首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of “functional tissue engineering” has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements.  相似文献   

2.
《Biotechnology advances》2017,35(2):240-250
Engineering a functional tissue ex vivo requires a synchronized effort towards developing technologies for ECM mimicking scaffold and cultivating tissue-specific cells in an integrated and controlled manner. Cell-interactive scaffolds in three dimensions (3D), designed and processed appropriately with an apt biomaterial to yield optimal porosity and mechanical strength is the key in tissue engineering (TE). In order to accomplish these facets in a 3D scaffold, multiple techniques and processes have been explored by researchers all over the world. New techniques offering reasonable flexibility to use blends of different materials for integrated tissue-specific mechanical strength and biocompatibility have an edge over conventional methods. They may allow a combinatorial approach with a mix of materials while incorporating multiple processing techniques for successful creation of tissue-specific ECM mimics. In this review, we analyze the material requirement from different TE perspectives, while discussing pros and cons of advanced fabrication techniques for scale-up manufacturing.  相似文献   

3.
Different cell types make up tissues and organs hierarchically and communicate within a complex, three-dimensional (3D) environment. The in vitro recapitulation of tissue-like structures is meaningful, not only for fundamental cell biology research, but also for tissue engineering (TE). Currently, TE research adopts either the top-down or bottom-up approach. The top-down approach involves defining the macroscopic tissue features using biomaterial scaffolds and seeding cells into these scaffolds. Conversely, the bottom-up approach aims at crafting small tissue building blocks with precision-engineered structural and functional microscale features, using physical and/or chemical approaches. The bottom-up strategy takes advantage of the repeating structural and functional units that facilitate cell-cell interactions and cultures multiple cells together as a functional unit of tissue. In this review, we focus on currently available microscale methods that can control mammalian cells to assemble into 3D tissue-like structures.  相似文献   

4.
Adipose tissue is a connective tissue specified for energy metabolism and endocrines, but functional differences between subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) have not been fully elucidated. To reveal the physiological role of SAT, we characterized in vivo tissue development and in vitro adipocyte differentiation. In a DNA microarray analysis of SAT and VAT in Wistar rats, functional annotation clusters of extracellular matrix (ECM)-related genes were found in SAT, and major ECM molecules expressed in adipose tissues were profiled. In a histological analysis and quantitative expression analysis, ECM expression patterns could be classified into two types: (i) a histogenesis-correlated type such as type IV and XV collagen, and laminin subunits, (ii) a high-SAT expression type such as type I, III, and V collagen and minor characteristic collagens. Type (i) was related to basal membrane and up-regulated in differentiated 3T3-L1 cells and in histogenesis at depot-specific timings. In contrast, type (ii) was related to fibrous forming and highly expressed in 3T3-L1 preadipocytes. Exceptionally, fibronectin was abundant in developed adipose tissue, although it was highly expressed in 3T3-L1 preadipocytes. The present study showed that adipose tissues site-specifically regulate molecular type and timing of ECM expression, and suggests that these characteristic ECM molecules provide a critical microenvironment, which may affect bioactivity of adipocyte itself and interacts with other tissues. It must be important to consider the depot-specific property for the treatment of obesity-related disorders, dermal dysfunction and for the tissue regeneration.  相似文献   

5.
“Functional tissue engineering” is a subset of the field of tissue engineering that was proposed by the United States National Committee on Biomechanics over a decade ago in order to place more emphasis on the roles of biomechanics and mechanobiology in tissue repair and regeneration. Over the past decade, there have been tremendous advances in this area, pointing out the critical role that biomechanical factors can play in the engineered repair of virtually all tissue and organ systems. In this special issue of the Journal of Biomechanics, we present a series of articles that address a broad array of the fundamental topics of functional tissue engineering, including: (1) measurement and modeling of the in vivo biomechanical environment and history in native and repair tissues; (2) further understanding of the biomechanical properties of native tissues across all geometric scales, in the context of repair or regeneration; (3) prioritization of specific biomechanical properties as design criteria; (4) development of biomaterials, scaffolds, and engineered tissues with prescribed biomechanical properties; (5) development of success criteria based on appropriate outcome measures; (6) investigation of the effects of mechanical factors on tissue repair in vivo; (7) investigation of the mechanisms by which physical factors may enhance tissue regeneration in vitro; and (8) development and validation of computational models of tissue growth and remodeling. These articles represent the tremendous expansion of this field in recent years, and emphasize the critical roles that biomechanics and mechanobiology play in controlling tissue repair and regeneration.  相似文献   

