首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we have proposed a new DP/LP stereochemical notation for P-chiral dinucleoside monophosphate analogues that permits simple correlation between spatial arrangement of the substituents and the configuration at the phosphorus center. As an extension of this work, we present here applications of the DP/LP notation to derivatives containing only one nucleoside unit (e.g., alkyl nucleoside phosphodiesters, nucleoside phosphomonoesters, cyclic phosphate derivatives, nucleoside di-, and triphosphates) and to nonnucleosidic phosphorus compounds.  相似文献   

2.
Nucleic acid research frequently necessitates the analytical resolution of nucleic acid derivatives. Thin-layer chromatography (tlc), for its simplicity, short development time, and superior resolving power, is often preferable to other methods (1–3). Although the literature contains a large number of methods that have been devised for the separation of purine and pyrimidine derivatives (4,5) no tlc technique has hitherto been described for the concomitant separation of bases, nucleosides, nucleoside 5′-monophosphates, nucleoside 3′-monophosphates, nucleoside diphosphates, and nucleoside triphosphates.The present communication deals with methods devised for the simultaneous separation of the above-mentioned pyrimidine derivatives. They enable the resolution of either the six uracil derivatives or the six cytosine derivatives, on commercial cellulose tlc sheets. Alternatively, the six pyrimidine derivatives can be separated on cellulose layers 0.75 mm thick. Since formic acid extracts of bacterial cells do not interfere with the separation, these methods can be used for the direct estimation of extracts of biological materials.  相似文献   

3.
3'-Deoxy-3'-C-CF3, 2',3'-dideoxy-3'-C-CF3 and 2',3'-unsaturated-3'-C-CF3 nucleoside derivatives of adenosine and cytidine have been synthesized. All these derivatives were prepared by glycosylation of adenine and uracil with a suitable peracylated 3-trifluoromethyl sugar precursor. The resulting protected nucleosides were subject to appropriate chemical modifications to afford the target nucleoside derivatives. Additionally, the chemical stability in acidic and neutral media of the 2',3'-dideoxy-3'-C-CF3 and 2',3'-unsaturated-3'-C-CF3 nucleoside derivatives of adenosine was compared to that of their parent nucleosides 2',3'-dideoxyadenosine (ddA) and 2',3'-dideoxy-2',3'-didehydroadenosine (d(4)A). Our results confirm that addition of a trifluoromethyl group at C-3' on such nucleoside derivatives appears to confer increased chemical stability toward acid-catalyzed cleavage of the glycosidic bond comparatively to their parent counterparts. When evaluated for their antiviral activity in cell culture experiments, two compounds, namely, 2',3'-dideoxy-3'-C-CF3-adenosine and 2',3'-dideoxy-2',3'-didehydro-3'-C-CF3-cytidine exhibited moderate anti-HBV activity with EC50 values of 10 and 5 microM, respectively.  相似文献   

4.
Changing the nucleoside group of a series of phosphoramidate derivatives affects the enzyme mediated hydrolysis rate of the compounds. d4T and AZT-substituted analogs were activated by enzymes such as lipases, esterases, and proteases. On the other hand, 3dT-substituted derivatives were comparatively less prone to hydrolysis under similar experimental conditions. From the experimental results, we propose that the most preferable nucleoside group for enzyme activation is d4T rather than AZT or 3dT. Additionally, we also observed that depending on the enzymes used the chiral selectivity of the enzymes for the phosphorus center of these phosphoramidate derivatives differed, demonstrating the importance of the nucleoside structure for this class of compounds.  相似文献   

5.
Recently, we have proposed a new DP/LP stereochemical notation for P-chiral dinucleoside monophosphate analogues that permits simple correlation between spatial arrangement of the substituents and the configuration at the phosphorus center. As an extension of this work, we present here applications of the DP/LP notation to derivatives containing only one nucleoside unit (e.g., alkyl nucleoside phosphodiesters, nucleoside phosphomonoesters, cyclic phosphate derivatives, nucleoside di-, and triphosphates) and to nonnucleosidic phosphorus compounds.  相似文献   

6.
The synthesis of both 2'-deoxy and 2',3'-dideoxynucleoside derivatives by the reaction of thioglycosides with nucleoside bases was examined. The stereochemical outcome at the anomeric position was found to depend on the protecting groups and the C-3 configuration in the sugar moiety, the kind of activator, and the reaction temperature. Based on these findings, 2'-deoxy-D-xylo nucleoside and 2',3'-dideoxynucleoside derivatives have been synthesized in beta-selective manner.  相似文献   

7.
Acyclic nucleoside phosphonate derivatives containing a pyrimidine base preferably bearing amino groups at C-2 and C-4 (DAPym), and linked at the C-6 position to (S)-[3-hydroxy-2-(phosphonomethoxy)propoxy] (HPMPO), 2-(phosphonomethoxy) ethoxy (PMEO) or (R)-[2-(phosphonomethoxy)propoxy] (PMPO), display an antiviral sensitivity spectrum that closely mimic that of the parental (S)-HPMP-, PME- and (R)-PMP-purine derivatives. Several PMEO-DAPym derivatives proved as potent as PMEA (adefovir) and (R)-PMPA (tenofovir) in inhibiting Moloney murine sarcoma virus (MSV)-induced tumor formation in newborn NMRI mice. The HPMPO-, PMEO- and PMPO-DAPym derivatives represent a novel well-defined subclass among the acyclic nucleoside phosphonates endowed with potent and selective antiviral activity.  相似文献   

