首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Therapeutic genes for cancer gene therapy   总被引:2,自引:0,他引:2  
Cancer still represents a disease of high incidence and is therefore one major target for gene therapy approaches. Gene therapy for cancer implies that ideally selective tumor cell killing or inhibition of tumor cell growth can be achieved using nucleic acids (DNA and RNA) as the therapeutic agent. Therefore, the majority of cancer gene therapy strategies introduce foreign genes into tumor cells which aim at the immunological recognition and destruction, the direct killing of the target cells or the interference with tumor growth. To achieve this goal for gene therapy of cancer, a broad variety of therapeutic genes are currently under investigation in preclinical and in clinical studies. These genes are of very different origin and of different mechanisms of action, such as human cytokine genes, genes coding for immunstimulatory molecules/antigens, genes encoding bacterial or viral prodrug-activating enzymes (suicide genes), tumor suppressor genes, or multidrug resistance genes.  相似文献   

2.
Designing gene delivery vectors for cardiovascular gene therapy   总被引:3,自引:0,他引:3  
Genetic therapy in the cardiovascular system has been proposed for a variety of diseases ranging from prevention of vein graft failure to hypertension. Such diversity in pathogenesis requires the delivery of therapeutic genes to diverse cell types in vivo for varying lengths of time if efficient clinical therapies are to be developed. Data from extensive preclinical studies have been compiled and a certain areas have seen translation into large-scale clinical trials, with some encouraging reports. It is clear that progress within a number of disease areas is limited by a lack of suitable gene delivery vector systems through which to deliver therapeutic genes to the target site in an efficient, non-toxic manner. In general, currently available systems, including non-viral systems and viral vectors such as adenovirus (Ad) or adeno-associated virus (AAV), have a propensity to transduce non-vascular tissue with greater ease than vascular cells thereby limiting their application in cardiovascular disease. This problem has led to the development and testing of improved vector systems for cardiovascular gene delivery. Traditional viral and non-viral systems are being engineered to increase their efficiency of vascular cell transduction and diminish their affinity for other cell types through manipulation of vector:cell binding and the use of cell-selective promoters. It is envisaged that future use of such technology will substantially increase the efficacy of cardiovascular gene therapy.  相似文献   

3.
基因治疗是将可具有治疗性的基因导入病变细胞以达到治疗遗传性疾病或获得性功能缺损疾病的治疗手段,是一种极具潜力的新型治疗方法。然而基因治疗面临着一系列一陆床应用障碍,其中缺乏理想的基因输送载体是首要问题。绝大多数基因治疗方案受困缺乏安全有效的基因输送手段,载体要达到目的地发挥作用,需要克服一系列复杂的体内生物屏障,包括细胞外屏障和细胞内屏障。目前基因输送载体主要分为病毒载体和非病毒载体,其中病毒载体天然进化至可进入宿主细胞,具有输送效率高,靶向性好的特点,但存在长期安全性的缺点。非病毒载体主要包括阳离子脂质体和阳离子聚合物,由于易于制备和无免疫原性、安全性好,被认为是更有潜力的输送载体,是目前研究的重点。本文结合基因治疗输送屏障的理论基础及临床研究,对基因输送载体系统的现状进行了综述。  相似文献   

4.
Gene therapy is a promising strategy to treat various genetic and acquired diseases. Small interfering RNA (siRNA) is a revolutionary tool for gene therapy and the analysis of gene function. However, the development of a safe, efficient, and targetable non-viral siRNA delivery system remains a major challenge in gene therapy. An ideal delivery system should be able to encapsulate and protect the siRNA cargo from serum proteins, exhibit target tissue and cell specificity, penetrate the cell membrane, and release its cargo in the desired intracellular compartment. Nanomedicine has the potential to deal with these challenges faced by siRNA delivery. The unique characteristics of rigid nanoparticles mostly inorganic nanoparticles and allotropes of carbon nanomaterials, including high surface area, facile surface modification, controllable size, and excellent magnetic/optical/electrical properties, make them promising candidates for targeted siRNA delivery. In this review, recent progresses on rigid nanoparticle-based siRNA delivery systems will be summarized.  相似文献   

