首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nucleic acids are generally considered as efficient cation binders. Therefore, the likelihood that negatively charged ions might intrude their first hydration shell is rarely considered. Here, we show on the basis of (i) a survey of the Nucleic Acid Database, (ii) several structures extracted from the Cambridge Structural Database, and (iii) molecular dynamics simulations, that the nucleotide electropositive edges involving mainly amino, imino, and hydroxyl groups can cast specific anion binding sites. These binding sites constitute also good locations for the binding of the negatively charged groups of the Asp and Glu residues or the nucleic acid phosphate groups. Furthermore, it is observed in several instances that anions, like water molecules and cations, do mediate protein/nucleic acid interactions. Thus, anions as well as negatively charged groups are directly involved in specific recognition and folding phenomena involving polyanionic nucleic acids.  相似文献   

2.
D C Mitchell  B J Litman 《Biochemistry》1999,38(24):7617-7623
Neutral solutes were used to investigate the effects of osmotic stress both on the ability of rhodopsin to undergo its activating conformation change and on acyl chain packing in the rod outer segment (ROS) disk membrane. The equilibrium concentration of metarhodopsin II (MII), the conformation of photoactivated rhodopsin, which binds and activates transducin, was increased by glycerol, sucrose, and stachyose in a manner which was linear with osmolality. Analysis of this shift in equilibrium in terms of the dependence of ln(Keq) on osmolality revealed that 20 +/- 1 water molecules are released during the MI-to-MII transition at 20 degrees C, and at 35 degrees C 13 +/- 1 waters are released. At 35 degrees C the average time constant for MII formation was increased from 1.20 +/- 0.09 ms to 1.63 +/- 0.09 ms by addition of 1 osmolal sucrose or glycerol. The effect of the neutral solutes on acyl chain packing in the ROS disk membrane was assessed via measurements of the fluorescence lifetime and anisotropy decay of 1,6-diphenyl-1,3,5-hexatriene (DPH). Analysis of the anisotropy decay of DPH in terms of the rotational diffusion model showed that the angular width of the equilibrium orientational distribution of DPH about the membrane normal was progressively narrowed by increased osmolality. The parameter fv, which is proportional to the overlap between the DPH orientational probability distribution and a random orientational distribution, was reduced by the osmolytes in a manner which was linear with osmolality. This study highlights the potentially opposing interplay between the effect of membrane surface hydration on both the lipid bilayer and integral membrane protein structure. Our results further demonstrate that the binding and release of water molecules play an important role in modulating functional conformational changes for integral membrane proteins, as well as for soluble globular proteins.  相似文献   

3.
In order to better characterize changes in water structure induced by a hydrophobic solute the oxygen-oxygen and hydrogen-hydrogen radial distribution functions (goo(r), ghh(r)) and the hydrogen bond angle distribution function p(theta) for water molecules in the first hydration shell of the tetramethyl ammonium (TMA) cation were computed using Monte Carlo simulations. goo(r) and ghh(r) were corrected for the effect of solute volume exclusion on the local solvent density so that intrinsic structural changes independent of local solvent density variations could be detected. Comparison of ghh(r) of TMA's first hydration shell water with ghh(r) for bulk water shows subtle but clear evidence of structure formation induced by the ion. These changes in ghh(r) are very similar to those seen experimentally for larger tetra-alkyl ammonium ions in previous neutron diffraction experiments. Larger changes in p(theta) in the first hydration shell of TMA were seen. Comparison of changes in p(theta) with changes in goo(r) and ghh(r) show that the angle distribution function provides the most sensitive way to analyze water structure changes associated with hydrophobic solvation.  相似文献   

4.
The effects of metal ion and solute conformation change on the structures, energetic and dynamics of water molecules in the first hydration shell of amino acid were studied, using three forms of alanine (Ala) and Li(+)/Ala as model molecules. The theoretical investigations were started with construction of the test-particle model (T-model) potentials for all molecules involved and followed by molecular dynamics (MD) simulations of [Ala](aq) and [Li(+)/Ala](aq) at 298 K. The MD results showed that the hydrogen bond (H-bond) networks of water at the functional groups of Ala are strengthened by the metal ion binding, whereas the rotation of the N-C(alpha) bond from the angle phi=0 degrees to 180 degrees brings about smaller effects which cannot be generalized. It was also shown that the dynamics of water molecule in the first hydration shell of amino acid could be estimated from the total-average potential energy landscapes and the water exchange diagrams. The MD results suggested inclusion of an additional dynamic step in the water exchange process, in which water molecule moves inside a channel within the first hydration shell of solute, before leaving the channel at some point. The theoretical results reported in the present work iterated the necessity to include explicit water molecules in the model calculations.  相似文献   

