首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of microorganims that efficiently ferment lactose has a high biotechnological interest, particularly for cheese whey bioremediation processes with simultaneous bio-ethanol production. The lactose fermentation performance of a recombinant Saccharomyces cerevisiae flocculent strain was evaluated. The yeast consumed rapidly and completely lactose concentrations up to 150 g l−1 in either well- or micro-aerated batch fermentations. The maximum ethanol titre was 8% (v/v) and the highest ethanol productivity was 1.5–2 g l−1 h−1, in micro-aerated fermentations. The results presented here emphasise that this strain is an interesting alternative for the production of ethanol from lactose-based feedstocks.  相似文献   

2.
Whey permeate (WP) was used efficiently for production of mosquitocidal toxin by Bacillus sphaericus 2362 (B. sphaericus 2362) and the Egyptian isolate, B. sphaericus 14N1 (B. sphaericus 14N1) under both submerged and solid state fermentation conditions. Under submerged fermentation, high mosquitocidal activity was produced by B. sphaericus 2362 and B. sphaericus 14N1 at 50-100% and 25-70% WP, respectively. Initial pH of WP was a critical factor for toxin production by both tested organisms. The highest toxicity was obtained at initial pH 7. Egyptian isolate, B. sphaericus 14N1 was tested for growth and toxin production under solid state fermentation conditions (SSF) by using WP as moistening agent instead of distilled water. The optimum conditions for production of B. sphaericus 14N1 on wheat bran-WP medium were 10 g wheat bran/250 ml flask moistened with 10-70% WP at 50% moisture content, inoculum size ranged between 17.2 × 107 and 34.4 × 107 and 6 days incubation under static conditions at 30 °C. Preliminary pilot-scale production of B. sphaericus 14N1 under SSF conditions in trays proved that wheat bran-WP medium was efficient and economic for industrial production of mosquitocidal toxin by B. sphaericus.  相似文献   

3.
Summary Fermentation of cheese whey to produce butanol and butyric acid was carried out using a mixed culture ofClostridium beijerinkii andBacillus cereus. Fermentation selectivities were studied by controlling the pH of the system. Controlled pH values higher than 6.5 as well as those below 5.0 were not conducive to butanol production. Maximum product formation was obtained by controlling the pH at 5.5. When compared with the results obtained using the pure culture ofC. beijerinckii, a higher butanol concentration was obtained in the mixed culture without sacrificing the level of butyric acid formed.  相似文献   

4.
Continuous ethanol fermentation of cheese whey powder solution was realized using pure culture of Kluyveromyces marxianus (DSMZ 7239) at hydraulic residence times (HRT) between 12.5 and 60 h. Sugar utilization, ethanol and biomass formation were investigated as functions of HRT. Effluent sugar concentration decreased, but percent sugar utilization, ethanol and biomass concentrations increased with HRT. Ethanol productivity was maximum (0.745 gE l−1h−1) at an HRT of 43.2 h where the biomass productivity was almost minimum (0.18 gX l−1 h−1). The ethanol yield coefficient was almost constant at 0.4 gE g−1S up to HRT of 43.2 h and the growth yield coefficient was minimum at HRT of 43.2 h. Kinetic models were developed and the constants were determined by using the experimental data.  相似文献   

5.
The present investigation examines the effect of pH, temperature and cell concentration on lactose uptake rate, in relation with kinetics of whey fermentation using kefir and determines the optimum conditions of these parameters. Lactose uptake rate was measured by adding 14C-labelled lactose in whey. The results reveal the role of lactose uptake rate, being the main factor that affects the rate of fermentation, in contrast to the activity of the enzymes involved in lactose bioconversion process. Lactose uptake rate results discussion showed that mainly Ca2+ is responsible for the reduced whey fermentation rate in comparison with fermentations using synthetic media containing lactose. Likewise, the results draw up perspectives on whey fermentation research to improve whey fermentation rate. Those perspectives are research to remove Ca2+ from whey, the use of nano and microtubular biopolymers and promoters such as γ-alumina pellets and volcan foaming rock kissiris in order to accelerate whey fermentation.  相似文献   

