首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
On the basis of sequence alignments and secondary structure comparisons of the first 100 nucleotides of enterovirus and rhinovirus RNAs, chimeric constructs in which this region of poliovirus type 1 Mahoney [PV1(M)] is replaced with that of human rhinovirus type 2 (HRV2) or HRV14 have been engineered. These chimeric constructs contain the internal ribosomal entry site of either poliovirus or encephalomyocarditis virus. Independent of the internal ribosomal entry site elements, only the constructs containing either the PV1(M) or HRV2 cloverleaf sequences yielded viable viruses. The secondary structures of all three cloverleaves are quite similar. However, highly purified polioviral proteins 3CDpro and 3AB together bound to the PV1(M) and HRV2 cloverleaves, albeit with different affinities, whereas the HRV14 homolog did not interact with these proteins to any appreciable extent. These results support a mechanism of poliovirus genomic replication in which the formation of a complex between the cloverleaf structure and the 3CDpro/3AB proteins of poliovirus plays an essential role.  相似文献   

3.
4.
Translation of poliovirion RNA in HeLa S10 extracts resulted in the formation of RNA replication complexes which catalyzed the asymmetric replication of poliovirus RNA. Synthesis of poliovirus RNA was detected in unfractionated HeLa S10 translation reactions and in RNA replication complexes isolated from HeLa S10 translation reactions by pulse-labeling with [32P]CTP. The RNA replication complexes formed in vitro contained replicative-intermediate RNA and were enriched in viral protein 3CD and the membrane-associated viral proteins 2C, 2BC, and 3AB. Genome-length poliovirus RNA covalently linked to VPg was synthesized in large amounts by the replication complexes. RNA replication was highly asymmetric, with predominantly positive-polarity RNA products. Both anti-VPg antibody and guanidine HCl inhibited RNA replication and virus formation in the HeLa S10 translation reactions without affecting viral protein synthesis. The inhibition of RNA synthesis by guanidine was reversible. The reversible nature of guanidine inhibition was used to demonstrate the formation of preinitiation RNA replication complexes in reaction mixes containing 2 mM guanidine HCl. Preinitiation complexes sedimented upon centrifugation at 15,000 x g and initiated RNA replication upon their resuspension in reaction mixes lacking guanidine. Initiation of RNA synthesis by preinitiation complexes did not require active protein synthesis or the addition of soluble viral proteins. Initiation of RNA synthesis by preinitiation complexes, however, was absolutely dependent on soluble HeLa cytoplasmic factors. Preinitiation complexes also catalyzed the formation of infectious virus in reaction mixes containing exogenously added capsid proteins. The titer of infectious virus produced in such trans-encapsidation reactions reached 4 x 10(7) PFU/ml. The HeLa S10 translation-RNA replication reactions represent an efficient in vitro system for authentic poliovirus replication, including protein synthesis, polyprotein processing, RNA replication, and virus assembly.  相似文献   

5.
Poliovirus protein 2C contains a predicted N-terminal amphipathic helix that mediates association of the protein with the membranes of the viral RNA replication complex. A chimeric virus that contains sequences encoding the 18-residue core from the orthologous amphipathic helix from human rhinovirus type 14 (HRV14) was constructed. The chimeric virus exhibited defects in viral RNA replication and produced minute plaques on HeLa cell monolayers. Large plaque variants that contained mutations within the 2C-encoding region were generated upon subsequent passage. However, the majority of viruses that emerged with improved growth properties contained no changes in the region encoding 2C. Sequence analysis and reconstruction of genomes with individual mutations revealed changes in 3A or 2B sequences that compensated for the HRV14 amphipathic helix in the polio 2C-containing proteins, implying functional interactions among these proteins during the replication process. Direct binding between these viral proteins was confirmed by mammalian cell two-hybrid analysis.  相似文献   

6.
7.
Kinetics of poliovirus replication in HeLa cells infected by isolated RNA   总被引:3,自引:0,他引:3  
Under conditions with the least toxicity for cells compatible with an optimal sensitizing effect for RNA infection, 47% of HeLa cells can be infected by viral RNA. Both RNA and virus infective centers produce identical amounts, i.e. 2000 PFU of progeny virus per infective center and both incorporate 3H uridine in equal quantities. After infection with an effective multiplicity of ten PFU of virus or RNA, virus maturation occurs thirty minutes earlier in RNA-infected cells as compared to virus-infected cells.  相似文献   

