% reactivity, according to Fock, the acid-treated pulp showed a lower molecular weight compared to the enzymatic-treated pulp. A monocomponent endoglucanase can thus be used to increase the reactivity and accessibility of dissolving pulp in the viscose process.  相似文献   

13.
In the present study salicylanilide was reacted with 2,4,6-trichloro-1,3,5-triazine producing reactive salicylanilide at a yield of 45% according to reaction conditions set. The reactive salicylanilide was confirmed structurally through FT-IR analysis. Pristine viscose fabric was treated with active salicylanilide to impart permanent antibacterial and antifungus properties to the fabric. Covalently attached reactive salicylanilide, as revealed, was quantitatively assessed through spectrophotometric and nitrogen elemental analysis. The antibacterial and antifungus capability of reactive salicylanilide treated viscose fabric; fastness and washing reproduction were examined and evaluated.  相似文献   

14.
Cyclodextrin glycosyl transferase (E.C: 2.4.1.19) from Bacillus, macerans and from a Bacillus sp. isolate was immobilized by two methods, viz. to epoxy-activated Sepharose and to alkylamine silica treated with glutaraldehyde. Because of the ready availability, low cost ($0.01/g), good surface area (30 M2/g) and ease of operation of a continuous cylindrical reactor, the high silica fabric was chosen. The immobilized enzyme had a pH optimum shifted to the alkaline side (from 6.5 to 7.5) and had a reduced temperature optimum (from 60°C to 50-55°C). Reuse efficiency showed 65% reduction in the overall activity of the immobilized enzyme after 10 cycles of 48 h each. Continuous operation at 55°C of a cylindrical reactor of 141 ml capacity, using the immobilized enzyme (80 g of high - silica fabric containing 114 mg of purified enzyme) gave a maximum productivity of 10.2 g of cyclodextrins L-1 h,-1, at a dilution rate of 0.32 h-1 and a substrate concentration of 20 g L-1. The half life of the biocatalyst was found to be 22 days, which could be further improved by using a lower operating temperature. Over the useful life time of the immobilized biocatalyst (22 days), the total Cyclodextrin produced was of the order of 88 Kg.  相似文献   

15.
1,2,3-Benzothiazole-7-thiocarboxylic acid-S-methylester (commercially known as Actigard® AM-87) was utilized to impart cotton fabric durable antimicrobial properties. Finishing treatment was carried out under a variety of conditions. The latter were included, effect of pH, concentration of antibacterial agents, curing temperature and curing time. The effect of fabric construction, mercerization, and dyeing with different dyestuff were also investigated. The study was also extended to investigate the technical feasibility of combining antimicrobial finishing treatment in question with other finishing treatment generally carried out on cotton fabric, like soft finishing and crease recovery finishing. The treated fabrics were monitored for antimicrobial properties before and after washing. The treated fabrics were also evaluated for the physio-mechanical properties like fabric tensile strength, elongation at break (or bursting strength for knitted fabric), wettability, crease recovery angle, whiteness index and roughness. Results obtained show that, the most appropriate conditions for treatment cotton fabric with Actigard® are: padding the cotton fabric in aqueous solution containing 6% Actigard® at pH 5 (adjusted using formic acid) then squeezed to wet pick up of 100%, dried at 80 °C for 5 min then cured at 100 °C for 150 s. The untreated cotton fabric did not show any antimicrobial activity towards Staphylococcus aureus or Escherichia coli. Treatment of cotton fabric with Actigard® improves its antimicrobial properties towards S. aureus or E. coli. It is also observed that, treatment of cotton fabric with Actigard® marginally decreases fabric tensile strength, elongation at break, roughness and WI, whereas; both wettability and crease recovery angle remain practically intact. This was observed whether the fabric was pre-mercerized or not.  相似文献   

16.
The effects of starch granules on the rheological behaviour of gels of native potato and high amylopectin potato (HAPP) starches have been studied with small deformation oscillatory rheometry. The influence of granule remnants on the rheological properties of samples treated at 90 °C was evident when compared with samples treated at 140 °C, where no granule remnants were found. The presence of amylose in native potato starch gave to stronger network formation since potato starch gave higher moduli values than HAPP, after both 90 and 140 °C treatments. In addition, amylose may have strengthened the network of HAPP because higher moduli values were obtained when native potato starch was added to the system. The moduli values of the mixtures also increased with increasing polysaccharide concentration in the system, which is due to an increment in the polysaccharide chain contacts and entanglements. Finally, it was found that a mixture of commercial amylose from potato starch and HAPP resulted in lower values of G′ compared to native potato starch. This indicates that the source of amylose is important for the properties in a blend with native amylopectin.  相似文献   