6.
Two brewer's yeasts and one baker's yeast grew with 95% (w/w) pure maltotriose as carbon source in the presence of antimycin A to block respiration. Biomass yields (0.15 and 0.24 g dry yeast g–1 sugar, respectively, with and without antimycin A) were similar for growth on maltose and maltotriose, and yields of ethanol were 80% of stoichiometric. Yeasts harvested during growth on glucose and containing low maltose transport activity did not begin to use maltotriose in the presence of antimycin A until after a long lag phase (up to 50 h), but yeast harvested during growth on maltose, and containing high maltose transport activity, began to use maltotriose after about 25 h. Much shorter lags were observed before growth started in the absence of antimycin A.  相似文献   

7.
Propionate and acetate salts are environmentally friendly, effective road deicer substitutes for widely used sodium chloride. A low-cost medium, using raw cheese whey and hydrolyzed whey permeate/whey permeate powder as substrates, and corn-steep liquor as a nutrient supplement, was studied for lactic acid production, replacing synthetic lactose and other high-cost nutrients. A non-sterile stage-I fermentation process for improved lactate productivity using an inexpensive commercial medium was performed at a 20-L fermenter level. A lactate yield of 0.98 g/g lactose and a productivity of 1.1 g/L/h was obtained with complete lactose utilization. When synthetic lactate and glucose were used as substrates in propionate and acetate fermentation, a total acid yield of 0.55 g/g glucose and lactate consumed and a batch productivity of 0.22 g/L/h was obtained. A stage-II fermentation process to produce propionate and acetate salts from cheese whey-derived lactate (stage-I fermentation broth) resulted in 1.6%( w/v) propionate after a total of 161 h (stages I and II).  相似文献   

8.
Kluyveromyces marxianus KMDB-1, a plasmid-bearing recombinant, not carrying any particular gene of relevance, derived from auxotrophic strain KMS-2 (ura), grew in cheese whey with a maximum specific growth rate of 0.34 h–1. This recombinant strain showed the same lactose uptake and extracellular protease production kinetics as the wild type CBS6556 with no evidence of catabolite repression. The plasmid was retained in 50% of cells after 36 h of batch culture. The presence of this vector in Kluyveromyces marxianus, which possesses no natural plasmids, together with the absence of any metabolic loading effect, creates a suitable microbial system for cheese whey processing for potential value-added product formation.  相似文献   

9.
Continuous mix batch bioreactors were used to study the kinetic parameters of lactic acid fermentation in microaerated-nutrient supplemented, lactose concentrated cheese whey using Lactobacillus helveticus. Four initial lactose concentrations ranging from 50 to 150 g l–1 were first used with no microaeration and no yeast extract added to establish the substrate concentration above which inhibition will occur and then the effects of microaeration and yeast extract on the process kinetic parameters were investigated. The experiments were conducted under controlled pH (5.5) and temperature (42 °C) conditions. The results indicated that higher concentrations of lactose had an inhibitory effect as they increased the lag period and the fermentation time; and decreased the specific growth rate, the maximum cell number, the lactose utilization rate, and the lactic acid production rate. The maximum lactic acid conversion efficiency (75.8%) was achieved with the 75 g l–1 initial lactose concentration. The optimum lactose concentration for lactic acid production was 75 g l–1 although Lactobacillus helveticus appeared to tolerate up to 100 g l–1 lactose concentration. Since the lactic acid productivity is of a minor importance compared to lactic acid concentration when considering the economic feasibility of lactic acid production from cheese whey using Lactobacillus helveticus, a lactose concentration of up to 100 g l–1 is recommended. Using yeast extract and/or microaeration increased the cell number, specific growth rate, cell yield, lactose consumption, lactic acid utilization rate, lactic acid concentration and lactic acid yield; and reduced the lag period, fermentation time and residual lactose. Combined yeast extract and microaeration produced better results than each one alone. From the results it appears that the energy uncoupling of anabolism and catabolism is the major bottleneck of the process. Besides lactic acid production, lactose may also be hydrolysed into glucose and galactose. The -galactosidase activity in the medium is caused by cell lysis during the exponential growth phase. The metabolic activities of Lactobacillus helveticus in the presence of these three sugars need further investigation.  相似文献   