6.
Cell alignment plays a critical role in various cell behaviors including cytoskeleton reorganization, membrane protein relocation, nucleus gene expression, and ECM remodeling. Cell alignment is also known to exert significant effects on tissue regeneration (e.g., neuron) and modulate mechanical properties of tissues including skeleton, cardiac muscle and tendon. Therefore, it is essential to engineer cell alignment in vitro for biomechanics, cell biology, tissue engineering and regenerative medicine applications. With advances in nano- and micro-scale technologies, a variety of approaches have been developed to engineer cell alignment in vitro, including mechanical loading, topographical patterning, and surface chemical treatment. In this review, we first present alignments of various cell types and their functionality in different tissues in vivo including muscle and nerve tissues. Then, we provide an overview of recent approaches for engineering cell alignment in vitro. Finally, concluding remarks and perspectives are addressed for future improvement of engineering cell alignment.  相似文献   

7.

Background

Extracellular matrix (ECM) is a dynamic and complex environment characterized by biophysical, mechanical and biochemical properties specific for each tissue and able to regulate cell behavior. Stem cells have a key role in the maintenance and regeneration of tissues and they are located in a specific microenvironment, defined as niche.

Scope of review

We overview the progresses that have been made in elucidating stem cell niches and discuss the mechanisms by which ECM affects stem cell behavior. We also summarize the current tools and experimental models for studying ECM–stem cell interactions.

Major conclusions

ECM represents an essential player in stem cell niche, since it can directly or indirectly modulate the maintenance, proliferation, self-renewal and differentiation of stem cells. Several ECM molecules play regulatory functions for different types of stem cells, and based on its molecular composition the ECM can be deposited and finely tuned for providing the most appropriate niche for stem cells in the various tissues. Engineered biomaterials able to mimic the in vivo characteristics of stem cell niche provide suitable in vitro tools for dissecting the different roles exerted by the ECM and its molecular components on stem cell behavior.

General significance

ECM is a key component of stem cell niches and is involved in various aspects of stem cell behavior, thus having a major impact on tissue homeostasis and regeneration under physiological and pathological conditions. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

8.
Most adult mammals heal without restorative replacement of lost tissue and instead form scar tissue at an injury site. One exception is the adult MRL/MpJ mouse that can regenerate ear and cardiac tissue after wounding with little evidence of scar tissue formation. Following production of a MRL mouse ear hole, 2 mm in diameter, a structure rapidly forms at the injury site that resembles the amphibian blastema at a limb amputation site during limb regeneration. We have isolated MRL blastemal cells (MRL-B) from this structure and adapted them to culture. We demonstrate by RT-PCR that even after continuous culturing of these cells they maintain expression of several progenitor cell markers, including DLK (Pref-1), and Msx-1. We have isolated the underlying extracellular matrix (ECM) produced by these MRL-B cells using a new non-proteolytic method and studied the biological activities of this cell-free ECM. Multiplex microELISA analysis of MRL-B cell-free ECM vs. cells revealed selective enrichment of growth factors such as bFGF, HGF and KGF in the matrix compartment. The cell-free ECM, degraded by mild enzyme treatment, was active in promoting migration and proliferation of progenitor cells in vitro and accelerating wound closure in a mouse full thickness cutaneous wound assay in vivo. In vivo, a single application of MRL-B cell matrix-derived products to full thickness cutaneous wounds in non-regenerative mice, B6, induced re-growth of pigmented hair, dermis and epidermis at the wound site whereas scar tissue replaced these tissues at wound sites in mice treated with vehicle alone. These studies suggest that matrix-derived products can stimulate regenerative healing and avert scar tissue formation in adult mammals.  相似文献   

