首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Sulfated chitin and chitosan as novel biomaterials   总被引:12,自引:0,他引:12  
Chitin and chitosan are known to be natural polymers and they are non-toxic, biodegradable and biocompatible. Chemical modification of chitin and chitosan with sulfate to generate new bifunctional materials is of interest because the modification would not change the fundamental skeleton of chitin and chitosan, would keep the original physicochemical and biochemical properties and finally would bring new or improved properties. The sulfated chitin and chitosan have a variety of applications, such as, adsorbing metal ions, drug delivery systems, blood compatibility, and antibacterial field. The purpose of this review is to take a closer look about the different synthetic methods and potential applications of sulfated chitin and chitosan. Based on current research and existing products, some new and futuristic approaches in this context area are discussed in detail. From the studies reviewed, we concluded that sulfated chitin and chitosan are promising materials for biomedical applications.  相似文献   

2.
Biomaterials such as chitin, chitosan and their derivatives have a significant and rapid development in recent years. Chitin and chitosan have become cynosure of all party because of an unusual combination of biological activities plus mechanical and physical properties. However, the applications of chitin and chitosan are limited due to its insolubility in most of the solvents. The chemical modification of chitin and chitosan are keen interest because of these modifications would not change the fundamental skeleton of chitin and chitosan but would keep the original physicochemical and biochemical properties. They would also bring new or improved properties. The chemical modification of chitin and chitosan by phosphorylation is expected to be biocompatible and is able to promote tissue regeneration. In view of rapidly growing interest in chitin and chitosan and their chemical modified derivatives, we are here focusing the recent developments on preparation of phosphorylated chitin and chitosan in different methods.  相似文献   

3.
几丁聚糖作生物涂层的潜在应用   总被引:1,自引:0,他引:1  
本文综述了生物涂层的作用、种类和应用,阐述了亲水生物涂层的机理和应用,介绍了几丁聚糖的基本性能和国内外近年来用几丁聚糖作为涂层膜的研究现状,同时探索了几丁聚糖对医疗装置进行生物涂层的可能性,并预测了其潜在应用。  相似文献   

4.
Water-soluble and white quaternized chitin (QC) was homogeneously synthesized by stirring transparent chitin solution (2%) in 8 wt%NaOH/4 wt% urea aqueous solution containing 2,3-Epoxypropyltrimethylammonium Chloride (EPTMAC) at 10 °C for 24 h. The structure and properties of quaternized chitin were characterized by FT-IR, XRD, 1H NMR, GPC, element analysis and ζ-potential. The results indicate that quaternary groups were successfully incorporated onto chitin backbones and the degree of substitution (DS) of quaternary groups can be easily adjusted by changing the molar ratio of chitin unit to EPTMAC. Additionally, quaternized chitin shows better antibacterial activity against Escherichia coli and Staphylococcus aureus as compared with chitosan. Thus, this work provides a simply and “green” method to functionalize chitin and the resulting quaternized chitin may have potential applications in environmental, food and biomedical fields.  相似文献   

5.
Chitosan (CS) is a naturally occurring biopolymer. It has important biological properties such as biocompatibility, antifungal and antibacterial activity, wound healing ability, anticancerous property, anticholesteremic properties, and immunoenhancing effect. Recently, CS nanoparticles have been used for biomedical applications. However, due to the limited solubility of CS in water its water-soluble derivatives are preferred for the above said applications. In this work, the nanoparticles of CS and its water-soluble derivatives such as O-carboxymethyl chitosan (O-CMC) and N,O-carboxymethyl chitosan (N,O-CMC) was synthesized and characterized. In addition, cytotoxicity and antibacterial activity of the prepared nanoparticles was also evaluated for biomedical applications.  相似文献   

6.
Chitosan is a natural based polymer, obtained by alkaline deacetylation of chitin, which presents excellent biological properties such as biodegradability and immunological, antibacterial and wound-healing activity. Recently, there has been a growing interest in the chemical modification of chitosan in order to improve its solubility and widen its applications. The main chemical modifications of chitosan that have been proposed in the literature are reviewed in this paper. Moreover, these chemical modifications lead to a wide range of derivatives with a broad range of applications. Recent and relevant examples of the distinct applications, with particular emphasis on tissue engineering, drug delivery and environmental applications, are presented.  相似文献   

