首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
油菜花蜜腺发育过程的超微结构变化与泌密机理的研究   总被引:1,自引:1,他引:0  
油菜花蜜腺由2枚侧蜜腺和2枚中蜜腺组成,其基本结构类似。在蜜腺发育过程中,产蜜组织细胞内的内质网、高尔基体、质体和线粒体以及液孢都发生有规律变化。泌蜜前,细胞器的数量增加。其中,质体内积累淀粉,此过程与蜜腺内韧皮部的分化并和线粒体的增加相关。泌蜜时,内质网数量增多,并产生小泡,小泡向质膜移动。泌蜜后,细胞液泡化,细胞器数量减少,细胞萎缩。根据观察结果分析,其原蜜汁来源于韧皮部,转运至产蜜组织细胞的  相似文献   

2.
荇菜花蜜腺的发育研究   总被引:1,自引:0,他引:1  
荇菜花蜜腺的发育过程可分为:起源期、生长期、分泌期以及泌蜜停止期等4个时期。荇菜的5枚花蜜腺均起源于子房基部的表皮及表皮内的2-4层细胞。这些细胞经反分化后分别成为蜜腺的原分泌表皮及原泌蜜组织,两部分细胞径不断地分裂分化,最冬成为成熟蜜腺。在蜜腺发育过程中,蜜腺的分泌表皮及蜜腺组织内的内质网、质体、线粒体、液泡等细胞器结构均发生了有规律的变化,内质网在蜜腺分泌期最为发达,且产生大量的分泌小泡。质体  相似文献   

3.
艾比湖沙拐枣植物的花蜜腺位于花丝基部并延续到花托,属于花托/雄蕊蜜腺,蜜腺由分泌表皮、产蜜组织和维管束组成。在花的发育过程中,蜜腺由本身的原始细胞分裂、分化而来;其花蜜腺在发育过程中液泡化动态明显,PAS反应测试细胞具阳性物质。泌蜜方式为:蜜汁由特化的表皮毛分泌到植物体外;其可能的泌蜜机理为:前蜜汁由产蜜组织合成,经特化的分泌表皮毛泌出。  相似文献   

4.
油菜花蜜腺的发育过程及组织化学变化   总被引:4,自引:3,他引:4  
油菜花蜜腺4枚,2故侧蜜腺和2枚中蜜腺。蜜腺由分泌表皮、产蜜组织和维管束组成。蜜腺原基是在花的各部分原基发生后,由花托局部区域的表面数层细胞经反分化形成。但它在短期内,完成了形态建成,与花的成熟同步。在蜜腺的发育过程中,产蜜组织细胞的液泡发生有规律的变化。同时,淀粉粒、蛋白质的动态也较为明显,以上变化与蜜汁的合成和分泌密切相关。其蜜腺的原蜜汁是由韧皮部提供,运转至产蜜组织内加工,最后由变态气孔和泌蜜通道泌出。  相似文献   

5.
采用高压冷冻和低温替代技术对不同时期泌蜜前、泌蜜早期和泌蜜晚期的拟南齐(Arabidopsisthaliana L.)成熟花蜜腺的超微结构进行了研究。着重对小泡运输过程中是否与细胞质膜发生融合以及蜜腺组织中深色细胞与伴胞的区别等问题进行了讨论。拟南芥花中有一对较大的侧蜜腺以及2~4枚中蜜腺。中蜜腺位于2枚长雄蕊基部或它们之间,而侧蜜腺则位于两花瓣之间的短雄蕊附近。泌蜜前和泌蜜期,液泡的大小、高尔基体及内质网的数量、线粒体的分布以及质体内淀粉粒的大小都会发生一定的变化。当高尔基小泡从细胞内运输至细胞外时,并没有发生与细胞质膜融合的过程,与经典的“胞吐”假说不同。深色细胞在泌蜜期大量出现与筛分子旁的伴胞明显不同,前者与蜜腺顶端的气孔器相连,形成“通道”从而使蜜汁从蜜腺排出。  相似文献   