10.
Production of recombinant proteins by yeast cells   总被引:2,自引:0,他引:2  
Yeasts are widely used in production of recombinant proteins of medical or industrial interest. For each individual product, the most suitable expression system has to be identified and optimized, both on the genetic and fermentative level, by taking into account the properties of the product, the organism and the expression cassette. There is a wide range of important yeast expression hosts including the species Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, Kluyveromyces lactis, Schizosaccharomyces pombe, Yarrowia lipolytica and Arxula adeninivorans, with various characteristics such as being thermo-tolerant or halo-tolerant, rapidly reaching high cell densities or utilizing unusual carbon sources. Several strains were also engineered to have further advantages, such as humanized glycosylation pathways or lack of proteases. Additionally, with a large variety of vectors, promoters and selection markers to choose from, combined with the accumulated knowledge on industrial-scale fermentation techniques and the current advances in the post-genomic technology, it is possible to design more cost-effective expression systems in order to meet the increasing demand for recombinant proteins and glycoproteins. In this review, the present status of the main and most promising yeast expression systems is discussed.  相似文献   

11.
The genus Mucor, a member of the order Mucorales, comprises different species encountered in cheeses. Although fungi play a fundamental role in cheese manufacturing and ripening, the taxonomy of many fungal species found in cheese is poorly defined; indeed, this is the case for Mucor spp. In the present study, we assessed the phylogenetic relationships among 70 Mucor strains, including 36 cheese isolates, by using a five gene phylogenetic approach combined with morphological analyses. Overall, at least six species of Mucor were identified among the cheese isolates including a possible new taxon. The present study also suggests that the genus Mucor comprises undescribed taxa and needs to be properly defined.  相似文献   

12.
This report investigated FgSit1, which encodes a putative ferrichrome transporter of Fusarium graminearum. The identity of the deduced amino acid sequence of FgSit1 with the amino acid sequence of ScArn1p, an FC-Fe(3+) transporter of Saccharomyces cerevisiae, was 51%; both the growth defect related to the Deltafet3Deltaarn1-4 strain of S. cerevisiae in an iron-depleted condition and the FC-Fe(3+) uptake activity were recovered upon the introduction of FgSit1 into the Deltafet3Deltaarn1-4 strain. Although ScArn1p was found in the late endosomal compartment in S. cerevisiae, FgSit1 was found on the plasma membrane in S. cerevisiae; when FgSit1 was expressed exogenously in S. cerevisiae, it showed greater FC-Fe(3+) uptake activity than did ScArn1p. Additionally, in F. graminearum FC-Fe(3+) uptake activity in the Deltafgsit1 strain was found to be one-fourth that of the wild-type. However, Fe(3+) uptake activity in the Deltafgsit1 strain was 5-fold higher than that of wild-type; the gene expression of FgFtr1, a putative iron transporter, was induced by the deletion of FgSit1, but was not induced by the deletion of FgSit2. Taken together, these results strongly suggest that FgSit1 encodes a putative FC-Fe(3+) transporter that mediates FC-Fe(3+) uptake using a different mechanism than ScArn1p and plays an important role in the regulation of cellular iron availability in F. graminearum.  相似文献   