7.
Low-density polyethylene (LDPE) belongs to commodity polymer materials applied in biomedical applications due to its favorable mechanical and chemical properties. The main disadvantage of LDPE in biomedical applications is low resistance to bacterial infections. An antibacterial modification of LDPE appears to be a solution to this problem. In this paper, the chitosan and chitosan/pectin multilayer was immobilized via polyacrylic acid (PAA) brushes grafted on the LDPE surface. The grafting was initiated by a low-temperature plasma treatment of the LDPE surface. Surface and adhesive properties of the samples prepared were investigated by surface analysis techniques. An antibacterial effect was confirmed by inhibition zone measurements of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The chitosan treatment of LDPE led to the highest and most clear inhibition zones (35mm(2) for E. coli and 275mm(2) for S. aureus).  相似文献   

8.
Abstract

Chitin and chitosan with unique properties and numerous applications can be produced from fungus. The production of chitin and chitosan from the mycelia of an Iranian Ganoderma lucidum was studied to improve cell growth and chitin productivity. Inoculum size and initial pH as two effective variables on the growth of G. lucidum and chitin production were optimized using response surface method (RSM) by central composite design (CCD). The results verified the significant effect of these two variables on the cell growth and chitin production. In optimum conditions, including pH?=?5.7 and inoculum size of 7.4%, the cell dry weight was 5.91?g/L and the amount of chitin production was 1.08?g/L with the productivity of 0.083?g/(L day). The produced chitin and chitosan were characterized using XRD and FTIR. Moreover, the antibacterial activity of the produced chitosan was investigated and compared with the commercial chitosan. The results showed that the produced chitin and chitosan had suitable quality and the Iranian G. lucidum would be a great source for safe and high-quality chitin and chitosan production.  相似文献   

9.
Along with β-glucans, chitin is the dominant component of the fungal cell wall. Chitosan, the deacetylated form of chitin, has found quite a number of biomedical and biotechnological applications recently. Mushroom chitin could be an important source for chitosan production. A direct determination of chitin and chitosan in mushrooms is of expedient interest. In this paper, a new method for the quantification of chitin and chitosan is described. This method is based on the specific reaction between polyiodide anions and chitosan and on measuring the optical density of the insoluble polyiodide–chitosan complex. After deacetylation, chitin can also be quantified. The specificity of the reaction is used to quantify the polymers in the presence of complex matrices. With this new spot assay, the chitin content of mycelia and fruiting bodies from several basidiomycetes and an ascomycete were analysed. The presented method could also be used for the determination in other samples as well. The chitin content of the analysed species varies between 0.4 and 9.8 g chitin per 100 g of dry mass. Chitosan could not be detected in our mushroom samples, indicating that the glucosamine units are mostly acetylated.  相似文献   

10.
针对生物材料医用不锈钢的应用及其植入人体存在的问题,介绍了目前金属材料表面改性的主要方法和最新研究进展,并综述了几丁聚糖的性能和国内外对几丁聚糖的研究方向,在此基础上重点探索了几丁聚糖在医用不锈钢表面作生物涂层的可能性及其意义。  相似文献   

11.
All the disciplines of science, especially biotechnology, have given continuous attention to the area of enzyme immobilization. However, the structural support made by material science intervention determines the performance of immobilized enzymes. Studies have proven that nanostructured supports can maintain better catalytic performance and improve immobilization efficiency. The recent trends in the application of nanofibers using natural polymers for enzyme immobilization have been addressed in this review article. A comprehensive survey about the immobilization strategies and their characteristics are highlighted. The natural polymers, e.g., chitin, chitosan, silk fibroin, gelatin, cellulose, and their blends with other synthetic polymers capable of immobilizing enzymes in their 1D nanofibrous form, are discussed. The multiple applications of enzymes immobilized on nanofibers in biocatalysis, biosensors, biofuels, antifouling, regenerative medicine, biomolecule degradation, etc.; some of these are discussed in this review article.  相似文献   

12.
Conversion of natural biopolymer chitosan into nanofibers through electrospinning has significant usefulness in various biomedical applications, in particular, for constructing a biomimetic and bioactive nanofibrous artificial extracellular matrix for engineering various tissues. Here, we show that introduction of an ultrahigh-molecular-weight poly(ethylene oxide) (UHMWPEO) into aqueous chitosan solutions remarkably enhances the formation of chitosan nanofibrous structure and leads to much lower loading of the water soluble fiber-forming aiding agent of PEO down to 5 wt % as compared to previous high PEO loadings in the electrospun chitosan nanofibers. The excellent electrospinnability of the current formulation renders electrospinning of natural biopolymer chitosan a robust process for large-scale production of practically applicable nanofibrous structures.  相似文献   

