首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The hnRNP C proteins are among the most abundant and avid pre-mRNA-binding proteins and they contain a consensus sequence RNA-binding domain (RBD) that is found in a large number of RNA-binding proteins. The interaction of the RBD of the hnRNP C proteins with an RNA oligonucleotide [r(U)8] was monitored by nuclear magnetic resonance (NMR). 15N and 13C/15N-labelled hnRNP C protein RBD was mixed with r(U)8 and one- and two-dimensional (1D and 2D) NMR spectra were recorded in a titration experiment. NMR studies of the uncomplexed 93 amino acid hnRNP C RBD (Wittekind et al., 1992) have shown that it has a compact folded structure (beta alpha beta beta alpha beta), which is typical for the RBD of this family of proteins and which is comprised of a four-stranded antiparallel beta-sheet, two alpha-helices and relatively unstructured amino- and carboxy-terminal regions. Sequential assignments of the polypeptide main-chain atoms of the hnRNP C RBD-r(U)8 complex revealed that these typical structural features are maintained in the complex, but significant perturbations of the chemical shifts of amide group atoms occur in a large number of residues. Most of these residues are in the beta-sheet region and especially in the terminal regions of the RBD. In contrast; chemical shifts of the residues of the well conserved alpha-helices, with the exception of Lys30, are not significantly perturbed. These observations localize the candidate residues of the RBD that are involved in the interaction with the RNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Protein structure can provide new insight into the biological function of a protein and can enable the design of better experiments to learn its biological roles. Moreover, deciphering the interactions of a protein with other molecules can contribute to the understanding of the protein's function within cellular processes. In this study, we apply a machine learning approach for classifying RNA-binding proteins based on their three-dimensional structures. The method is based on characterizing unique properties of electrostatic patches on the protein surface. Using an ensemble of general protein features and specific properties extracted from the electrostatic patches, we have trained a support vector machine (SVM) to distinguish RNA-binding proteins from other positively charged proteins that do not bind nucleic acids. Specifically, the method was applied on proteins possessing the RNA recognition motif (RRM) and successfully classified RNA-binding proteins from RRM domains involved in protein-protein interactions. Overall the method achieves 88% accuracy in classifying RNA-binding proteins, yet it cannot distinguish RNA from DNA binding proteins. Nevertheless, by applying a multiclass SVM approach we were able to classify the RNA-binding proteins based on their RNA targets, specifically, whether they bind a ribosomal RNA (rRNA), a transfer RNA (tRNA), or messenger RNA (mRNA). Finally, we present here an innovative approach that does not rely on sequence or structural homology and could be applied to identify novel RNA-binding proteins with unique folds and/or binding motifs.  相似文献   

4.
Conclusions The isolation of hnRNP complexes has identified many new proteins and their characterization has led to the identification of several motifs that are important for RNA binding. These motifs are present in a wide variety of proteins including splicing factors, ribosomal proteins, and several proteins of unknown function. These findings have blurred the lines of demarcation between proteins previously thought of as RNA packaging proteins and RNA processing factors. Recent findings on hnRNP proteins have suggested a plethora of possible functions along the pathway of mRNA metabolism. It can be expected that the next few years will see the unraveling of the detailed functions of hnRNP proteins.  相似文献   

5.
Recombinant p64, p65, p24, p22, p21 of the beet yellows closterovirus and pcp, hel, mtr, and pol fragments encoded by the replication genes of the virus were purified and tested for RNA binding. North-Western blotting revealed the RNA-binding activity for p64 and hel a 21-kDa fragment of the helicase domain with conserved motifs V and VI. Gel retardation assay confirmed hel binding with a randomized RNA probe in vitro, and a cooperative RNA-hel interaction was assumed on evidence of the binding pattern. The RNA-hel complexes proved to be stable at a high ionic strength.  相似文献   

6.
7.
8.
The Rbp proteins in cyanobacteria are RNA-binding proteins with a single RNA recognition motif or RRM. A comprehensive assembly of genomic data suggests that there are two major classes of Rbp proteins (classes I and II) that diverged before the diversification of cyanobacteria. Class I proteins are further classified into two types with or without a C-terminal glycine-rich domain. The results of selection from a random RNA pool suggest that RbpA1 (class I) has affinity to C-rich and G-rich sequences. In vitro RNA binding assay with homopolymers indicated that class II protein has low affinity to poly(G) in contrast with class I proteins. Site-specific mutagenesis analysis of the RRM in RbpA1 showed that the aromatic residues Tyr4 or Phe46 are important in RNA binding as well as maintenance of secondary structure. We also tested various truncated proteins lacking the C-terminal domain as well as point mutants. Most of these proteins exhibited decreased affinity to RNA. Circular dichroism analysis as well as chromatographic analysis showed that Tyr4 and Phe46 are also important in maintaining the structure of RbpA1 protein. The C-terminal glycine-rich domain itself does not contribute much to the RNA-binding, but Arg83 which is located close to the C-terminal end of RRM is important in the RNA-binding.  相似文献   