6.
鹅掌柴花蜜腺的发育解剖学研究   总被引:1,自引:0,他引:1  
对鹅掌柴(Scheffler octophylla Harms.)花蜜腺的发育进行解剖结构观察。鹅掌柴花盘蜜腺位于下位子房上方环绕花柱基部。蜜腺由分泌表皮、产蜜组织组成,心皮维管束与其相邻并发出一些伸入蜜腺基部的短分枝。蜜腺起源于心皮原基基部外侧的几层细胞。鹅掌柴花蜜腺为淀粉型蜜腺,淀粉粒为许多微小颗粒聚集成的复粒。原蜜汁由蜜腺基部维管束的筛管提供,达产蜜组织细胞和表皮细胞后以淀粉粒的形式贮藏。泌出的蜜汁一部分来自淀粉粒的降解,一部分来自泌蜜期输入的原蜜汁。表皮和产蜜组织细胞均具泌蜜功能。泌出的蜜汁大部分通过气孔排出,还有部分由角质层渗出。  相似文献   

7.
黄杨花单性,雌雄同株,雄花花蜜腺4枚,乳头状,着生于退化雌蕊子房顶部;雌花花蜜腺3枚,短柱状,位于3枚花柱之间。雌、雄花蜜腺均由分泌表皮、产蜜组织和维管束构成,在发育过程中产蜜组织细胞的液泡都发生有规律的变化。雌花蜜腺大,属非淀粉型蜜腺,泌蜜量大,蜜汁含糖分多,维管束中仅含韧皮部;雄花蜜腺小,属淀粉型蜜腺,泌蜜量小.蜜汁含糖量小,维管束由木质部和韧皮部构成。  相似文献   

8.
龙眼花蜜腺的发育解剖学研究   总被引:4,自引:0,他引:4  
对龙眼(Dimocarpus longan Lour.)花蜜腺的形态结构、发育过程以及蜜腺的组织化学变化进行了较为系统的研究;对花蜜腺结构与泌蜜的关系、泌蜜方式、起源和系统演化等作了初步的探讨。结果表明:龙眼的花盘蜜腺位于花托上,呈环状环绕在雌雄蕊基部外围,花芽分化约30d,在雄蕊和花被之间的花托表面,蜜腺原基也开始形成,由花托表面2~3层细胞脱分化形成居间分生组织发育而来;龙眼花蜜腺由分泌表皮和产蜜组织构成,属结构蜜腺;分泌表皮角质层极薄,密布单细胞绒毛,未发现有气孔;产蜜组织由亚腺细胞、产蜜细胞、油细胞和维管束组成;在蜜腺发育过程中,产蜜细胞的液泡和多糖物质发生有规律的变化;蜜腺的原蜜汁来源于韧皮部,蜜汁经表皮角质层渗出。  相似文献   

9.
长药景天花蜜腺的发育解剖学研究   总被引:3,自引:0,他引:3  
长药景天花蜜腺5枚,呈侧向扁平的舌形或弯月形,分别位于5株离生心皮的外侧,两者的基部相连,属于子房蜜腺。蜜腺由分泌表皮、产蜜组织和仅含韧皮部的维管束组成。长药景天花蜜腺起源于心皮外侧基部的表层结构。产蜜组织在发育过程中,细胞中的液泡体积及淀粉粒呈现有规律的消长变化。泌蜜后期,蜜腺组织从上往下液泡化,具明显的方向性。根据其结构及多糖变化分析,来自韧皮部的原蜜汁以淀粉粒形式贮存于产蜜组织中,泌蜜期水解  相似文献   

10.
新疆鼠尾草(Salvia deserta Schang)花蜜腺位于子房基部的花托上,为盘状的花托蜜腺,其顶部裂成4片,其裂片大小不等,比例悬殊。蜜腺由产蜜组织和分泌表皮构成,又为结构蜜腺。组织化学染色显示淀粉粒动态明显,因此又属淀粉蜜腺。在发育的过程中细胞液泡化动态明显,且淀粉粒和蛋白质具有明显的消长变化,但PAS反应和苏木精脂类染色无明显变化。其泌蜜过程可能为:原蜜汁由邻近的韧皮部提供,经薄壁细胞运送至产蜜组织,在产蜜组织中进一步积聚、合成后,最终蜜汁通过变态气孔和分泌表皮细胞的角质层泌出。  相似文献   