5.
RNAi-based gene therapy has been recently considered as a promising approach against cancer. Targeted delivery of drug, gene or therapeutic RNAi-based systems to tumor cells is one of the important issues in order to reduce side effects on normal cells. Several strategies have been developed to improve the safety and selectivity of cancer treatments including antibodies, peptides and recently aptamers with various attractive characteristics including higher target specificity, affinity and reduced toxicity. Here we described a novel targeted delivery platform comprising modified PAMAM with 10-bromodecanoic acid (10C) and 10C-PEG for improvement of transfection efficiency, AS1411 aptamer for targeting nucleolin ligand on target cancer cells and shRNA plasmid for specific knockdown of Bcl-xL protein. Modified vector could significantly improve the transfection efficiency even after covalent or non-covalent aptamer binding compared to the non-targeted vector in A549 cells. The results of gene silencing and apoptosis assay indicated that our targeted shRNA delivery system could efficiently down-regulate the Bcl-xL expression up to 25% and induce 14% late apoptosis in target cancer cells with strong cell selectivity. This study proposed a novel targeted non-viral system for shRNA-mediated gene-silencing in cancer cells.  相似文献   

6.
Delivering small interfering RNA (siRNA) to tumors is the major technical hurdle that prevents the advancement of siRNA-based cancer therapy. One of the difficulties associated with the development of clinically relevant delivery systems is the lack of reliable tools for monitoring siRNA delivery to tumors in vivo. We describe here a novel, positive-readout system where siRNA-mediated target knockdown elicits a rapid and robust increase of reporter activity. Using the positive-readout system, we created (1) β-galactosidase-based tumor models that allow the detection of target knockdown in 1%-2% of tumor cells and can distinguish between tumor areas where effective target knockdown occurs versus tumor areas that are not accessible to delivery, and (2) luciferase-based tumor models that allow the quantitative assessment of a large number of delivery systems. Using these positive-readout models, we screened a number of literature-described siRNA delivery systems and identified lipid nanoparticles as a promising delivery platform for siRNA-based cancer therapy.  相似文献   

7.
Treating malignant brain tumors represents one of the most formidable challenges in oncology. Contemporary treatment of brain tumors has been hampered by limited drug delivery across the blood–brain barrier (BBB) to the tumor bed. Biomaterials are playing an increasingly important role in developing more effective brain tumor treatments. In particular, polymer (nano)particles can provide prolonged drug delivery directly to the tumor following direct intracerebral injection, by making them physiochemically able to cross the BBB to the tumor, or by functionalizing the material surface with peptides and ligands allowing the drug-loaded material to be systemically administered but still specifically target the tumor endothelium or tumor cells themselves. Biomaterials can also serve as targeted delivery devices for novel therapies including gene therapy, photodynamic therapy, anti-angiogenic and thermotherapy. Nanoparticles also have the potential to play key roles in the diagnosis and imaging of brain tumors by revolutionizing both preoperative and intraoperative brain tumor detection, allowing early detection of pre-cancerous cells, and providing real-time, longitudinal, non-invasive monitoring/imaging of the effects of treatment. Additional efforts are focused on developing biomaterial systems that are uniquely capable of delivering tumor-associated antigens, immunotherapeutic agents or programming immune cells in situ to identify and facilitate immune-mediated tumor cell killing. The continued translation of current research into clinical practice will rely on solving challenges relating to the pharmacology of nanoparticles but it is envisioned that novel biomaterials will ultimately allow clinicians to target tumors and introduce multiple, pharmaceutically relevant entities for simultaneous targeting, imaging, and therapy in a unique and unprecedented manner.  相似文献   