8.
Recent advances of antiviral drug design among nucleosides and their derivatives have been summarized. The first chapter deals with the history of nucleic acids components and further developments in this area. Next part discusses the mechanism of action of biologically active nucleosides: 2',3'-dideoxynucleosides, acyclic analogues, phosphonate derivatives and nucleoside antibiotics. The third chapter describes planning of complicated synthesis of nucleoside analogues from branched-chain sugars and stereo-specific formation of glycosidic bond upon synthesis of ribonucleoside and 2'-deoxyribonucleoside. The last part outlines further perspectives, i. e. preparation of antiviral compounds and use of nucleoside analogues in oligonucleotide synthesis.  相似文献   

9.
The data obtained mainly by pulsed NMR spectroscopy on phosphorus nuclei on the mechanism of the internucleotide phosphodiester (PDE) group formation are summarised. With arylsulphonyl chloride as condensing reagent monomeric nucleotide derivative B (nucleoside metaphosphate or its pyridinium adduct) is the highly reactive intermediate. In the presence of PDE groups in nucleoside or nucleotide component the significantly less reactive derivatives with trisubstituted pyrophosphoryl residues are formed both with arylsulphonyl chloride and dicyclohexylcarbodiimide (DCC). The reactive B form of nucleotide component may be obtained using greater excess of arylsulphonyl chloride with simultaneous convertion of PDE groups to tetrasubstituted pyrophosphates amenable to side reactions. The convertion of PDE groups to easily hydrolysable dicyclohexylurea derivatives by reaction with DCC is proposed to reversible blocking of PDE groups of nucleoside component. The B type derivatives of mononucleotides or oligonucleotides with blocked PDE groups seems to be the best nucleotide components.  相似文献   

10.
11.
The synthesis of unprotected alkylidencarbazoyl nucleoside derivatives 8a-8d is shown. A direct deprotection route from readily available 2',3'-isopropylidene protected nucleosides 5a-5d. prepared from a chemoenzymatic procedure, did not give the selective cleavage of the ketal function without affecting the C=N bond. The next option tried was to look at the previous compound in the retrosynthetic route: 2',3'-protected carbazoyl nucleoside 4. However, in all cases we obtained unsatisfactory results. Stepping further back, the hydrolysis of compound 3a led us to unprotected carbonate nucleoside 9 in quantitative yield. With this compound available, the synthesis towards derivatives 8 was accomplished through a known procedure.  相似文献   

12.
Aryl nucleoside 5'-H-phosphonates 4 bearing AZT or 2',3'-dideoxyuridine moieties were subjected to reaction with various aromatic aldehydes to produce nucleoside 5'-alpha-hydroxyphosphonate derivatives 2 as potential anti-HIV agents. Stability of the title compounds in cell culture media was investigated and three distinct decomposition pathways were identified. The anti-HIV activity of hydroxyphosphonates 2 correlates well with the type and extent of their chemical or enzymatic degradation in culture medium (RPMI 1640 containing 10% FBS), suggesting that aryl nucleoside 5'-hydroxyphosphonates 2 act as depot forms of the parent antiviral nucleosides.  相似文献   

13.
G N Bennett  P T Gilham 《Biochemistry》1975,14(14):3152-3158
A number of synthetic methods for the preparation of the 2-O-(alpha-methoxyethyl) derivatives of the 5-diphosphates of adenosine, cytidine, guanosine, and uridine have been studied in order to provide nucleotide substrates that can be applied to the synthesis of specific oligoribonucleotides using polynucleotide phosphorylase. The reaction of nucleoside 5-diphosphates with methyl vinyl ether for a limited time produces low yields of the corresponding 2-O-(alpha-methoxyethyl) derivatives because the rate of methoxyethylation of the 3-hydroxyl groups. A study of the rates of acidic hydrolysis of alpha-methoxyethyl groups in the 2 and 3 positions of nucleosides and nucleotides has been made, and the results obtained form the basis of a more efficient method for the synthesis of the blocked nucleoside diphosphates. The method involves the reaction of nucleoside 5-diphosphates with methyl vinyl ether to give the corresponding 2,3-di-O-(alpha-methoxyethyl)nucleoside 5-diphosphates, and exploits the fact that, in the acidic hydrolysis of these derivatives, the rate of removal of the 3-methoxyethyl group is about twice that of the group in the 2 position. Alternative syntheses were based on the phosphorylation of methoxyethylated nucleosides and nucleotides. The derivatives, 2-O- and 2,3-di-O-(alpha-methoxyethyl)uridine, were prepared by the methoxyethylation of 3,5-di-O-acetyluridine and 5-O-acetyluridine followed by removal of the acetyl groups. The corresponding guanosine derivatives were made by the synthetic routes: (i) guanosine leads to O-2,O-3,O-5,N-2-tetrabenzoylguanosine leads to 2-N-benzoylguanosine leads to O3-acetyl-N-2,O5-dibenzoylguanosine leads to 2-O-(alpha-methoxyethyl)guanosine, and (ii) 2,3-O-isopropylideneguanosine leads to N-2,O5-diacetyl-2,3-O-isopropylideneguanosine leads to N-2,O-5-diacetylguanosine leads to 2,3-di-O-(alpha-methoxyethyl)guanosine. These methoxyethylated nucleosides were converted to the corresponding 5-phosphates by reaction with cyanoethyl phosphate and dicyclohexylcarbodiimide, and then to the corresponding 5-diphosphates by subsequent reaction with 1,1-carbonyldiimidazole and inorganic phosphate.  相似文献   