13.
Chitosan-based silver nanoparticles were synthesized by reducing silver nitrate salts with nontoxic and biodegradable chitosan. The silver nanoparticles thus obtained showed highly potent antibacterial activity toward both Gram-positive and Gram-negative bacteria, comparable with the highly active precursor silver salts. Silver-impregnated chitosan films were formed from the starting materials composed of silver nitrate and chitosan via thermal treatment. Compared with pure chitosan films, chitosan films with silver showed both fast and long-lasting antibacterial effectiveness against Escherichia coli. The silver antibacterial materials prepared in our present system are promising candidates for a wide range of biomedical and general applications.  相似文献   

14.
Chitin deacetylases: new, versatile tools in biotechnology   总被引:11,自引:0,他引:11  
Chitin deacetylases have been identified in several fungi and insects. They catalyse the hydrolysis of N-acetamido bonds of chitin, converting it to chitosan. Chitosans, which are produced by a harsh thermochemical procedure, have several applications in areas such as biomedicine, food ingredients, cosmetics and pharmaceuticals. The use of chitin deacetylases for the conversion of chitin to chitosan, in contrast to the presently used chemical procedure, offers the possibility of a controlled, non-degradable process, resulting in the production of novel, well-defined chitosan oligomers and polymers.  相似文献   

15.
Chitosan functional properties   总被引:7,自引:0,他引:7  
Chitosan is a partially deacetylated polymer of N-acetyl glucosamine. It is essentially a natural, water-soluble, derivative of cellulose with unique properties. Chitosan is usually prepared from chitin (2 acetamido-2-deoxy β-1,4-D-glucan) and chitin has been found in a wide range of natural sources (crustaceans, fungi, insects, annelids, molluscs, coelenterata etc.) However chitosan is only manufactured from crustaceans (crab and crayfish) primarily because a large amount of the crustacean exoskeleton is available as a by product of food processing. Squid pens (a waste byproduct of New Zealand squid processing) are a novel, renewable source of chitin and chitosan. Squid pens are currently regarded as waste and so the raw material is relatively cheap. This study was intended to assess the functional properties of squid pen chitosan. Chitosan was extracted from squid pens and assessed for composition, rheology, flocculation, film formation and antimicrobial properties. Crustacean chitosans were also assessed for comparison. Squid chitosan was colourless, had a low ash content and had significantly improved thickening and suspending properties. The flocculation capacity of squid chitosan was low in comparison with the crustacean sourced chitosans. However it should be possible to increase the flocculation capacity of squid pen chitosan by decreasing the degree of acetylation. Films made with squid chitosan were more elastic than crustacean chitosan with improved functional properties. This high quality chitosan could prove particularly suitable for medical/analytical applications. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

16.
Chitosan, a deacetylated derivative of chitin is a commonly studied biomaterial for tissue-engineering applications due to its biocompatibility, biodegradability, low toxicity, antibacterial activity, wound healing ability and haemostatic properties. However, chitosan has poor mechanical strength due to which its applications in orthopedics are limited. Hydroxyapatite (HAp) is a natural inorganic component of bone and teeth and has mechanical strength and osteoconductive property. In this work, HAp was deposited on the surface of chitosan hydrogel membranes by a wet chemical synthesis method by alternatively soaking the membranes in CaCl2 (pH 7.4) and Na2HPO4 solutions for different time intervals. These chitosan hydrogel–HAp membranes were characterized using SEM, AFM, EDS, FT-IR and XRD analyses. MTT assay was done to evaluate the biocompatibility of these membranes using MG-63 osteosarcoma cells. The biocompatibility studies suggest that chitosan hydrogel–HAp composite membranes can be useful for tissue-engineering applications.  相似文献   

17.
Chitosan is an abundantly common, naturally occurring, polysaccharide biopolymer. Its biocompatible, biodegradable, and antimicrobial properties have led to significant research toward biological applications such as drug delivery, artificial tissue scaffolds for functional tissue engineering, and wound-healing dressings. For applications such as tissue scaffolding, formation of highly porous mats of nanometer-sized fibers, such as those fabricated via electrospinning, may be quite important. Previously, strong acidic solvents and blending with synthetic polymers have been used to achieve electrospun nanofibers containing chitosan. As an alternative approach, in this work, polyethylene oxide (PEO) has been used as a template to fabricate chitosan nanofibers by electrospinning in a core-sheath geometry, with the PEO sheath serving as a template for the chitosan core. Solutions of 3 wt % chitosan (in acetic acid) and 4 wt % PEO (in water) were found to have matching rheological properties that enabled efficient core-sheath fiber formation. After removing the PEO sheath by washing with deionized water, chitosan nanofibers were obtained. Electron microscopy confirmed nanofibers of approximately 250 nm diameter with a clear core-sheath geometry before sheath removal, and chitosan nanofibers of approximately 100 nm diameter after washing. The resultant fibers were characterized with IR spectroscopy and X-ray diffraction, and the mechanical and electrical properties were evaluated.  相似文献   