8.
HeLa cells were transfected with several plasmids that encoded all poliovirus (PV) nonstructural proteins. Viral RNAs were transcribed by T7 RNA polymerase expressed from recombinant vaccinia virus. All plasmids produced similar amounts of viral proteins that were processed identically; however, RNAs were designed either to serve as templates for replication or to contain mutations predicted to prevent RNA replication. The mutations included substitution of the entire PV 5' noncoding region (NCR) with the encephalomyocarditis virus (EMCV) internal ribosomal entry site, thereby deleting the 5'-terminal cloverleaf-like structure, or insertion of three nucleotides in the 3Dpol coding sequence. Production of viral proteins was sufficient to induce the characteristic reorganization of intracellular membranes into heterogeneous-sized vesicles, independent of RNA replication. The vesicles were stably associated with viral RNA only when RNA replication could occur. Nonreplicating RNAs localized to distinct, nonoverlapping regions in the cell, excluded from the viral protein-membrane complexes. The absence of accumulation of positive-strand RNA from both mutated RNAs in transfected cells was documented. In addition, no minus-strand RNA was produced from the EMCV chimeric template RNA in vitro. These data show that the 5'-terminal sequences of PV RNA are essential for initiation of minus-strand RNA synthesis at its 3' end.  相似文献   

9.
10.
11.
The polyadenylate [poly(A)] content of the genome RNA of human rhinovirus type 14 (HRV-14) is nearly twice as large as that of the genome RNA of poliovirus type 2. The poly(A) content of viral RNA was determined to be the RNase-resistant fraction of 32P-labeled viral RNA extracted from purified virions. Polyacrylamide gel electrophoresis indicated that the poly(A) sequences of HRV-14 are more heterogenous and on an average larger than those of poliovirus RNA. On the basis of susceptibility to micrococcal polynucleotide phosphorylase the rhinovirus genome terminates in poly(A). Replication of both viruses is almost totally inhibited by cordycepin at 50 mug/ml. At lower concentrations, rhinovirus replication is more sensitive to cordycepin than poliovirus replication. Addition of cordycepin (75 mug/ml) to infected culture prior to or during viral RNA replication results in more or less complete inhibition of virus-specific RNA synthesis. The results do not indicate that cordycepin sensitivity of either virus is due to preferential inhibition of viral poly(A) synthesis by this antibiotic.  相似文献   

12.
Poliovirus RNA polymerase and infectious virus particles were synthesized by translation of virion RNA in vitro in HeLa S10 extracts. The in vitro translation reactions were optimized for the synthesis of the viral proteins found in infected cells and in particular the synthesis of the viral polymerase 3Dpol. There was a linear increase in the amount of labeled protein synthesized during the first 6 h of the reaction. The appearance of 3Dpol in the translation products was delayed because of the additional time required for the proteolytic processing of precursor proteins. 3Dpol was first observed at 1 h in polyacrylamide gels, with significant amounts being detected at 6 h and later. Initial attempts to assay for polymerase activity directly in the translation reaction were not successful. Polymerase activity, however, was easily detected by adding a small amount (3 microliters) of translation products to a standard polymerase assay containing poliovirion RNA. Full-length minus-strand RNA was synthesized in the presence of an oligo(U) primer. In the absence of oligo(U), product RNA about twice the size of virion RNA was synthesized in these reactions. RNA stability studies and plaque assays indicated that a significant fraction of the input virion RNA in the translation reactions was very stable and remained intact for 20 h or more. Plaque assays indicated that infectious virus was synthesized in the in vitro translation reactions. Under optimal conditions, the titer of infectious virus produced in the in vitro translation reactions was greater than 100,000 PFU/ml. Virus was first detected at 6 h and increased to maximum levels by 12 h. Overall, the kinetics of poliovirus replication (protein synthesis, polymerase activity, and virus production) observed in the HeLa S10-initiation factor in vitro translation reactions were similar to those observed in infected cells.  相似文献   

