首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The PulO protein required for extracellular secretion of pullulanase by Klebsiella oxytoca is known to be highly homologous to two type IV prepilin peptidases, namely XcpA(PilD) (Pseudomonas aeruginosa) and TcpJ (Vibrio cholerae). The predicted prepilin peptidase activity of PulO was confirmed by showing that it could correctly process the product of the cloned pilE.1 type IV pilin structural gene from Neisseria gonorrhoeae in Escherichia coli. The P. aeruginosa prepilin peptidase and another putative prepilin peptidase, ComC from Bacillus subtilis, also processed prePilE. Subcellular fractionation showed that the pilE gene product that had been processed by PulO remained associated with the cytoplasmic membrane, as did the unprocessed precursor. PulO was also shown to process three of the four prePilE-PhoA hybrids tested. Southern hybridization experiments suggest that a pulO homologue is present in the N. gonorrhoeae chromosome.  相似文献   

2.
Pili of Pseudomonas aeruginosa are assembled from monomers of the structural subunit, pilin, after secretion of this protein across the bacterial membrane. These subunits are initally synthesized as precursors (prepilin) with a six-amino-acid leader peptide that is cleaved off during or after membrane traversal, followed by methylation of the amino-terminal phenylalanine residue. This report demonstrates that additional sequences from the N terminus of the mature protein are necessary for membrane translocation. Gene fusions were made between amino-terminal coding sequences of the cloned pilin gene (pilA) and the structural gene for Escherichia coli alkaline phosphatase (phoA) devoid of a signal sequence. Fusions between at least 45 amino acid residues of the mature pilin and alkaline phosphatase resulted in translocation of the fusion proteins across the cytoplasmic membranes of both P. aeruginosa and E. coli strains carrying recombinant plasmids, as measured by alkaline phosphatase activity and Western blotting. Fusion proteins constructed with the first 10 amino acids of prepilin (including the 6-amino-acid leader peptide) were not secreted, although they were detected in the cytoplasm. Therefore, unlike that of the majority of secreted proteins that are synthesized with transient signal sequences, the membrane traversal of pilin across the bacterial membrane requires the transient six-amino-acid leader peptide as well as sequences contained in the N-terminal region of the mature pilin protein.  相似文献   

3.
The motB gene product of Escherichia coli is an integral membrane protein required for rotation of the flagellar motor. We have determined the nucleotide sequence of the motB region and find that it contains an open reading frame of 924 nucleotides which we ascribe to the motB gene. The predicted amino acid sequence of the gene product is 308 residues long and indicates an amphipathic protein with one major hydrophobic region, about 22 residues long, near the N terminus. There is no consensus signal sequence. We postulate that the protein has a short N-terminal region in the cytoplasm, an anchoring region in the membrane consisting of two spanning segments, and a large cytoplasmic C-terminal domain. By placing motB under control of the tryptophan operon promoter of Serratia marcescens, we have succeeded in overproducing the MotB protein. Under these conditions, the majority of MotB was found in the cytoplasm, indicating that the membrane has a limited capacity to incorporate the protein. We conclude that insertion of MotB into the membrane requires the presence of other more hydrophobic components, possibly including the MotA protein or other components of the flagellar motor. The results further reinforce the concept that the total flagellar motor consists of more than just the basal body.  相似文献   

4.
The sldA gene that encodes the D-sorbitol dehydrogenase (SLDH) from Gluconobacter suboxydans IFO 3255 was cloned and sequenced. It encodes a polypeptide of 740 residues, which contains a signal sequence of 24 residues. SLDH had 35-37% identity to the membrane-bound quinoprotein glucose dehydrogenases (GDHs) from E. coli, Gluconobacter oxydans, and Acinetobacter calcoaceticus except the N-terminal hydrophobic region of GDH. Additionally, the sldB gene located just upstream of sldA was found to encode a polypeptide consisting of 126 very hydrophobic residues that is similar in sequence to the one-sixth N-terminal region of the GDH. For the development of the SLDH activity in E. coli, co-expression of the sldA and sldB genes and the presence of pyrrloquinolone quinone as a co-factor were required.  相似文献   

