首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Processes of fluid exchange in the crystalline lens of the rabbit eye were investigated. The direction of movement of fluid in the crystalline lens was investigated from the movement of fluorescein by the method of "stopped diffusion". It has been found that the mechanism of fluid transport in the crystalline lens is active and is carried out by means of the Na-kappa-ATPase transport system. The energy necessary for the active transport of fluid inside the crystalline lens is in the range (1.5-6) x 10(-2) J. Owing to the active fluid transport, the pressure inside the crystalline lens constantly increases by 6 mm Hg. In rabbit's life-time, the movement of fluid in the crystalline lens occurs in the direction from the anterior to the posterior surface followed by the exit to vitreous humor.  相似文献   

2.
3.
4.
The eye lens crystallins of the octopus Octopus dofleini were identified by sequencing abundant proteins and cDNAs. As in squid, the octopus crystallins have subunit molecular masses of 25-30 kDa, are related to mammalian glutathione S-transferases (GST), and are encoded in at least six genes. The coding regions and deduced amino acid sequences of four octopus lens cDNAs are 75-80% identical, while their non-coding regions are entirely different. Deduced amino acid sequences show 52-57% similarity with squid GST-like crystallins, but only 20-25% similarity with mammalian GST. These data suggest that the octopus and squid lens GST-like crystallin gene families expanded after divergence of these species. Northern blot hybridization indicated that the four octopus GST-like crystallin genes examined are lens-specific. Lens extracts showed about 40 times less GST activity using 1-chloro-2,4-dinitrobenzene as substrate than liver extracts of the octopus, indicating that the major GST-like crystallins are specialized for a lens structural role. A prominent 59-kDa crystallin polypeptide, previously observed in octopus but not squid and called omega-crystallin (Chiou, S.-H. (1988) FEBS Lett. 241, 261-264), has been identified as an aldehyde dehydrogenase. Since cytoplasmic aldehyde dehydrogenase is a major protein in elephant shrew lenses (eta-crystallin; Wistow, G., and Kim, H. (1991) J. Mol. Evol. 32, 262-269) the octopus aldehyde dehydrogenase crystallin provides the first example of a similar enzyme-crystallin in vertebrates and invertebrates. The use of detoxification stress proteins (GST and aldehyde dehydrogenase) as cephalopod crystallins indicates a common strategy for recruitment of enzyme-crystallins during the convergent evolution of vertebrate and invertebrate lenses. For historical reasons we propose that the octopus GST-like crystallins, like those of the squid, are called S-crystallins.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
The ability of transparent and cataractous human, rabbit and mice lenses to metabolize hydrogen peroxide in the surrounding medium was evaluated. Using a chemiluminescence method in a system of luminol-horseradish peroxidase and a photometric technique, the temperature-dependent kinetics of H2O2 decomposition by lenses were measured. The ability of opaque human lenses to catalyze the decomposition of 10?4 M H2O2 was significantly decreased. However, this was reserved by the addition of GSH to the incubation medium. Incubation of the mice lenses with the initial concentration H2O2 10?4 M led to partial depletion of GSH in normal and cataractous lenses. Human cataractous lenses showed decreased activities of glutathione reductase, glutathione peroxidase (catalyzing reduction of organic hydroperoxides including hydroperoxides of lipids), superoxide dismutase, but no signs of depletion in activities of catalase or glutathione peroxidase (utilizing H2O2). The findings indicated an impairment in peroxide metabolism of the mature cataractous lenses compared to normal lenses to be resulted from a deficiency of GSH. An oxidative stress induced by accumulation of lipid peroxidation products in the lens membranes during cataract progression could be considered as a primary cause of GSH deficiency and disturbance of the redox balance in the lens.  相似文献   

15.
16.
Microcolumn liquid and column chromatography technique is conjunction with UV-spectrophotometry and spectrofluorescent analysis were used to study lipid peroxidation products accumulated in human lenses during cataract formation by means of chromatographic separation in regard to the molecular weight and polarity properties. Cataract is characterized by the appearance of certain substances changing UV-absorption lipid spectra in the region of 230 and 274 nm and having special fluorescence (excitation--320-370 nm), (emission--405-460 nm). The same changes were observed by ultrasoundinduced lipid peroxidation of model lipid samples. The accumulated lipid peroxidation products are concentrated in the same chromatographic fractions that are responsible for the change of UV-absorption and fluorescent spectra of lipids of cataractous lenses. It is the evidence of free radical lipid peroxidation products accumulation in human lenses at cataract formation. Along with the formation of diene and triene conjugates in the lens lipids, cataract is characterized by the formation of cetodienes and of low molecular weight lipid fluorescent products of fatty acids oxidation with low polarity due to the appearance of tetraene derivatives of polyunsaturated fatty acids. The particular features of mature cataract are an increased intensity of long-wave lipid fluorescence in the blue-green region (430-460 nm) of the spectrum, formation of high molecular weight fluorescent lipid peroxidation products with high polarity, and smooth decrease in absorbance in the region of 220-330 nm. During cataract formation products of deep lipid peroxidation resulting from radical phospholipids and fatty acids polymerisation are accumulated. It is supposed that lipid peroxidation is an initial phase of membrane desintegration and formation of HMW-proteins in cataract.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号