5.
The experimental electron affinities of adenine, guanine, cytosine, thymine and uracil have been determined from reduction potentials and negative ion photoelectron spectra. Updated values for purine, pyrimidine and other nitrogen heterocyclics, which have not been measured in the gas phase, are presented. The electron affinity of Watson–Crick guanine–cytosine is estimated empirically. The experimental values are consistent with quantum mechanical semi-empirical multiconfiguration configuration interaction calculations. The bulk hydration energies of the nucleobase anions, 2.34 eV, determined from the experimental data and sequential anion hydration energy difference of about 0.20(5) eV suggest that 10–15 water molecules complete the hydration shell. The electron affinities for the formation of doublet and quartet anions of the nucleobases, nucleosides, nucleotides and Watson–Crick base pairs are calculated. We postulate that low-lying quartet anion states and their spin distribution can and will participate in electron conduction, radiation damage, oxidation damage and repair, strand breakage and protein synthesis.  相似文献   

6.
Small ions of high charge density (kosmotropes) bind water molecules strongly, whereas large monovalent ions of low charge density (chaotropes) bind water molecules weakly relative to the strength of water-water interactions in bulk solution. The standard heat of solution of a crystalline alkali halide is shown here to be negative (exothermic) only when one ion is a kosmotrope and the ion of opposite charge is a chaotrope; this standard heat of solution is known to become proportionally more positive as the difference between the absolute heats of hydration of the corresponding gaseous anion and cation decreases. This suggests that inner sphere ion pairs are preferentially formed between oppositely charged ions with matching absolute enthalpies of hydration, and that biological organization arises from the noncovalent association of moieties with matching absolute free energies of solution, except where free energy is expended to keep them apart. The major intracellular anions (phosphates and carboxylates) are kosmotropes, whereas the major intracellular monovalent cations (K+; arg, his, and lys side chains) are chaotropes; together they form highly soluble, solvent-separated ion pairs that keep the contents of the cell in solution.  相似文献   

7.
The interaction of pyridinium salts (PS) with red blood cells and planar lipid membranes was studied. The aim of the work was to find whether certain cationic surfactant counterion influence its possible biological activity. The counterions studied were Cl-, Br-, I-, ClO4-, BF4- and NO3-. The model membranes used were erythrocyte and planar lipid membranes (BLM). At high concentration the salts caused 100% erythrocyte hemolysis (C100) or broke BLMs (CC). Both parameters describe mechanical properties of model membranes. It was found that the efficiency of the surfactant to destabilize model membranes depended to some degree on its counterion. In both, erythrocyte and BLM experiments, the highest efficiency was observed for Br-, the lowest for NO3-. The influence of all other anions on surfactant efficiency changed between these two extremities; that of chloride and perchlorate ions was similar. Some differences were found in the case of BF4- ion. Its influence on hemolytic possibilities of PS was significant while BLM destruction required relatively high concentration of this anion. Apparently, the influence of various anions on the destructive action of PS on the model membrane used may be attributed to different mobilities and radii of hydrated ions and hence, to different possibilities of particular anions to modify the surface potential of model membranes. This can lead to a differentiated interaction of PS with modified bilayers. Moreover, the effect of anions on the water structure must be taken into account. It is important whether the anions can be classified as water ordering kosmotropes that hold the first hydration shell tightly or water disordering chaotropes that hold water molecules in that shell loosely.  相似文献   

8.
Equilibrium geometries and binding energies of model "salt" or "ion" bridge systems have been computed by ab initio quantum chemistry techniques (GAUSSIAN82) and by empirical force field techniques (AMBER2.0). Formate and dimethyl phosphate served as anions in the model compounds while interacting with several organic cations, including methyl ammonium, methyl guanidinium, and divalent metal ion (either Mg2+ or Ca2+) without and with an additional chloride; and a divalent metal ion (either Mg2+ or Ca2+), chloride, and four water molecules of hydration about the metal ion. The majority of the quantum chemical computations were performed using a split-valence basis set. For the model compounds studied we find that the ab initio optimized geometries are in remarkably good agreement with the molecular mechanics geometries. Several calculations were also performed using diffuse fractions. The formate anion binds these model cations more strongly than does dimethyl phosphate, while the organic cation methyl ammonium binds model anions more strongly than does methyl guanidinium. Finally, in model compounds including organic anions, Mg2+ or Ca2+ and four molecules of water, and a chloride anion, we find that the equilibrium structure of the magnesium complex involves a solvent separated ion pair (the magnesium ion is six coordinate), whereas the calcium ion complex remains seven coordinate. Molecular mechanics overestimates binding energies, but the estimates may be close enough to actual binding energies to give useful insight into the details of salt bridges in biological systems.  相似文献   