5.
FtsY is a signal recognition particle receptor in Escherichia coli that mediates the targeting of integral membrane proteins to translocons by interacting with both signal recognition particle (SRP)-nascent polypeptide-ribosome complexes and the cytoplasmic membrane. Genes encoding the N-terminal segments of Streptomyces lividans FtsY were fused to a gene encoding the E. coli FtsY NG domain (truncated versions of FtsY lacking the transient membrane-anchor domain at the N-terminus), introduced into a conditional ftsY-deletion mutant of E. coli, and expressed in trans to produce chimeric FtsY proteins. Under FtsY-depleted conditions, strains producing chimeric proteins including 34 N-terminal hydrophobic residues grew whereas strains producing chimeric proteins without these 34 residues did not. A strain producing the chimeric protein comprising the 34 residues and NG domain processed beta-lactamase, suggesting that the SRP-dependent membrane integration of leader peptidase was restored in this strain. These results suggest that the N-terminal hydrophobic segment of FtsY in this Gram-positive bacterium is responsible for its interaction with the cytoplasmic membrane.  相似文献   

6.
DipZ is a bacterial cytoplasmic membrane protein that transfers reducing power from the cytoplasm to the periplasm so as to facilitate the formation of correct disulphide bonds and c-type cytochromes in the latter compartment. Topological analysis using gene fusions between the Escherichia coli dipZ and either E. coli phoA or lacZ shows that DipZ has a highly hydrophobic central domain comprising eight transmembrane alpha-helices plus periplasmic globular N-terminal and C-terminal domains. The previously assigned translational start codon for the E. coli DipZ was shown to be incorrect and the protein to be larger than previously thought. The experimentally determined translational start position indicates that an additional alpha-helix at the N-terminus acts as a cleavable signal peptide so that the N-terminus of the mature protein is located in the periplasm. The newly assigned 5' end of the dipZ gene was shown to be preceded by a functional ribosome-binding site. The hydrophobic central domain and both of the periplasmic globular domains each have a pair of highly conserved cysteine residues, and it was shown by site directed mutagenesis that all six conserved cysteine residues contribute to DipZ function.  相似文献   

7.
The elastin-binding proteins EbpS of Staphylococcus aureus strains Cowan and 8325-4 were predicted from sequence analysis to comprise 486 residues. Specific antibodies were raised against an N-terminal domain (residues 1-267) and a C-terminal domain (residues 343-486) expressed as recombinant proteins in Escherichia coli. Western blotting of lysates of wild-type 8325-4 and Newman and the corresponding ebpS mutants showed that EbpS migrated with an apparent molecular mass of 83 kDa. The protein was found exclusively in cytoplasmic membrane fractions purified from protoplasts or lysed cells, in contrast to the clumping factor ClfA, which was cell-wall-associated. EbpS was predicted to have three hydrophobic domains H1-(205-224), H2-(265-280), and H3-(315-342). A series of hybrid proteins was formed between EbpS at the N terminus and either alkaline phosphatase or beta-galactosidase at the C terminus (EbpS-PhoA, EbpS-LacZ). PhoA and LacZ were fused to EbpS between hydrophobic domains H1-H2 and H2-H3, and distal to H3. Expression of enzymatic activity in E. coli showed that EbpS is an integral membrane protein with two membrane-spanning domains H1 and H3. N-terminal residues 1-205 and C-terminal residues 343-486 were predicted to be exposed on the outer face of the cytoplasmic membrane. The ligand-binding domain of EbpS is known from previous studies to be present in the N terminus between residues 14-34 and probing whole cells with anti-EbpS1-267 antibodies indicated that this region is exposed on the surface of intact cells. This was also confirmed by the observation that wild-type S. aureus Newman cells bound labeled tropoelastin whereas the ebpS mutant bound 72% less. In contrast, the C terminus, which carries a putative LysM peptidoglycan-binding domain, is not exposed on the surface of intact cells and presumably remains buried within the peptidoglycan. Finally, expression of EbpS was correlated with the ability of cells to grow to a higher density in liquid culture, suggesting that EbpS may have a role in regulating cell growth.  相似文献   