13.
Infection of cells with poliovirus induces a massive intracellular membrane reorganization to form vesicle-like structures where viral RNA replication occurs. The mechanism of membrane remodeling remains unknown, although some observations have implicated components of the cellular secretory and/or autophagy pathways. Recently, we showed that some members of the Arf family of small GTPases, which control secretory trafficking, became membrane-bound after the synthesis of poliovirus proteins in vitro and associated with newly formed membranous RNA replication complexes in infected cells. The recruitment of Arfs to specific target membranes is mediated by a group of guanine nucleotide exchange factors (GEFs) that recycle Arf from its inactive, GDP-bound state to an active GTP-bound form. Here we show that two different viral proteins independently recruit different Arf GEFs (GBF1 and BIG1/2) to the new structures that support virus replication. Intracellular Arf-GTP levels increase approximately 4-fold during poliovirus infection. The requirement for these GEFs explains the sensitivity of virus growth to brefeldin A, which can be rescued by the overexpression of GBF1. The recruitment of Arf to membranes via specific GEFs by poliovirus proteins provides an important clue toward identifying cellular pathways utilized by the virus to form its membranous replication complex.  相似文献   

14.
A poliovirus replicon, FLC/REP, which incorporates the reporter gene chloramphenicol acetyltransferase (CAT) in place of the region encoding the capsid proteins VP4, VP2, and part of VP3 in the genome of poliovirus type 3, has been constructed. Transfection of cells indicates that the FLC/REP replicon replicates efficiently and that active CAT enzyme is produced as a CAT-VP3 fusion protein. The level of CAT activity in transfected cells broadly reflects the level of FLC/REP RNA. A series of mutations in the 5' noncoding region of poliovirus type 3 were introduced into FLC/REP, and their effects were monitored by a simple CAT assay. These experiments helped to define further the stem-loop structures in the 5' noncoding region which are essential for RNA replication. The CAT-containing poliovirus replicon could also be packaged into poliovirus capsids provided by helper virus and was stable as a subpopulation of virus particles over at least four passages. The location of the CAT gene in FLC/REP excluded the presence of an encapsidation signal in the region of the poliovirus genome comprising nucleotides 756 to 1805.  相似文献   

15.
K Shiroki  T Ishii  T Aoki  M Kobashi  S Ohka    A Nomoto 《Journal of virology》1995,69(11):6825-6832
Mouse cells expressing the human poliovirus receptor (PVR-mouse cells) as well as human HeLa cells are susceptible to poliovirus type 1 Mahoney strains and produce a large amount of progeny virus at 37 degrees C. However, the virus yield is markedly reduced at 40 degrees C in PVR-mouse cells but not in HeLa cells. The reduction in virus yield at 40 degrees C appears to be due to a defective initiation process in positive-strand RNA synthesis (K. Shiroki, H. Kato, S. Koike, T. Odaka, and A. Nomoto, J. Virol. 67:3989-3996, 1993). To gain insight into the molecular mechanisms involved in this detective process, naturally occurring heat-resistant (Hr)-mutants which show normal growth ability in PVR-mouse cells even at 40 degrees C were isolated from a virus stock of the Mahoney strain and their mutation sites that affect the phenotype were identified. The key mutation was a change from adenine (A) to guanine (G) at nucleotide position (nt) 133 within the 5' noncoding region of the RNA. This mutation also gave an Hr phenotype to the viral plus-strand RNA synthesis in PVR-mouse cells. Mutant Mahoney strains with a single point mutation at nt 133 (A to G, C, or T or deletion) were investigated for their ability to grow in PVR-mouse cells at 40 degrees C. Only the mutant carrying G at nt 133 showed an Hr growth phenotype in PVR-mouse cells. These results suggest that a host cellular factor(s) interacts with an RNA segment around nt 133 of the plus-strand RNA or the corresponding region of the minus-strand RNA, contributing to efficiency of plus-strand RNA synthesis.  相似文献   