18.
壳聚糖对植物病害的抑制作用研究进展   总被引:23,自引:0,他引:23  
本文综述了甲壳素的重要衍生物--壳聚糖对植物病害的抑制作用及作用方式,并对壳聚糖对植物病害的抑制作用机制及壳聚糖在农业方面的应用前景作了介绍。  相似文献   

19.
This review provides a balanced integration of the most recent chemical, biochemical and medical information on the unique characteristics of chitins and chitosans in the area of animal/human tissue regeneration. Hemostasis is immediately obtained after application of most of the commercial chitin-based dressings to traumatic and surgical wounds: platelets are activated by chitin with redundant effects and superior performances compared with known hemostatic materials. To promote angiogenesis, necessary to support physiologically ordered tissue formation, the production of the vascular endothelial growth factor is strongly up-regulated in wound healing when macrophages are activated by chitin/chitosan. The inhibition of activation and expression of matrix metalloproteinases in primary human dermal fibroblasts by low MW chitosans prevents or solves problems caused by metalloproteinase-2 such as the hydrolysis of the basement membrane collagen IV. Experimental biocompatible wound dressings derived from chitin are today available in the form of hydrogels, xerogels, powders, composites, films and scaffolds: the latter are easily colonized by human cells in view of the restoration of tissue defects, with the advantage of avoiding retractive scar formation. The growth of nerve tissue has been guided with chitin tubes covalently coated with oligopeptides derived from laminin. The regeneration of cartilage is also feasible because chitosan maintains the correct morphology of chondrocytes and preserves their capacity to synthesize cell-specific extracellular matrix: chitosan scaffolds incorporating growth factors and morphogenetic proteins have been developed. Impressive advances have been made with osteogenic chitosan composites in treating bone defects, particularly with osteoblasts from mesenchymal stem cells in porous hydroxyapatite-chitin matrices. The introduction of azido functions in chitosan has provided photo-sensitive hydrogels that crosslink in a matter of seconds, thus paving the way to cytocompatible hydrogels for surgical use as coatings, scaffolds, drug carriers and implants capable to deliver cells and growth factors. The peculiar biochemical properties of chitins and chitosans remain unmatched by other polysaccharides.  相似文献   

20.
Chitosan is a well sought-after polysaccharide in biomedical applications and has been blended with various macromolecules to mitigate undesirable properties. However, the effects of blending on the unique antibacterial activity of chitosan as well as changes in fatigue and degradation properties are not well understood. The aim of this work was to evaluate the anti-bacterial properties and changes in physicochemical properties of chitosan upon blending with synthetic polyester poly(epsilon-caprolactone) (PCL). Chitosan and PCL were homogeneously dissolved in varying mass ratios in a unique 77% acetic acid in water mixture and processed into uniform membranes. When subjected to uniaxial cyclical loading in wet conditions, these membranes sustained 10 cycles of predetermined loads up to 1 MPa without break. Chitosan was anti-adhesive to Gram-positive Streptococcus mutans and Gram-negative Actinobacillus actinomycetemcomitans bacteria. Presence of PCL compromised the antibacterial property of chitosan. Four-week degradation studies in PBS/lysozyme at 37 degrees C showed initial weight loss due to chitosan after which no significant changes were observed. Molecular interactions between chitosan and PCL were investigated using Fourier transform infrared spectroscopy (FTIR) which showed no chemical bond formations in the prepared blends. Investigation by wide-angle X-ray diffraction (WAXD) indicated that the crystal structure of individual polymers was unchanged in the blends. Dynamic mechanical and thermal analysis (DMTA) indicated that the crystallinity of PCL was suppressed and its storage modulus increased with the addition of chitosan. Analysis of surface topography by atomic force microscopy (AFM) showed a significant increase in roughness of all blends relative to chitosan. Observed differences in biological and anti-bacterial properties of blends could be primarily attributed to surface topographical changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号