8.
The orientation of membrane proteins is determined by the asymmetric distribution of charged residues in the sequences flanking the transmembrane domains. For the inner membrane of Escherichia coli, numerous studies have shown that an excess of positively charged residues defines a cytoplasmic domain of a membrane protein ("positive inside" rule). The role of negatively charged residues in establishing membrane protein topology, however, is not completely understood. To investigate the influence of negatively charged residues on this process in detail, we have constructed a single spanning chimeric receptor fragment comprising the N terminus and first transmembrane domain of the heptahelical G protein-coupled vasopressin V(2) receptor and the first cytoplasmic loop of the beta(2)-adrenergic receptor. When fused to alkaline phosphatase (PhoA), the receptor fragment inserted into the inner membrane of E. coli with its N terminus facing the cytoplasm (N(in)-C(out) orientation), although both membrane-flanking domains had rather similar topogenic determinants. The orientation of the receptor fragment was changed after the introduction of single glutamate residues into the N terminus. Orientation inversion, however, was found to be dependent on the location of the glutamate substitutions, which had to lie within a narrow window up to 6 residues distant from the transmembrane domain. These results demonstrate that a single negatively charged residue can play an active role as a topogenic determinant of membrane proteins in the inner membrane of E. coli, but only if it is located adjacent to a transmembrane domain.  相似文献   

9.
H Adachi  T Ohta  H Matsuzawa 《FEBS letters》1987,226(1):150-154
Penicillin-binding protein (PBP) 2 of Escherichia coli is located in the cytoplasmic membrane. The N-terminal hydrophobic segment (31 amino acids, residues 15-45) of PBP2 was removed by a deletion in the PBP2 gene by site-directed mutagenesis, resulting in the production of a water-soluble form of PBP2 (called PBP2*). PBP2* retained the penicillin-binding activity, was localized in the cytoplasm and was overproduced under the control of the lpp-lac promoter. this indicates that the removed hydrophobic segment is an uncleaved signal sequence required for translocation of PBP2 across the cytoplasmic membrane, and also suggests that the segment anchors the protein to the membrane.  相似文献   

10.
The nucleotide sequence of a 6.5 kilobasepair chromosomal DNA fragment encoding the anaerobic dimethylsulphoxide (DMSO) reductase operon of Escherichia coli has been determined. The DMSO reductase structural operon was shown to consist of three open reading frames, namely dmsABC, encoding polypeptides with predicted molecular weights of 87,350, 23,070, and 30,789 Daltons, respectively. The DMS A polypeptide displayed a high degree of amino acid sequence homology with the single-subunit enzyme, biotin sulphoxide reductase (bisC) and with formate dehydrogenase (fdhF), suggesting that the active site and molybdopterin cofactor binding site that is common to these enzymes is located in the DMS A subunit. A comparison of the predicted N-terminal amino acids of the dmsA gene product to those of the 82,600 subunit of purified DMSO reductase indicated that post-translational processing of a 16 amino acid peptide at the amino terminus of DMS A had occurred. The DMS B polypeptide contains 16 cysteine residues organized in four clusters, two of which are typical of 4Fe-4S binding domains. The DMS C polypeptide is composed of eight segments of hydrophobic amino acids of appropriate length to cross the cytoplasmic membrane, suggesting that this subunit functions to anchor the enzyme to the membrane.  相似文献   

11.
Nucleotide Sequence of the Akv env Gene   总被引:63,自引:47,他引:16       下载免费PDF全文
The sequence of 2,191 nucleotides encoding the env gene of murine retrovirus Akv was determined by using a molecular clone of the Akv provirus. Deduction of the encoded amino acid sequence showed that a single open reading frame encodes a 638-amino acid precursor to gp70 and p15E. In addition, there is a typical leader sequence preceding the amino terminus of gp70. The locations of potential glycosylation sites and other structural features indicate that the entire gp70 molecule and most of p15E are located on the outer side of the membrane. Internal cleavage of the env precursor to generate gp70 and p15E occurs immediately adjacent to several basic amino acids at the carboxyl terminus of gp70. This cleavage generates a region of 42 uncharged, relatively hydrophobic amino acids at the amino terminus of p15E, which is located in a position analogous to the hydrophobic membrane fusion sequence of influenza virus hemagglutinin. The mature polypeptides are predicted to associate with the membrane via a region of 30 uncharged, mostly hydrophobic amino acids located near the carboxyl terminus of p15E. Distal to this membrane association region is a sequence of 35 amino acids at the carboxyl terminus of the env precursor, which is predicted to be located on the inner side of the membrane. By analogy to Moloney murine leukemia virus, a proteolytic cleavage in this region removes the terminal 19 amino acids, thus generating the carboxyl terminus of p15E. This leaves 15 amino acids at the carboxyl terminus of p15E on the inner side of the membrane in a position to interact with virion cores during budding. The precise location and order of the large RNase T(1)-resistant oligonucleotides in the env region were determined and compared with those from several leukemogenic viruses of AKR origin. This permitted a determination of how the differences in the leukemogenic viruses affect the primary structure of the env gene products.  相似文献   