9.
Cardiovascular disease remains the leading cause of death worldwide1. Cardiac tissue engineering holds much promise to deliver groundbreaking medical discoveries with the aims of developing functional tissues for cardiac regeneration as well as in vitro screening assays. However, the ability to create high-fidelity models of heart tissue has proven difficult. The heart’s extracellular matrix (ECM) is a complex structure consisting of both biochemical and biomechanical signals ranging from the micro- to the nanometer scale2. Local mechanical loading conditions and cell-ECM interactions have recently been recognized as vital components in cardiac tissue engineering3-5.A large portion of the cardiac ECM is composed of aligned collagen fibers with nano-scale diameters that significantly influences tissue architecture and electromechanical coupling2. Unfortunately, few methods have been able to mimic the organization of ECM fibers down to the nanometer scale. Recent advancements in nanofabrication techniques, however, have enabled the design and fabrication of scalable scaffolds that mimic the in vivo structural and substrate stiffness cues of the ECM in the heart6-9.Here we present the development of two reproducible, cost-effective, and scalable nanopatterning processes for the functional alignment of cardiac cells using the biocompatible polymer poly(lactide-co-glycolide) (PLGA)8 and a polyurethane (PU) based polymer. These anisotropically nanofabricated substrata (ANFS) mimic the underlying ECM of well-organized, aligned tissues and can be used to investigate the role of nanotopography on cell morphology and function10-14.Using a nanopatterned (NP) silicon master as a template, a polyurethane acrylate (PUA) mold is fabricated. This PUA mold is then used to pattern the PU or PLGA hydrogel via UV-assisted or solvent-mediated capillary force lithography (CFL), respectively15,16. Briefly, PU or PLGA pre-polymer is drop dispensed onto a glass coverslip and the PUA mold is placed on top. For UV-assisted CFL, the PU is then exposed to UV radiation (λ = 250-400 nm) for curing. For solvent-mediated CFL, the PLGA is embossed using heat (120 °C) and pressure (100 kPa). After curing, the PUA mold is peeled off, leaving behind an ANFS for cell culture. Primary cells, such as neonatal rat ventricular myocytes, as well as human pluripotent stem cell-derived cardiomyocytes, can be maintained on the ANFS2.  相似文献   

10.
The identification of multipotential mesenchymal stem cells (MSCs) derived from adult human tissues, including bone marrow stroma and a number of connective tissues, has provided exciting prospects for cell-based tissue engineering and regeneration. This review focuses on the biology of MSCs, including their differentiation potentials in vitro and in vivo, and the application of MSCs in tissue engineering. Our current understanding of MSCs lags behind that of other stem cell types, such as hematopoietic stem cells. Future research should aim to define the cellular and molecular fingerprints of MSCs and elucidate their endogenous role(s) in normal and abnormal tissue functions.  相似文献   

11.
In recent years, microfluidic systems have been used to study fundamental aspects of angiogenesis through the patterning of single-layered, linear or geometric vascular channels. In vivo, however, capillaries exist in complex, three-dimensional (3D) networks, and angiogenic sprouting occurs with a degree of unpredictability in all x,y,z planes. The ability to generate capillary beds in vitro that can support thick, biological tissues remains a key challenge to the regeneration of vital organs. Here, we report the engineering of 3D capillary beds in an in vitro microfluidic platform that is comprised of a biocompatible collagen I gel supported by a mechanical framework of alginate beads. The engineered vessels have patent lumens, form robust ∼1.5 mm capillary networks across the devices, and support the perfusion of 1 µm fluorescent beads through them. In addition, the alginate beads offer a modular method to encapsulate and co-culture cells that either promote angiogenesis or require perfusion for cell viability in engineered tissue constructs. This laboratory-constructed vascular supply may be clinically significant for the engineering of capillary beds and higher order biological tissues in a scalable and modular manner.  相似文献   

12.
Tendons and ligaments (T/Ls) play key roles in the musculoskeletal system, but they are susceptible to traumatic or age‐related rupture, leading to severe morbidity as well as increased susceptibility to degenerative joint diseases such as osteoarthritis. Tissue engineering represents an attractive therapeutic approach to treating T/L injury but it is hampered by our poor understanding of the defining characteristics of the two tissues. The present study aimed to determine differences in the proteomic profile between native T/Ls and tissue engineered (TE) T/L constructs. The canine long digital extensor tendon and anterior cruciate ligament were analyzed along with 3D TE fibrin‐based constructs created from their cells. Native tendon and ligament differed in their content of key structural proteins, with the ligament being more abundant in fibrocartilaginous proteins. 3D T/L TE constructs contained less extracellular matrix (ECM) proteins and had a greater proportion of cellular‐associated proteins than native tissue, corresponding to their low collagen and high DNA content. Constructs were able to recapitulate native T/L tissue characteristics particularly with regard to ECM proteins. However, 3D T/L TE constructs had similar ECM and cellular protein compositions indicating that cell source may not be an important factor for T/L tissue engineering.  相似文献   