13.
Derivatives of lactose with the galactose ring substituents replaced by deoxy or acylamino functions were prepared. The 2'-, 3'-, 4'- and 6'-deoxy, 3'-acetamido and 3'-benzamido derivatives of phenyl 4-O-(beta-D-galactopyranosyl)-beta-D-glucopyranoside (phenyl beta-lactoside) were synthesized from disaccharide or monosaccharide precursors. The derivatives were tested as substrates for the N-acetylglucosaminyltransferase from Neisseria meningitidis, which uses lactosyl derivatives as acceptors and UDP-GlcNAc as the donor in a beta-(1-->3) glycosylation reaction. The 6'-deoxy derivative was nearly threefold as active as phenyl beta-lactoside, whereas the 2'- and 4'-deoxy derivatives were less active. The other derivatives were inactive, as expected.  相似文献   

14.
The use of a low-intensity ultrasonic technique (noninvasive, nondestructive, on-line, and able to assess opaque samples) to monitor the kinetics of invertase hydrolysis is presented. Adiabatic compressibility has been shown to be sensitive to sugar species: ultrasonic velocity increasing as saccharose is transformed into glucose and fructose. The influence of initial sucrose mass concentration (2−60%), temperature (25−55 °C), pH (3.5−6.5), and number of microorganisms (105−109 yeasts/ml) on the reaction rate, catalyzed by the extracellular invertases of intact Saccharomyces cerevisiae cells, has been measured. The results were proven to be in strict agreement with the optimal kinetic parameters of the enzyme. Ultrasonic velocity variations are explained in terms of changes of the solute concentrations in the mixture water-saccharose-glucose/fructose and calculated from the velocity of ultrasound in the corresponding pure sugar solutions. A linear relationship between the initial rate of ultrasonic velocity and the number of yeasts (enzymes) is pointed out.  相似文献   

15.
16.
The feasibility of replacing yeast extract (YE) by corn steep liquor (CSL), a low cost nutrient source, for syngas fermentation to produce ethanol using Clostridium strain P11 was investigated. About 32% more ethanol (1.7 g L−1) was produced with 20 g L−1 CSL media in 250-mL bottle fermentations compared to media with 1 g L−1 YE after 360 h. Maximum ethanol concentrations after 360 h of fermentation in a 7.5-L fermentor with 10 and 20 g L−1 CSL media were 8.6 and 9.6 g L−1, respectively, which represent 57% and 60% of the theoretical ethanol yields from CO. Only about 6.1 g L−1 of ethanol was obtained in the medium with 1 g L−1 YE after 360 h, which represents 53% of the theoretical ethanol yield from CO. The use of CSL also enhanced butanol production by sevenfold compared to YE in bottle fermentations. These results demonstrate that CSL can replace YE as the primary medium component and significantly enhance ethanol production by Clostridium strain P11.  相似文献   

17.
18.
Glucose addition to a stationary culture of wild-type Saccharomyces cerevisiae BY4742 cells with zero activity of MDR pumps resuspended in a fresh medium causes pump resynthesis (measured as pump-effected diS-C3(3) efflux). In a stationary culture in its original growth medium, this glucose-induced pump resynthesis fails to occur due to depletion of essential nutrients or to extracellular metabolites produced by cells during growth. Direct pump inactivation by metabolites is excluded since exponential cells with high MDR pump activity cultured in a medium with high concentration of extracellular metabolites retain this activity for at least 2 h. The metabolites also do not affect pump synthesis on the level of gene expression as addition of concentrated growth medium or an amino acid mixture to stationary cells in spent growth medium restores glucose-induced pump synthesis. The block of MDR pump synthesis is therefore due to the lack of essential nutrients in spent medium.  相似文献   

19.
20.
A microplate screening method was used to assess anaerobic growth of 12 Saccharomyces cerevisiae strains in barley straw, spruce and wheat straw hydrolysate. The assay demonstrated significant differences in inhibitor tolerance among the strains. In addition, growth inhibition by the three hydrolysates differed so that wheat hydrolysate supported growth up to 70%, while barley hydrolysate only supported growth up to 50%, with dilute-acid spruce hydrolysate taking an intermediate position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号