11.
荇菜成熟花蜜腺的形态及其泌蜜过程的超微结构研究   总被引:3,自引:2,他引:1  
荇菜花蜜腺共五枚,黄色,肾形,着生子房基部。它们由分泌表皮和泌蜜组织组成,属结构蜜腺。成熟蜜腺的分泌表皮具明显的角质层和气孔,还具少量短期生活的分泌毛,分泌毛不具明显的角质层。泌蜜组织具较小的胞间隙,胞间连丝发达。成熟蜜腺细胞中不人有丰富的线粒体,内质网,还有大量的质体。  相似文献   

12.
In the last 15–20 years, ultrastructural studies have added new important cytological information to the relatively rich literature on the morphology and light microscopy of nectaries. On the basis of these studies, the following main conclusions can be drawn regarding the relation between the ultrastructure of nectaries and the process of nectar secretion: (1) the transport of the pre-nectar in the nectariferous tissue is mainly via the symplast; (2) the ER alone or the ER and the Golgi apparatus are involved in the process of secretion; (3) the elimination of nectar from the protoplast of the secretory cells is by reverse pinocytosis; (4) the outer walls of the secretory cells of nectaries in many plants possess wall ingrowths.  相似文献   

13.
Floral nectary development and nectar secretion in three species of Passiflora were investigated with light and electron microscopy. The nectary ring results from the activity of an intercalary meristem. Increased starch deposition in the amyloplasts of the secretory cells parallels maturation of the nectary phloem. Large membrane-bound protein bodies are observed consistently in phloem parenchyma cells, but their function is presently unknown. The stored starch serves as the main source of nectar sugars at anthesis. Plastid envelope integrity is maintained during starch degradation, and there is no evidence of participation of endoplasmic reticulum or Golgi in the secretion of pre-nectar. It is concluded that in these starchy nectaries granulocrine secretion, commonly reported for floral nectaries, does not occur.  相似文献   

14.
Extra-floral nectaries of nine species of Passiflora were studied with light and electron microscopy prior to and during secretion. There is no evidence of ER or Golgi participation in the secretion of nectar. The vascular tissue supplying the nectary is characterized by companion and phloem parenchyma cells which are usually larger than the sieve elements, a configuration similar to that found in leaf minor veins. In the petiolar nectaries, large masses of membrane-bound protein are commonly found in these cells. This protein is absent in laminar nectaries.  相似文献   

15.
垂柳雌花蜜腺一枚,位于于房与花序轴之间,多呈扁平广卵形,由分泌表皮、泌蜜组织和维管束组成。雄花蜜腺呈基部相连的两枚突起,一枚位于花丝与花序轴之间,基部宽扁,上部棒状;另一枚位于花丝与苞片之间,棒状,仅由分泌表皮和泌蜜组织组成。雌、雄花蜜腺均起源于花托表面2—3层细胞。在蜜腺发育过程中,雌、雄花蜜腺泌蜜组织细胞的液泡发生规律性变化.雌花蜜腺为淀粉型蜜腺,而雄花蜜腺为非淀粉型蜜腺。雌、雄花蜜腺的原宜汁分别由蜜腺维管束韧应部或花丝维管束韧皮部提供,其蜜计最后均由分泌表皮细胞和变态气孔排出。  相似文献   