9.
M F Colombo  F A Seixas 《Biochemistry》1999,38(36):11741-11748
The effect of anions on the stability of different functional conformations of Hb is examined through the determination of the dependence of O(2) affinity on water activity (a(w)). The control of a(w) is effected by varying the sucrose osmolal concentration in the bathing solution according to the "osmotic stress" method. Thus, the hydration change following Hb oxygenation is determined as a function of Cl(-) and of DPG concentration. We find that only approximately 25 additional water molecules bind to human Hb during the deoxy-to-oxy conformation transition in the absence of anions, in contrast with approximately 72 that bind in the presence of more than 50 mM Cl(-) or more than 15 microM DPG. We demonstrate that the increase in the hydration change linked with oxygenation is coupled with anion binding to the deoxy-Hb. Hence, we propose that the deoxy-Hb coexists in two allosteric conformations which depend on whether anion is bound or not: the tense T-state, with low oxygen affinity and anion bound, or a new allosteric P-state, with intermediate oxygen affinity and free of bound anions. The intrinsic oxygen affinity of this unforeseen P-state and the differential binding of Cl(-), DPG, and H(2)O between states P and T and P and R are characteristics which are consistent with those expected for a putative intermediate allosteric state of Hb. These findings represent a new opportunity to explore the structure-function relationships of hemoglobin regulation.  相似文献   

10.
The effect of anions on Na+-cotransport of succinate, lactate, glucose, and phenylalanine was studied under voltage clamped conditions in brush-border membrane vesicles prepared from rabbit renal cortex. The initial rate of succinate uptake varied by an order of magnitude depending on the anion: the highest rates were obtained with fluoride and gluconate, and the lowest with iodide. The anion sequence corresponded with the inverse of the anion hydration energies. The kinetics of succinate uptake were measured in the presence of fluoride and chloride. There was no difference in the maximal rates of uptake, but the Kt in fluoride (0.30 mM) was less than half that in chloride (0.70 mM), i.e. Cl- behaved as a competitive inhibitor of succinate transport with a Ki of 150 mM. The uptake of L-lactate, D-glucose and L-phenylalanine was less sensitive to anions, and there was no correlation with hydration energies. We conclude that the anion effects on sugar and amino acid uptakes measured under open-circuit conditions are largely due to variations in membrane potential, but in the case of the dicarboxylate transporter anions behave as weak competitive inhibitors. The specificity of the anion inhibition suggests that the dicarboxylate binding sites have a weak field strength relative to water.  相似文献   

11.
Structure of DNA hydration shells studied by Raman spectroscopy   总被引:1,自引:0,他引:1  
N J Tao  S M Lindsay  A Rupprecht 《Biopolymers》1989,28(5):1019-1030
We have used Raman scattering to study the water O-H stretching modes at approximately 3450 and approximately 3220 cm-1 in DNA films as a function of relative humidity (r.h.). The intensity of the 3220-cm-1 band vanishes as the r.h. is decreased from 98% to around 80%, which indicates that the hydrogen-bond network of water is disrupted in the primary hydration shell (which therefore cannot have an "ice-like" structure). The number of water molecules in the primary hydration shell was determined from the intensity of the approximately 3200-cm-1 band as about 30 water molecules per nucleotide pair. The approximately 3400-cm-1 O-H stretch band was used for determining the total water content, and this band persists at 0% r.h., implying that 5-6 tightly bound water molecules per nucleotide pair remain. The frequency of the approximately 3400-cm-1 O-H stretch mode is lower by 30 to 45 cm-1 in the primary hydration shell compared to free water. The water content as a function of r.h. obtained from these experiments agrees with gravimetric measurements. The disappearance of the approximately 3200-cm-1 band and the shift of the approximately 3400-cm-1 O-H stretch band provide a reliable way of measuring the hydration number of DNA.  相似文献   