13.
Recent significant advances in stem cell research and bioengineering techniques have made great progress in utilizing biomaterials to regenerate and repair damage in simple tissues in the orthopedic and periodontal fields. However, attempts to regenerate the structures and functions of more complex three-dimensional (3D) organs such as lungs have not been very successful because the biological processes of organ regeneration have not been well explored. It is becoming clear that angiogenesis, the formation of new blood vessels, plays key roles in organ regeneration. Newly formed vasculatures not only deliver oxygen, nutrients and various cell components that are required for organ regeneration but also provide instructive signals to the regenerating local tissues. Therefore, to successfully regenerate lungs in an adult, it is necessary to recapitulate the lung-specific microenvironments in which angiogenesis drives regeneration of local lung tissues. Although conventional in vivo angiogenesis assays, such as subcutaneous implantation of extracellular matrix (ECM)-rich hydrogels (e.g., fibrin or collagen gels or Matrigel - ECM protein mixture secreted by Engelbreth-Holm-Swarm mouse sarcoma cells), are extensively utilized to explore the general mechanisms of angiogenesis, lung-specific angiogenesis has not been well characterized because methods for orthotopic implantation of biomaterials in the lung have not been well established. The goal of this protocol is to introduce a unique method to implant fibrin gel on the lung surface of living adult mouse, allowing for the successful recapitulation of host lung-derived angiogenesis inside the gel. This approach enables researchers to explore the mechanisms by which the lung-specific microenvironment controls angiogenesis and alveolar regeneration in both normal and pathological conditions. Since implanted biomaterials release and supply physical and chemical signals to adjacent lung tissues, implantation of these biomaterials on diseased lung can potentially normalize the adjacent diseased tissues, enabling researchers to develop new therapeutic approaches for various types of lung diseases.  相似文献   

14.
Significant progress has been made in stem cell biology, regenerative medicine, and stem cell-based tissue engineering. Such scientific strides highlight the potential of replacing or repairing damaged tissues in congenital abnormalities, diseases, or injuries, as well as constructing functional tissue or organs in vivo. Since mesenchymal stem cells (MSCs) are capable of differentiating into bone-forming cells, they constitute an appropriate cell source to repair damaged bone tissues. In addition, the immunoregulatory property of MSCs provides a foundation for their use in treating a variety of autoimmune diseases. However, the interaction between MSCs and immune cells in cell-based tissue regeneration is largely unknown. In this review, we will discuss the current understanding of MSC-based tissue regeneration, emphasizing the role of the immune microenvironment in bone regeneration.  相似文献   

15.
Culturing cells ex vivo that differentiate and maintain in vivo characteristics holds great promise not only for the pragmatic revelations of cell function but also in tissue engineering and regenerative medicine. Lack of de-novo extra-cellular matrix (ECM) milieu, which plays a crucial role in generating physical and chemical signals besides providing structural support is attributed to be the major hurdle in normal cell growth in vitro. Hence, to comprehend the outcome of cell biology research in clinical context, it is important that the cell culture based models should incorporate both the three dimensional (3D) organization and multi cellular complexity of an organ while allowing experimental interventions in a desirable manner. This calls for the development of ECM-mimicking 3D scaffold, which can be integrated with relevant ECM cues to offer cell interactive versatility for different medical and non-medical applications. Present review discusses the status of ECM mimicking for 3D cell culture and its diverse implications.  相似文献   

16.
Osteoarthritis (OA) is a chronic disease in elders and athletes due to limited regenerative capacities of cartilage tissues and subsequently insufficient recovery of damaged sites. Recent clinical treatments for OA have utilized progenitor cell-based therapies for cartilage tissue regeneration. Administration of a single type of cell population such as stem cells or chondrocytes does not guarantee a full recovery of cartilage defects. Therefore, current tissue engineering approaches using co-culture techniques have been developed to mimic complex and dynamic cellular interactions in native cartilage tissues and facilitate changes in cellular phenotypes into chondrogenesis. Therefore, this paper introduces recently developed co-culture systems using two major cell populations, mesenchymal stem cells (MSCs) and chondrocytes. Specifically, a series of examples to describe (1) synergistic in vitro activations of MSCs by paracrine signaling molecules from adult chondrocytes in co-culture systems and (2) functional in vivo tissue regeneration via co-administration of both cell types were reviewed. Based on these findings, it could be speculated that engineered co-culture systems using MSC/ chondrocyte is a promising and feasible cell-based OA therapy in clinical aspects.  相似文献   