12.
It is believed that one or more basic residues at the extreme amino terminus of precursor proteins and the lack of a net positive charge immediately following the signal peptide act as topological determinants that promote the insertion of the signal peptide hydrophobic core into the cytoplasmic membrane of Escherichia coli cells with the correct orientation required to initiate the protein export process. The export efficiency of precursor maltose-binding protein (pre-MBP) was found to decrease progressively as the net charge in the early mature region was increased systematically from 0 to +4. This inhibitory effect could be further exacerbated by reducing the net charge in the signal peptide to below 0. One such MBP species, designated MBP-3/+3 and having a net charge of -3 in the signal peptide and +3 in the early mature region, was totally export defective. Revertants in which MBP-3/+3 export was restored were found to harbor mutations in the prlA (secY) gene, encoding a key component of the E. coli protein export machinery. One such mutation, prlA666, was extensively characterized and shown to be a particularly strong suppressor of a variety of MBP export defects. Export of MBP-3/+3 and other MBP species with charge alterations in the early mature region also was substantially improved in E. coli cells harboring certain other prlA mutations originally selected as extragenic suppressors of signal sequence mutations altering the hydrophobic core of the LamB or MBP signal peptide. In addition, the enzymatic activity of alkaline phosphatase (PhoA) fused to a predicted cytoplasmic domain of an integral membrane protein (UhpT) increased significantly in cells harboring prlA666. These results suggest a role for PrlA/SecY in determining the orientation of signal peptides and possibly other membrane-spanning protein domains in the cytoplasmic membrane.  相似文献   

13.
14.
Zhao Q  Poole K 《Journal of bacteriology》2002,184(6):1503-1513
Siderophore-mediated iron transport in Pseudomonas aeruginosa is dependent upon the cytoplasmic membrane-associated TonB1 energy coupling protein for activity. To assess the functional significance of the various regions of this molecule and to identify functionally important residues, the tonB1 gene was subjected to site-directed mutagenesis, and the influence on iron acquisition was determined. The novel N-terminal extension of TonB1, which is absent in all other examples of TonB, was required for TonB1 activity in both P. aeruginosa and Escherichia coli. Appending it to the N terminus of the nonfunctional (in P. aeruginosa) Escherichia coli TonB protein (TonB(Ec)) rendered TonB(Ec) weakly active in P. aeruginosa and did not compromise the activity of this protein in E. coli. Elimination of the membrane-spanning, presumed membrane anchor sequence of TonB1 abrogated TonB1 activity in P. aeruginosa and E. coli. Interestingly, however, a conserved His residue within the membrane anchor sequence, shown to be required for TonB(Ec) function in E. coli, was shown here to be essential for TonB1 activity in E. coli but not in P. aeruginosa. Several mutations within the C-terminal end of TonB1, within a region exhibiting the greatest similarity to other TonB proteins, compromised a TonB1 contribution to iron acquisition in both P. aeruginosa and E. coli, including substitutions at Tyr264, Glu274, Lys278, and Asp304. Mutations at Pro265, Gln293, and Val294 also impacted negatively on TonB1 function in E. coli but not in P. aeruginosa. The Asp304 mutation was suppressed by a second mutation at Glu274 of TonB1 but only in P. aeruginosa. Several TonB1-TonB(Ec) chimeras were constructed, and assessment of their activities revealed that substitutions at the N or C terminus of TonB1 compromised its activity in P. aeruginosa, although chimeras possessing an E. coli C terminus were active in E. coli.  相似文献   