12.
13.
In the present work, molecular dynamics simulations have been carried out to study the dependence of counterion distribution around the DNA double helix on the character of ion hydration. The simulated systems consisted of DNA fragment d(CGCGAATTCGCG) in water solution with the counterions Na+, K+, Cs+ or Mg2+. The characteristic binding sites of the counterions with DNA and the changes in their hydration shell have been determined. The results show that due to the interaction with DNA at least two hydration shells of the counterions undergo changes. The first hydration shell of Na+, K+, Cs+, and Mg2+ counterions in the bulk consists of six, seven, ten, and six water molecules, respectively, while the second one has several times higher values. The Mg2+ and Na+ counterions, constraining water molecules of the first hydration shell, mostly form with DNA water-mediated contacts. In this case the coordination numbers of the first hydration shell do not change, while the coordination numbers of the second one decrease about twofold. The Cs+ and K+ counterions that do not constrain surrounding water molecules may be easily dehydrated, and when interacting with DNA their first hydration shell may be decreased by three and five water molecules, respectively. Due to the dehydration effect, these counterions can squeeze through the hydration shell of DNA to the bottom of the double helix grooves. The character of ion hydration establishes the correlation between the coordination numbers of the first and the second hydration shells.
Graphical Abstract Hydration of counterions interacting with DNA double helix
  相似文献   

14.
15.
J B Sokoloff 《Biopolymers》1990,30(5-6):555-562
A previous model for acoustic mode vibrations of a DNA molecule in water is extended to the case of an array of many DNA molecules, as occurs in the fibers studied in most experimental work on DNA. The acoustic modes of this system are found to consist of coupled modes of water sound vibrations and DNA acoustic modes. This model is used to study the electrostatic coupling of acoustic vibrations to the relaxational modes of the orientational degrees of freedom of the water molecules. It is found that the long-range or macroscopic electric field generated by the acoustic mode vibrations of the water-DNA system gives too small a damping and frequency shift of the acoustic modes to account for the observations on DNA fibers. Therefore, the observed damping and frequency shifts are most likely due to either friction between the surrounding water and the vibrating DNA, or coupling to the water orientation degrees of freedom resulting from the short range (i.e., screened) Coulomb interaction. The latter explanation (which is most likely the correct one) implies that the relaxation time of the hydration shell water is longer than the observed relaxation time by a factor of the static dielectric constant of the hydration water.  相似文献   

16.
The hydration shell of several conformations of the polynucleotides poly(dA).poly(dT), poly(dA).poly(dU), and poly(dA-dI).poly(dT-dC) has been simulated using the Monte Carlo method (Metropolis sampling). Calculations have shown that the structure of the hydration shell of the minor groove greatly depends on its width. In conformations with a narrowed minor groove, the first layer of the hydration shell of this groove has only one molecule per nucleotide pair that forms H bonds with purine N3 of one pair and pyrimidine O2 of the next pair. The second layer of the hydration shell of such conformations contains molecules that form H bonds between two adjacent molecules of the first layer. The probability of formation of hydration spine is about 20% while the bridges of the first layer are formed with a probability of about 70%. In the first layer of the minor groove of the B-DNA conformation with wide minor groove there are approximately two water molecules per base pair that form H bonds with purine N3 or pyrimidine O2 and with the sugar ring oxygen of the adjacent nucleotide. The probability of simultaneous H bonding of a water molecule with N3 (or O2) and O of sugar ring is about 30%. The results of simulation suggest that hydration spine proposed for the narrowed minor groove of oligonucleotide crystals [H. R. Drew, and R. E. Dickerson (1981) Journal of Molecular Biology, Vol. 151, pp. 535-556] can be formed in fibers of poly(dA).poly(dT), poly(dA).poly(dU), and poly(dA-dI).poly(dT-dC) as well as in DNA fragments of these sequences in solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The permeability of the lysosomal membrane to small anions and cations was studied at 37 degrees C and pH 7.0 in a lysosomal-mitochondrial fraction isolated from the liver of untreated rats. The extent of osmotic lysis following ion influx was used as a measure of ion permeancy. In order to preserve electroneutrality, anion influx was coupled to an influx of K+ in the presence of valinomycin, and cation influx was coupled to an efflux of H+ using the protonophore 3-tert-butyl-5,2'-dichloro-4'-nitrosalicilylanilide. Lysosomal lysis was monitored by observing the loss of latency of two lysosomal hydrolases. The order of permeability of the lysosomal membrane to anions was found to be SCN- greater than I- greater than CH3COO- greater than Cl- approximately Pi greater than SO24- and that to cations Cs+ greater than K+ greater than Na+ greater than H+. These orders are largely in agreement with the lyotropic series of anions and cations. The implications of these findings for the mechanism by means of which a low intralysosomal pH is produced and maintained are discussed.  相似文献   