17.
Wheat seedlings were subjected to heat shock for 2 min at 45 °C. After heat treatment, the wheat seedlings were incubated at 25 or 35 °C. At 25 °C, but not at 35 °C, the root tips survived the heat shock. Immediately after the heat treatment the free triglyceride content in the treated root tips was higher than in the untreated roots, but the total lipid content was not changed. The ATP content immediately after the heat treatment was variable, but after about 1 h it stabilized at the same level as in the control or at a higher level. After 45 min at 25 °C after heat shock, the endoplasmic reticulum cisternae had expanded, giving rise to small irregular vacuoles. Golgi vesicles were also irregular. Four hours after heat treatment the endoplasmic reticulum and Golgi vesicles again were normal, but mitochondria were irregular with fewer tubules and with adhering membrane curls containing lipids. These membrane curls were not observed 24 h after heat treatment. When incubated at 35 °C after heat shock wheat root meristems died. Some cells in the meristem were still alive 4 h after treatment. They had large vacuoles with membrane whorls and plasmalemmasomes, and in some cases the cells were partly lysed.  相似文献   

18.
Several benzophenone chromophoric groups were incorporated onto cotton fabrics by using 4-hydroxybenzophenone, 4,4′-dihydroxybenzophenone, 4-chloro-4′-hydroxybenzophenone, and 4-benzoylbenzoic acid as reagents. The fabric treatment was conducted by a pad-dry-cure method, and the benzophenone chromophoric group incorporated cotton fabrics were characterized and confirmed by FTIR. Tensile strengths of benzophenone chromophoric groups modified cotton fabrics were also measured. 4-Hydroxybenzophenone treated cotton fabric showed the most powerful antibacterial activity among all samples, and 4-benzoylbenzoic acid treated cotton fabric demonstrated pesticide degradation ability, under UV irradiation.  相似文献   

19.
Desizing of cotton and micropoly fabrics was done using thermostable xylanase from Bacillus pumilus ASH. Micropoly fabric showed better desizing than cotton under same conditions. Violet scale readings from the TEGEWA test after enzymatic desizing for 90 min at pH 7.0 and at 60°C showed the readings falling in the range of 4–5, indicating good desizing efficiency. During bioscouring the weight loss values and liberation of reducing sugars were highest when EDTA was used along with xylanase. The weight loss value of 1.5% was observed for dry cotton fabric after 1 h in case of agitated system at pH 7.0 and at an optimal enzyme dosage of 5 IU/g. The weight loss values and the liberation of reducing sugars were higher in case of cotton fabrics. Wetting time of fabrics was lowered significantly after 60 min of bioscouring using xylanase. Increase in temperature or concentration of surfactant led to further reduction in the wetting time. The whiteness values of fabrics after bioscouring were 0.9% higher than the chemically scoured fabrics indicating good efficacy of xylanase during the scouring process.  相似文献   

20.
The surface of an acrylic fibre containing about 7% of vinyl acetate was modified using Fusarium solani pisi cutinase and a commercial esterase, Texazym PES. The effect of acrylic solvents and stabilising polyols on cutinase operational stability was studied. The half-life time of cutinase increased by 3.5-fold with the addition of 15% N,N-dimethylacetamide (DMA) and by 3-fold with 1M glycerol. The impact of additives and mechanical agitation in the protein adsorption and in the hydrolysis of vinyl acetate from acrylic fabric was investigated. The hydroxyl groups produced on the surface of the fibre were able to react specifically with Remazol Brilliant Blue R (cotton reactive dye) and to increase the colour of the acrylic-treated fabric. The best staining level was obtained with a high level of mechanical agitation and with the addition of 1% DMA. Under these conditions, the raise in the acrylic fabric colour depth was 30% for cutinase and 25% for Texazym. The crystallinity degree, determined by X-ray diffraction, was not significantly changed between control samples and samples treated with cutinase. The results showed that the outcome of the application of these enzymes depends closely on the reaction media conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号