8.
肿瘤基因治疗的靶向策略   总被引:8,自引:2,他引:8  
对肿瘤组织的靶向性可以提高基因治疗的效果 ,避免对正常组织的损伤 ,并且能降低作为载体的微生物对机体的危害。对于瘤内注射的给药方法 ,靶向性似乎显得不是特别重要 ,但是如果要系统给药 ,靶向性是很关键的一个问题。靶向基因治疗肿瘤可以通过靶向基因导入和靶向基因表达来实现。近年来 ,在靶向基因导入方面的研究有很多进展 ,例如 ,用双亲性的桥连分子协助腺病毒和逆转录病毒靶向转导 ;在各种病毒载体的衣壳蛋白中插入靶向性的小肽或较大的多肽靶向结构域 ;增殖病毒作为一种很有前途的抗肿瘤制剂可有效地靶向杀伤肿瘤细胞。受体介导的DNA或DNA 脂质体复合物的靶向系统和其他一些靶向性的有疗效的载体 ,如细菌 ,也处于研究中。其中的一些载体已经进入临床实验。为了实现基因的靶向可调控表达 ,组织或肿瘤特异性的启动子和人工合成的可调控表达系统被用来调控治疗基因的表达。反义核酸、核酶以及脱氧核酶 (DNAzyme)被用来靶向抑制与肿瘤发生密切相关基因的表达。  相似文献   

9.
Successful gene therapy largely depends on the selective introduction of therapeutic genes into the appropriate target cancer cells. One of the most effective and promising approaches for targeting tumor tissue during gene delivery is the use of viral vectors, which allow for high efficiency gene delivery. However, the use of viral vectors is not without risks and safety concerns, such as toxicities, a host immune response towards the viral antigens or potential viral recombination into the host''s chromosome; these risks limit the clinical application of viral vectors. The Sleeping Beauty (SB) transposon-based system is an attractive, non-viral alternative to viral delivery systems. SB may be less immunogenic than the viral vector system due to its lack of viral sequences. The SB-based gene delivery system can stably integrate into the host cell genome to produce the therapeutic gene product over the lifetime of a cell. However, when compared to viral vectors, the non-viral SB-based gene delivery system still has limited therapeutic efficacy due to the lack of long-lasting gene expression potential and tumor cell specific gene transfer ability. These limitations could be overcome by modifying the SB system through the introduction of the hTERT promoter and the SV40 enhancer. In this study, a modified SB delivery system, under control of the hTERT promoter in conjunction with the SV40 enhancer, was able to successfully transfer the suicide gene (HSV-TK) into multiple types of cancer cells. The modified SB transfected cancer cells exhibited a significantly increased cancer cell specific death rate. These data suggest that our modified SB-based gene delivery system can be used as a safe and efficient tool for cancer cell specific therapeutic gene transfer and stable long-term expression.  相似文献   

10.
Gene therapy has provided great potential to revolutionize the treatment of many diseases. This therapy is strongly relied on whether a delivery vector efficiently and safely directs the therapeutic genes into the target tissue/cells. Nonviral gene delivery vectors have been emerging as a realistic alternative to the use of viral analogs with the potential of a clinically relevant output. Dendritic polymers were employed as nonviral vectors due to their branched and layered architectures, globular shape and multivalent groups on their surface, showing promise in gene delivery. In the present review, we try to bring out the recent trend of studies on functional and biodegradable dendritic polymers as nontoxic and efficient gene delivery vectors. By regulating dendritic polymer design and preparation, together with recent progress in the design of biodegradable polymers, it is possible to precisely manipulate their architectures, molecular weight and chemical composition, resulting in predictable tuning of their biocompatibility as well as gene transfection activities. The multifunctional and biodegradable dendritic polymers possessing the desirable characteristics are expected to overcome extra- and intracellular obstacles, and as efficient and nontoxic gene delivery vectors to move into the clinical arena.  相似文献   

11.
Melanoma is one of the most malignant tumors, aggressively metastasizing by lymphatic and hematogenous routes. Due to the resistance of melanoma cells to many types of chemotherapy, this disease causes high mortality rate. High hopes are pinned on gene therapeutic approaches to melanoma treatment. At present, one of the main problems of the efficient use of the post-genomic generation therapeutic means is the lack of optimal techniques of delivery of foreign genetic material to the patient's target cells. Surface specific markers of melanoma cells can be considered as promising therapeutic targets. This review describes currently known melanoma specific receptors and its stem cells, as well as contains data on melanoma antigens presented on the cell surface by major histocompatibility complex proteins. The ability of surface proteins to internalize might be successfully used for the development of methods of targeted delivery of gene therapeutic constructs. In conclusion, a concept of multilevel gene therapy and the possible role therein of surface determinants as targets of gene systems delivery to the tumor are discussed.  相似文献   