9.
10.
The autoantigen p43 is a nuclear protein initially identified with autoantibodies from dogs with a lupus-like syndrome. Here we show that p43 is an RNA-binding protein, and identify it as hnRNP G, a previously described component of heterogeneous nuclear ribonucleoprotein complexes. We demonstrate that p43/hnRNP G is glycosylated, and identify the modification as O-linked N-acetylglucosamine. A full-length cDNA clone for hnRNP G has been isolated and sequenced, and the predicted amino acid sequence for hnRNP G shows that it contains one RNP-consensus RNA binding domain (RBD) at the amino terminus and a carboxyl domain rich in serines, arginines and glycines. The RBD of human hnRNP G shows striking similarities with the RBDs of several plant RNA-binding proteins.  相似文献   

11.
RNA-binding proteins of mammalian mitochondria   总被引:2,自引:0,他引:2  
A UV-cross-linking assay was used to identify RNA-binding proteins in mammalian mitochondria. A number of these proteins were detected ranging in molecular mass from 15 to 120 kDa. All of the mRNA-binding activities were localized to the matrix except for two proteins which are primarily associated with the inner membrane. None of the polypeptides is specific for binding mitochondrial mRNAs since all bound mRNAs from other sources with comparable efficiency. Some preference for binding mRNA over tRNA or homoribopolymers was observed with several of the proteins. A protein with characteristic pentatricopeptide repeat motifs found in many RNA binding proteins was identified associated with the small subunit of the mitochondrial ribosome.  相似文献   

12.
13.
P S Bagga  G K Arhin    J Wilusz 《Nucleic acids research》1998,26(23):5343-5350
DSEF-1 protein selectively binds to a G-rich auxiliary sequence element which influences the efficiency of processing of the SV40 late polyadenylation signal. We have obtained cDNA clones of DSEF-1 using sequence information from tryptic peptides isolated from DSEF-1 protein purified from HeLa cells. DSEF-1 protein contains three RNA-binding motifs and is a member of the hnRNP H family of RNA-binding proteins. Recombinant DSEF-1 protein stimulated the efficiency of cleavage and polyadenylation in an AAUAAA-dependent manner in in vitro reconstitution assays. DSEF-1 protein was shown to be able to interact with several poly(A) signals that lacked a G-rich binding site using a less stringent, low ionic strength gel band shift assay. Recombinant DSEF-1 protein specifically stimulated the processing of all of the poly(A) signals tested that contained a high affinity G-rich or low affinity binding site. DSEF-1 specifically increased the level of cross-linking of the 64 kDa protein of CstF to polyadenylation substrate RNAs. These observations suggest that DSEF-1 is an auxiliary factor that assists in the assembly of the general 3'-end processing factors onto the core elements of the polyadenylation signal.  相似文献   

14.
RNA-binding proteins regulate every aspect of RNA metabolism, including pre-mRNA splicing, mRNA trafficking, stability, and translation. This review summarizes the available information on molecular mechanisms of translational repression by RNA-binding proteins. By using a specific set of well-defined examples, we also describe how regulation can be reversed.  相似文献   

15.
16.
Short RNAs (21–27 nt) silence genes that contain homologous nucleotide sequences; this is known as RNA silencing. This review considers the generation of short RNAs from their precursors: double-stranded RNAs, capable of inducing RNA interference, and hairpin RNAs, whose processing yields microRNAs, as well as the properties of RNA-binding domains that were initially identified in proteins operating in RNA interference. The interactions between these domains and known RNA-binding modules within proteins involved in RNA interference and microRNA generation are described.  相似文献   

17.
RNA-binding proteins play a major part in the control of gene expression during early development. At this stage, the majority of regulation occurs at the levels of translation and RNA localization. These processes are, in general, mediated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated regions of their target RNAs. Although initial work concentrated on the analysis of these sequences and their trans-acting factors, we are now beginning to gain an understanding of the mechanisms by which some of these proteins function. In this review, we will describe a number of different families of RNA-binding proteins, grouping them together on the basis of common regulatory strategies, and emphasizing the recurrent themes that occur, both across different species and as a response to different biological problems.  相似文献   

18.
Emerging studies support that RNA-binding proteins(RBPs)play critical roles in human biology and pathogenesis.RBPs are essential players in RNA processing and metabolism,including pre-mRNA splicing,polyadenylation,transport,surveillance,mRNA localization,mRNA stability control,translational control and editing of various types of RNAs.Aberrant expression of and mutations in RBP genes affect various steps of RNA processing,altering target gene function.RBPs have been associated with various diseases,including neurological diseases.Here,we mainly focus on selected RNA-binding proteins including Nova-1/Nova-2,HuR/HuB/HuC/HuD,TDP-43,Fus,Rbfox1/Rbfox2,QKI and FMRP,discussing their function and roles in human diseases.  相似文献   

19.
The rapidly expanding database of RNA structures and protein complexes is beginning to lead to the successful design of specific RNA-binding molecules. Recent combinatorial and structure-based approaches have utilized known nucleic-acid-binding scaffolds from both proteins and small molecules to display a relatively small set of functional groups often used in protein--RNA recognition. Several studies have shown that the tethering of multiple binding modules can enhance RNA-binding affinity and specificity, a strategy also commonly used in DNA recognition.  相似文献   

20.
RNA-binding proteins of bovine rotavirus.   总被引:14,自引:9,他引:14       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号