14.
A range of novel 1,2,3-triazolylalkylribitol derivatives were synthesized and evaluated as nucleoside hydrolase inhibitors. The most active compound (11a) has low micromolar potency and is structurally diverse from previously reported nucleoside hydrolase inhibitors, which, along with the simplicity of the chemistry involved in its synthesis, makes it a good lead for the further development of novel nucleoside hydrolase inhibitors.  相似文献   

15.
Ribonucleotide reductase inhibitors enhance the anti-HIV-1 activities of a variety of nucleoside analogs, including those that act as chain terminators and those that increase the HIV-1 mutation rate. However the use of these ribonucleotide reductase inhibitors is limited by their associated toxicities. The hydroxylated phytostilbene resveratrol has activity in a host of systems including inhibition of ribonucleotide reductase and has minimal toxicity. Here we synthesized derivatives of resveratrol and examined them for anti-HIV-1 activity and their ability to enhance the antiviral activity of decitabine, a nucleoside analog that decreases viral replication by increasing the HIV-1 mutation rate. The data demonstrates that six of the derivatives have anti-HIV-1 activity greater than resveratrol. However, only resveratrol acted in synergy with decitabine to inhibit HIV-1 infectivity. These results reveal novel resveratrol derivatives with anti-HIV-1 activity that may have mechanisms of action that differ from the drugs currently used to treat HIV-1.  相似文献   

16.
A number of novel phosphinate and phosphate triester derivatives of the anti-viral nucleoside analogue araA have been prepared. Spectroscopic and analytical data have been collected on both the reagents and the nucleotides. An in vitro assay indicated inhibition of DNA synthesis by mammalian cells, by each of the nucleotide derivatives, in the range 3-30 microM. Inhibition was reduced, but not abolished, for the phosphinates relative to the phosphates. These results are consistent with a mode of action involving release of the free nucleoside araA and the nucleotide araAMP.  相似文献   

17.
18.
Nucleoside N-phosphoamino acids were synthesized through Atherton-Todd reaction of nucleoside H-phosphonate with amino acids, and their structures were confirmed by NMR and ESI-MS. After nucleoside N-phosphoamino acid was incubated in anhydrous methanol at 40 °C for 72 h, di- to tetra-peptide derivatives were detected by ESI-MS, and their structures were further identified by multistage mass spectrometry. These and previously published studies in aqueous solution suggest that nucleoside N-phosphoamino acids could have been prebiotic precursors of oligopeptides.  相似文献   

19.
A stereoselective synthesis of dinucleoside boranophosphates by using nucleoside 3'-oxazaphospholidine derivatives is described. The diastereoselectivity of the internucleotidic bond formation reactions varied with the nucleobase used. (Rp)- and (Sp)-dithymidine boranophosphates were synthesized with excellent diastereoselectivity both in solution and on a solid-support, whereas a loss of diastereopurity was observed for the 2'-deoxycytidine derivative having an unprotected nucleobase amino group. On the other hand, complete chemoselectivity of the 3'-oxazaphospholidine derivatives toward hydroxy groups over amino groups was serendipitously found during the study. This unique chemoselectivity of the 3'-oxazaphospholidine derivatives was investigated by comparing them with the conventional nucleoside 3'-phosphoramidite.  相似文献   

20.
The Nudix hydrolase superfamily is identified by a conserved cassette of 23 amino acids, and it is characterized by its pyrophosphorylytic activity on a wide variety of nucleoside diphosphate derivatives. Of the 13 members of the family in Escherichia coli, only one, Orf180, has not been identified with a substrate, although a host of nucleoside diphosphate compounds has been tested. Several reports have noted a strong similarity in the three‐dimensional structure of the unrelated enzyme, isopentenyl diphosphate isomerase (IDI) to the Nudix structure, and the report that a Nudix enzyme was involved in the synthesis of geraniol, a product of the two substrates of IDI, prompted an investigation of whether the IDI substrates, isopentenyl diphosphate (IPP), and dimethylallyl diphosphate (DAPP) could be substrates of Orf180. This article demonstrates that Orf180 does have a very low activity on IPP, DAPP, and geranyl pyrophosphate (GPP). However, several of the other Nudix enzymes with established nucleoside diphosphate substrates hydrolyze these compounds at substantial rates. In fact, some Nudix hydrolases have higher activities on IPP, DAPP, and GPP than on their signature nucleoside diphosphate derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号