12.
Among the broad array of genes that have been evaluated for tumor therapy, those encoding prodrug activation enzymes are especially appealing as they directly complement ongoing clinical chemotherapeutic regimes. These enzymes can activate prodrugs that have low inherent toxicity using both bacterial and yeast enzymes, or enhance prodrug activation by mammalian enzymes. The general advantage of the former is the large therapeutic index that can be achieved, and of the latter, the non-immunogenicity (supporting longer periods of prodrug activation) and the fact that the prodrugs will continue to have some efficacy after transgene expression is extinguished. This review article describes 13 different prodrug activation schemes developed over the last 15 years, two of which - activation of ganciclovir by viral thymidine kinase and activation of 5-fluorocytosine to 5-fluorouracil - are currently being evaluated in clinical trials. Essentially all of these prodrug activation enzymes mediate toxicity through disruption of DNA replication, which occurs at differentially high rates in tumor cells compared with most normal cells. In cancer gene therapy, vectors target delivery of therapeutic genes to tumor cells, in contrast to the use of antibodies in antibody-directed prodrug therapy. Vector targeting is usually effected by direct injection into the tumor mass or surrounding tissues, but the efficiency of gene delivery is usually low. Thus it is important that the activated drug is able to act on non-transduced tumor cells. This bystander effect may require cell-to-cell contact or be mediated by facilitated diffusion or extracellular activation to target neighboring tumor cells. Effects at distant sites are believed to be mediated by the immune system, which can be mobilized to recognize tumor antigens by prodrug-activated gene therapy. Prodrug activation schemes can be combined with each other and with other treatments, such as radiation, in a synergistic manner. Use of prodrug wafers for intratumoral drug activation and selective permeabilization of the tumor vasculature to prodrugs and vectors should further increase the value of this new therapeutic modality.  相似文献   

13.
Fe_3O_4磁性纳米粒子由于其良好的磁学性能,被广泛应用到了化学、生物、物理、环境保护等各个领域。尤其是在生物医学领域中的应用越来越受到研究者的关注。由于其所具有的优秀的超顺磁性性质,Fe_3O_4磁性纳米粒子可以作为造影剂,增强核磁共振成像的对比度和成像效果;也可以结合到纳米载药系统内用于药物的靶向输送;也可以包埋到蛋白内部用于蛋白的磁性分离;也可以用于基因治疗,提高靶细胞的转染效率;由于其在近红外光的作用下具有很好的光热转换效果,使温度升高,展现出的良好热疗效果,Fe_3O_4磁性纳米粒子又可以用于癌细胞的热疗。本文针对其在该领域中作为药物的靶向传递,蛋白的磁分离,核磁共振成像,热疗,以及基因治疗的载体等方面的研究应用进行了系统性的总结,阐述了Fe_3O_4磁性纳米粒子在生物医学领域中各种应用进展和优势。  相似文献   

14.
Intratumoral low-volume jet-injection for efficient nonviral gene transfer   总被引:1,自引:0,他引:1  
Jet-injection has become an applicable technology among other established nonviral delivery systems, such as particle bombardment or in vivo electroporation. The low-volume jet injector employed in this study uses compressed air to inject solutions of 1.5–10 μL containing naked DNA into the desired tissue. The novel design of this prototype makes multiple jet-injections possible. Therefore, repeated jet-injections into one target tissue can be performed easily. This jet-injector hand-held system was used for the direct in vivo gene transfer of plasmid DNA into tumors to achieve efficient expression of reporter genes (β-galactosidase, green fluorescent protein [GFP]) and of therapeutic genes (TNF-α) in different tumor models. The study presented here revealed the key parameters of efficient in vivo jet-injection (jet-injection volume, pressure, jet penetration, DNA stability) to define the optimal conditions for a jet-injection-aided nonviral gene therapy.  相似文献   