18.
We studied salt and water absorption in isolated rabbit superficial proximal straight tubules perfused and bathed with solutions providing oppositely directed transepithelial anion gradients similar to those which might obtain in vivo. The perfusing solution contained 138.6 mM Cl- 3.8 mM HCO-3 (pH 6.6) while the bathing solution contained 113.6 mM Cl- and 25 mM HCO-3 (pH 7.4); the system was bubbled with 95% O2-5% CO2. At 37 degrees C, net volume absorption (Jv nl min-1 mm-1) was 0.32 +/- 0.03 (SEM); Ve, the transepithelial voltage (millivolts; lumen to bath), was +3.1 +/- 0.2. At 21 degrees C, Ve rose to +3.7 +/- 0.1 and Jv fell to 0.13 +/- 0.01 (significantly different from zero at P less than 0.001); in the presence of 10(-4)M ouabain at 37 degrees C, Ve rose to +3.8 +/- 0.1 and Jv fell to 0.16 +/- 0.01 (P less than 0.001 with respect to zero). In paired experiments, the ouabain- and temperature-insensitive moieties of Jv and Ve became zero when transepithelial anion concentration gradients were abolished. Titrametric determinations net chloride flux at 21 degrees C or at 37 degrees C with 10(-4) M ouabain showed that chloride was the sole anion in an isotonic absorbate. And, combined electrical and tracer flux data indicated that the tubular epithelium was approximately 18 times more permeable to Cl- than to HCO-3. We interpret these results to indicate that, in these tubules, NaCl absorption depends in part on transepithelial anion concentration gradients similar to those generated in vivo and in vitro by active Na+ absorption associated with absorption to anions other than chloride. A quantitative analysis of passive solute and solvent flows in lateral intercellular spaces indicated that fluid absorption occurred across junctional complexes when the osmolality of the lateral intercellular spaces was equal to or slightly less than that of the perfusing and bathing solutions; the driving force for volume flow under these conditions depended on the fact that sigmaHCO3 exceeded sigmaCl.  相似文献   

19.
P H Yang  J A Rupley 《Biochemistry》1979,18(12):2654-2661
Calorimetric measurements of the heat capacity of the lysozyme-water system have been carried out over the full range of system composition at 25 degrees C. The partial specific heat capacity of the protein in dilute solution is 1.483 +/- 0.009 J K-1 g-1. The heat capacity of the dry protein is 1.26 +/- 0.01 J K-1 g-1. The system heat capacity responds linearly to change in composition from dilute solution to 0.38 g of water per g of protein (h) and is an irregular function at lower water content. The break in the heat capacity function at 0.38 h defines the amount of water needed to develop the equilibrium solution properties of lysozyme as being 300 molecules of water/protein molecule, just sufficient for monolayer coverage. The heat capacity behavior at low water content describes three hydration regions. The most tightly bound water (0-0.07 h), probably principally bound to charged groups, is characterized by a partial specific heat capacity of 2.3 J K-1 g-1, a value close to that for ice. A heat of reaction associated with proton redistribution is reflected in the heat capacity function for the low-hydration region. Between 0.07 and 0.25 h the heat capacity increases strongly, which is understood to reflect the growth of patches of water covering polar and adjacent nonpolar portions of the protein surface. The hydration shell is completed by condensation of solvent over the weak-interacting portions of the surface, in a process displaying a transition heat.  相似文献   

20.
Molecular Dynamics simulations of a zinc ion with 123 and 525 TIP3P-water molecules were carried out with CHARMM using two different Lennard-Jones parameter sets for the Zn2+ ion. The results were compared to published experimental and simulation data. Good agreement was found for radial distribution functions, number of hydrogen bonds, and diffusion coefficients. Experimental radial distribution functions were better reproduced by the original CHARMM22 parameter set than by the parameter set modified by Stote and Karplus. Diffusion coefficients were found to depend on the system size rather than on the parameter set used and were better reproduced by the larger systems. The divalent zinc ion exerts a strong influence on its hydration shell as indicated by the high first peak of the radial distribution function. Water molecules in the vicinity of the zinc ion show a slight deformation of the O-H bond length and of the H-O-H bond angle as compared to pure water. No water molecules from the first hydration shell were exchanged during 1 ns of MD simulation.Electronic Supplementary Material available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号