16.
The structure and ultrastructure of the nectaries of the monoeciousspecies Ecballium elaterium were studied. Large differencesin size and structure of the nectaries were observed in thetwo genders of flowers, those of the staminate flowers beingmuch larger and more developed than those of the pistillateflowers. The latter do not secrete measurable amounts of nectar.In the nectariferous cells, especially of the staminate flowers,numerous plasmodesmata are present. The pre-nectar originatingin the phloem is stored in the plastids of the nectariferouscells primarily as starch grains. The nectar appears to be exudedfrom the nectary via modified stomata. Very small insects ofthe order Hemiptera were found to dwell inside the flowers ofthe two genders, but in different numbers; their number in thestaminate flowers was more than twice that in the pistillateflowers. These insects may take part in the process of pollination.Copyright 2001 Annals of Botany Company Ecballium elaterium, Cucurbitaceae, monoecious plant, nectaries, structure, ultrastructure, nectar secretion, stomata, Hemiptera insects  相似文献   

17.
ZER  HAGIT; FAHN  ABRAHAM 《Annals of botany》1992,70(5):391-397
The nectary of Rosmarinus officinalis L. has the form of a four-lobed,asymmetrical disc situated around the base of the ovary. Thenectary lobe facing the lower flower lip is enlarged and isthe only one to have modified stomata. Vascular strands consistingof phloem only occur in the nectariferous tissue. It is suggestedthat the pre-nectar originating in the phloem accumulates primarilyas starch grains in plastids of the nectariferous cells. Thenumber of grains is very large before anthesis and decreasesconsiderably at anthesis. The transport of the pre-nectar tothe various nectariferous cells appears to be mainly via thesymplast. It could not be determined whether the process ofelimination of the nectar is solely eccrine or partly granulocrine. Rosmarinus officinalis, nectary, nectar secretion, starch grains, phloem  相似文献   

18.
The data relating to the nectaries and nectar secretion in invasive Brassicacean taxa are scarce. In the present paper, the nectar production and nectar carbohydrate composition as well as the morphology, anatomy and ultrastructure of the floral nectaries in Bunias orientalis were investigated. Nectary glands were examined using light, fluorescence, scanning electron and transmission electron microscopy. The quantities of nectar produced by flowers and total sugar mass in nectar were relatively low. Total nectar carbohydrate production per 10 flowers averaged 0.3 mg. Nectar contained exclusively glucose (G) and fructose (F) with overall G/F ratio greater than 1. The flowers of B. orientalis have four nectaries placed at the base of the ovary. The nectarium is intermediate between two nectary types: the lateral and median nectary type (lateral and median glands stay separated) and the annular nectary type (both nectaries are united into one). Both pairs of glands represent photosynthetic type and consist of epidermis and glandular tissue. However, they differ in their shape, size, secretory activity, dimensions of epidermal and parenchyma cells, thickness of secretory parenchyma, phloem supply, presence of modified stomata and cuticle ornamentation. The cells of nectaries contain dense cytoplasm, plastids with starch grains and numerous mitochondria. Companion cells of phloem lack cell wall ingrowths. The ultrastructure of secretory cells indicates an eccrine mechanism of secretion. Nectar is exuded throughout modified stomata.  相似文献   

19.
Summary The floral nectary ofPisum sativum L. is situated on the receptacle at the base of the gynoecium. The gland receives phloem alone which departed the vascular bundles supplying the staminal column. Throughout the nectary, only the companion cells of the phloem exhibited wall ingrowths typical of transfer cells. Modified stomata on the nectary surface served as exits for nectar, but stomatal pores developed well before the commencement of secretion. Furthermore, stomatal pores on the nectary usually closed by occlusion, not by guard-cell movements. Pore occlusion was detected most frequently in post-secretory and secretory glands, and less commonly in pre-secretory nectaries. A quantitative stereological study revealed few changes in nectary fine structure between buds, flowers secreting nectar, and post-secretory flowers. Dissolution of abundant starch grains in plastids of subepidermal secretory cells when secretion commenced suggests that starch is a precursor of nectar carbohydrate production. Throughout nectary development, mitochondria were consistently the most plentiful organelle in both epidermal and subepidermal cells, and in addition to the relative paucity of dictyosomes, endoplasmic reticulum, and their associated vesicles, the evidence suggests that floral nectar secretion inP. sativum is an energy-requiring (eccrine) process, rather that granulocrine.Abbreviations ER endoplasmic reticulum - GA glutaraldehyde - SEM scanning electron microscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号