15.
The pancreas is considered an important gene therapy target because the organ is the site of several high burden diseases, including diabetes mellitus, cystic fibrosis, and pancreatic cancer. We aimed to develop an efficient in vivo gene delivery system using non-viral DNA. Direct intra-parenchymal injection of a solution containing circular plasmid pmaxGFP DNA was performed on adult anesthetized ICR female mice. The injection site was sandwiched with a pair of tweezer-type electrode disks, and electroporated using a square-pulse generator. Green fluorescent protein (GFP) expression within the injected pancreatic portion was observed one day after gene delivery. GFP expression reduced to baseline within a week of transfection. Application of voltages over 40 V resulted in tissue damage during electroporation. We demonstrate that electroporation is effective for safe and efficient transfection of pancreatic cells. This novel gene delivery method to the pancreatic parenchyma may find application in gene therapy strategies for pancreatic diseases and in investigation of specific gene function in situ.  相似文献   

16.
The structure of DNA was unraveled by Watson and Crick in 1953, and two decades later Arber, Nathans and Smith discovered DNA restriction enzymes, which led to the rapid growth in the field of recombinant DNA technology. From expressing cloned genes in bacteria to expressing foreign DNA in transgenic animals, DNA is now slated to be used as a therapeutic agent to replace defective genes in patients suffering from genetic disorders or to kill tumor cells in cancer patients. Gene therapy provides modern medicine with new perspectives that were unthinkable two decades ago. Progress in molecular biology and especially, molecular medicine is now changing the basics of clinical medicine. A variety of viral and non-viral possibilities are available for basic and clinical research. This review summarizes the delivery routes and methods for gene transfer used in gene therapy.  相似文献   

17.
18.
Localized prostate cancer can be treated effectively with radical prostatectomy or radiation therapy. The treatment options for metastatic prostate cancer are limited to hormonal therapy; hormone-refractory cancer is treated with taxane-based chemotherapy, which provides only a modest survival benefit. New treatments are needed. The gene for the initiation of prostate cancer has not been identified; however, gene therapy can involve tumor injection of a gene to kill cells, systemic gene delivery to target and kill metastases, or local gene expression intended to generate a systemic response. This review will provide an overview of the various strategies of cancer gene therapy, focusing on those that have gone to clinical trial, detailing clinical experience in prostate cancer patients.  相似文献   

19.
由于卵巢癌的早期临床症状较不明显,大部分患者就诊时就处于晚期阶段,这对其有效治疗造成了很大困难,使其成为妇科病死率最高的恶性肿瘤,一直广受关注。但目前传统的手术与放化疗方法的治疗效果不佳。近年来随着基础研究工作的不断发展与深入,生物治疗作为新的肿瘤治疗方法引起了人们的重视。生物治疗作为第四种卵巢癌的治疗模式,其采取的针对不同靶位点和靶途径的策略很大程度上促进了卵巢癌治疗的理论和实践研究。生物治疗主要是运用基因治疗、免疫治疗和重组病毒治疗的方法对患者进行治疗,基因治疗包括细胞毒性或自杀基因治疗、纠错性基因治疗、免疫增强性基因治疗和抗肿瘤血管生成基因治疗等。而免疫治疗又分为主动和被动免疫治疗,前者包括树突状细胞疫苗、自体肿瘤疫苗和分子疫苗治疗等,后者如细胞因子治疗、单克隆抗体拮抗治疗以及细胞过继免疫治疗等。上述目前在卵巢癌治疗研究中已取得了一些成果,本文就其卵巢癌的生物治疗现状与进展做一综述。  相似文献   

20.
Pasupathy K  Lin S  Hu Q  Luo H  Ke PC 《Biotechnology journal》2008,3(8):1078-1082
Plant gene delivery is challenging due to the presence of plant cell walls. Conventional means such as Agrobacterium infection, biolistic particle bombardment, electroporation, or polyethylene glycol attachment are often characterized by high cost, labor extensiveness, and a significant perturbation to the growth of cells. We have succeeded in delivering GFP-encoding plasmid DNA to turfgrass cells using poly(amidoamine) dendrimers. Our new scheme utilizes the physiochemical properties as well as the nanosize of the poly(amidoamine) dendrimer for direct and noninvasive gene delivery. The GFP gene was expressed in the plant cells as observed by confocal fluorescence microscopy. The transfection efficiency may be further improved by optimizing the pH of the cell culture medium and the molar ratio of the dendrimer to DNA. The use of the current delivery system can be extended to virtually all plant species having successful regeneration systems in place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号