16.
We report that protein 2C, the putative nucleoside triphosphatase/helicase protein of poliovirus, is required for the initiation of negative-strand RNA synthesis. Preinitiation RNA replication complexes formed upon the translation of poliovirion RNA in HeLa S10 extracts containing 2 mM guanidine HCI, a reversible inhibitor of viral protein 2C. Upon incubation in reactions lacking guanidine, preinitiation RNA replication complexes synchronously initiated and elongated negative-strand RNA molecules, followed by the synchronous initiation and elongation of positive-strand RNA molecules. The immediate and exclusive synthesis of negative-strand RNA upon the removal of guanidine demonstrates that guanidine specifically blocks the initiation of negative-strand RNA synthesis. Readdition of guanidine HCl to reactions synchronously elongating nascent negative-strand RNA molecules did not prevent their continued elongation and completion. In fact, readdition of guanidine HCl to reactions containing preinitiation complexes elongating nascent negative-strand RNA molecules had no effect on subsequent positive-strand RNA synthesis initiation or elongation. Thus, the guanidine-inhibited function of viral protein 2C was not required for the elongation of negative-strand RNA molecules, the initiation of positive-strand RNA molecules, or the elongation of positive-strand RNA molecules. The guanidine-inhibited function of viral protein 2C is required only immediately before or during the initiation of negative-strand RNA synthesis. We suggest that guanidine may block an irreversible structural maturation of protein 2C and/or RNA replication complexes necessary for the initiation of RNA replication.  相似文献   

17.
Poliovirus RNA directs the synthesis of virus-specific RNA in E. coli as reported previously for poliovirus-induced double-stranded RNA. Synthesis of viral RNA can be followed by conversion of viral RNA into a double-stranded RNase-resistant state, by increase in infectivity and by hybridization of newly synthesized RNA to viral RNA. Virus-specific RNA synthesis occurs also in the presence of inhibitors of protein synthesis indicating that an enzyme is present in E. coli which can use RNA as a template.  相似文献   

18.
The structural requirements of the hydrophobic domain contained in poliovirus polypeptide 3AB were studied by using a molecular genetic approach in combination with an in vitro biochemical analysis. We report here the generation and analysis of deletion, insertion, and amino acid replacement mutations aimed at decreasing the hydrophobic character of the domain. Our results indicated that the hydrophobicity of this region of 3AB is necessary to maintain normal viral RNA synthesis. However, in vitro membrane association assays of the mutated proteins did not establish a direct correlation between 3AB membrane association and viral RNA synthesis. Some of the lethal mutations we engineered produced polyproteins with abnormal P2- and P3-processing capabilities due to an alteration in the normal cleavage order of the polyprotein. A detailed analysis of these mutants suggests that P2 is not the major precursor for polypeptides 2A and 2BC and that P2 protein products are derived from P2-P3-containing precursors (most likely P2-P3 or P2-3AB). Such precursors are likely to result from primary polyprotein cleavage events that initiate a proteolytic cascade not previously documented. Our results also indicated that the function provided by the hydrophobic domain of 3AB cannot be provided in trans. We discuss the implications of these results on the formation of limited-diffusion replication complexes as a means of sequestering P2- and P3-region polypeptides required for RNA synthesis and protein processing.  相似文献   

19.
20.
A crude RNA polymerase preparation was made from HeLa cells infected for 3 h with poliovirus. All virus-specific RNA species labeled in vitro (35S RNA, replicative intermediate RNA [RI], and double-stranded RNA [dsRNA]) would bind to poly(U) filters and contained RNase-resistant stretches of poly(A) which could be analyzed by electrophoresis in polyacrylamide gels. After incubation for 45 min with [3-H]ATP in the presence of the other three nucleoside triphosphates, the labeled poly(A) on the RI and dsRNA migrated on gels as relatively homogenous peaks approximately 200 nucleotides in length. In contrast, the poly(A) from the 35S RNA had a heterogeneous size distribution ranging from 50 to 250 nucleotides. In the absence of UTP, CTP, and GTP, the size of the newly labeled poly(A) on the dsRNA and RI RNA was the same as it was in the presence of all four nucleoside triphosphates. However the poly(A) on the 35S RNA lacked the larger sequences seen when the other three nucleoside triphosphates were present. When [3-H]ATP was used as the label in infected and uninfected extracts, heterogeneous single-stranded RNA sedimenting at less than 28S was also labeled. This heterogeneous RNA probably represents HeLa cytoplasmic RNA to which small lengths of poly(A) (approximately 15 nucleotides) had been added. These results indicate that in the in vitro system poly(A) can be added to both newly synthesized and preexisting RNA molecules. Furthermore, an enzyme capable of terminal addition of poly(A) exists in both infected and uninfected extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号