17.
Tissue engineering has provided an alternative therapeutic possibility for degenerative disc diseases. However, we lack an ideal scaffold for IVD tissue engineering. The goal of this study is to fabricate a novel biomimetic biphasic scaffold for IVD tissue engineering and evaluate the feasibility of developing tissue-engineered IVD in vitro and in vivo. In present study we developed a novel integrated biphasic IVD scaffold using a simple freeze-drying and cross-linking technique of pig bone matrix gelatin (BMG) for the outer annulus fibrosus (AF) phase and pig acellular cartilage ECM (ACECM) for the inner nucleus pulposus (NP) phase. Histology and SEM results indicated no residual cells remaining in the scaffold that featured an interconnected porous microstructure (pore size of AF and NP phase 401.4±13.1 μm and 231.6±57.2 μm, respectively). PKH26-labeled AF and NP cells were seeded into the scaffold and cultured in vitro. SEM confirmed that seeded cells could anchor onto the scaffold. Live/dead staining showed that live cells (green fluorescence) were distributed in the scaffold, with no dead cells (red fluorescence) being found. The cell—scaffold constructs were implanted subcutaneously into nude mice and cultured for 6 weeks in vivo. IVD-like tissue formed in nude mice as confirmed by histology. Cells in hybrid constructs originated from PKH26-labeled cells, as confirmed by in vivo fluorescence imaging system. In conclusion, the study demonstrates the feasibility of developing a tissue-engineered IVD in vivo with a BMG- and ACECM-derived integrated AF-NP biphasic scaffold. As well, PKH26 fluorescent labeling with in vivo fluorescent imaging can be used to track cells and analyse cell—scaffold constructs in vivo.  相似文献   

18.
Many tissues, such as the adult human hearts, are unable to adequately regenerate after damage.2,3 Strategies in tissue engineering propose innovations to assist the body in recovery and repair. For example, TE approaches may be able to attenuate heart remodeling after myocardial infarction (MI) and possibly increase total heart function to a near normal pre-MI level.4 As with any functional tissue, successful regeneration of cardiac tissue involves the proper delivery of multiple cell types with environmental cues favoring integration and survival of the implanted cell/tissue graft. Engineered tissues should address multiple parameters including: soluble signals, cell-to-cell interactions, and matrix materials evaluated as delivery vehicles, their effects on cell survival, material strength, and facilitation of cell-to-tissue organization. Studies employing the direct injection of graft cells only ignore these essential elements.2,5,6 A tissue design combining these ingredients has yet to be developed. Here, we present an example of integrated designs using layering of patterned cell sheets with two distinct types of biological-derived materials containing the target organ cell type and endothelial cells for enhancing new vessels formation in the “tissue”. Although these studies focus on the generation of heart-like tissue, this tissue design can be applied to many organs other than heart with minimal design and material changes, and is meant to be an off-the-shelf product for regenerative therapies. The protocol contains five detailed steps. A temperature sensitive Poly(N-isopropylacrylamide) (pNIPAAM) is used to coat tissue culture dishes. Then, tissue specific cells are cultured on the surface of the coated plates/micropattern surfaces to form cell sheets with strong lateral adhesions. Thirdly, a base matrix is created for the tissue by combining porous matrix with neovascular permissive hydrogels and endothelial cells. Finally, the cell sheets are lifted from the pNIPAAM coated dishes and transferred to the base element, making the complete construct.  相似文献   

19.
Tissue damages or loss of organs often result in structural and metabolic changes that can cause serious complications. The therapeutic objective of tissue engineering (TE) is to recreate, regenerate or restore function of damaged tissue. TE is based on the coalescence of three components: a scaffold or matrix from natural or synthetic origin biodegradable or not, reparative cells and signals (hypoxia, mechanical stress, morphogens…). Articular cartilage, bone and blood vessels are tissues for which TE has progressed significantly, from basic research to clinical trials. If biomaterials must exhibit different properties depending on the tissue to regenerate, the cellular component of TE is mostly represented by stem cells notably adult mesenchymal stem cells harvested from bone marrow or adipose tissue. In recent years, progress has been made in our understanding of the biological mechanisms that govern stem cell differentiation and in the development of materials with controlled physicochemical and biological properties. However, many technological barriers and regulations concerns have to be overcome before tissue engineering enters into the therapeutic arsenal of regenerative medicine. This review aims at highlighting the progress in the use of stem cells for engineering osteoarticular and vascular tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号