15.
ATP synthase from bovine mitochondria is a complex of 13 different polypeptides, whereas the Escherichia coli enzyme is simpler and contains eight subunits only. Two of the bovine subunits, b and d, which had not been characterized, have been isolated from the purified enzyme. Subunits with sizes corresponding to bovine subunits b and d are evident in preparations of the enzyme from mitochondria of other species. Partial protein sequences have been determined by direct methods. On the basis of some of this information, two oligonucleotide mixtures, 17 and 18 bases in length, have been synthesized and used as hybridization probes in the isolation of clones of the cognate cDNAs. The sequences of the two proteins have been deduced from their DNA sequences. Subunit b is 214 amino acid residues in length and has a free N terminus. Subunit d is 160 amino acid residues long. Its N-terminal alanine is blocked by an N-acetyl group, as demonstrated by fast atom bombardment mass spectrometry of N-terminal peptides. The sequence near the N terminus of the b subunit is made predominantly of hydrophobic residues, whereas the remainder of the protein is mainly hydrophilic. This N-terminal hydrophobic region may be folded into an alpha-helical structure spanning the lipid bilayer. In its distribution of hydrophobic residues, this protein resembles the b subunits of ATP synthase complexes in bacteria and chloroplasts. The b subunit in E. coli forms an important structural link between the extramembrane sector of the enzyme F1, and the intrinsic membrane domain, FO. It is proposed that the bovine mitochondrial subunit b serves a similar function. If this is so, the mitochondrial enzyme, as the chloroplast ATP synthase, contains equivalent subunits to all eight of those that constitute the E. coli enzyme. Subunit d has no extensive hydrophobic sequences, and is not apparently related to any subunit described in the simpler ATP synthases in bacteria and chloroplasts.  相似文献   

16.
17.
Defective Escherichia coli signal peptides function in yeast   总被引:3,自引:2,他引:1  
To investigate structural characteristics important for eukaryotic signal peptide function in vivo, a hybrid gene with interchangeable signal peptides was cloned into yeast. The hybrid gene encoded nine residues from the amino terminus of the major Escherichia coli lipoprotein, attached to the amino terminus of the entire mature E. coli beta-lactamase sequence. To this sequence were attached sequences encoding the nonmutant E. coli lipoprotein signal peptide, or lipoprotein signal peptide mutants lacking an amino-terminal cationic charge, with shortened hydrophobic core, with altered potential helicity, or with an altered signal-peptide cleavage site. These signal-peptide mutants exhibited altered processing and secretion in E. coli. Using the GAL10 promoter, production of all hybrid proteins was induced to constitute 4-5% of the total yeast protein. Hybrid proteins with mutant signal peptides that show altered processing and secretion in E. coli, were processed and translocated to a similar degree as the non-mutant hybrid protein in yeast (approximately 36% of the total hybrid protein). Both non-mutant and mutant signal peptides appeared to be removed at the same unique site between cysteine 21 and serine 22, one residue from the E. coli signal peptidase II processing site. The mature lipo-beta-lactamase was translocated across the cytoplasmic membrane into the yeast periplasm. Thus the protein secretion apparatus in yeast recognizes the lipoprotein signal sequence in vivo but displays a specificity towards altered signal sequences which differs from that of E. coli.  相似文献   

18.
Cytochrome b5 is inserted posttranslationally into membranes in vivo and spontaneously into liposomes in vitro by a short carboxyl-terminal hydrophobic membrane-anchoring sequence. DNA corresponding to this hydrophobic sequence has been synthesized, and two gene fusions with the Escherichia coli enzyme beta-galactosidase have been constructed by locating the hydrophobic domain in one case at the EcoRI site near the C terminus and in the other at the normal C terminus of the enzyme. The latter fusion protein was enzymatically active, having approximately 50% of the specific activity of beta-galactosidase, and cells expressing this protein grew normally with lactose as the sole carbon source. Both fusion proteins were localized to the E. coli inner membrane, converting beta-galactosidase from a cytoplasmic enzyme to a membrane-associated enzyme. The hydrophobic domain of cytochrome b5 therefore contains the information required to target polypeptides containing this domain to the membrane. Use of the cytochrome b5 hydrophobic peptide, either alone or in conjunction with other localizing sequences such as signal sequences, provides a general procedure for associating proteins with membranes. Polypeptides bearing this hydrophobic peptide may have considerable use as pharmaceuticals when associated with liposomes or cellular membranes.  相似文献   

19.
Factors necessary for the export process of colicin E1 across the cytoplasmic membrane of Escherichia coli were investigated. beta-Galactosidase activities from gene fusions between the colicin E1 and lacZ genes were recovered in the inner membrane fraction of E. coli when the region containing the internal signal-like sequence of colicin E1 [M. Yamada et al. (1982) Proc. Natl Acad. Sci. USA 79, 2827-2831] was present, but were found in the soluble fraction when the region was eliminated. The colicin E1 export was reduced upon insertion mutation in a gene that is located downstream from the colicin E1 gene in the same operon and responsible for mitomycin-C-induced killing of the host cell. A frame shift mutation of the colicin E1 plasmid was constructed to direct the protein which had lost the COOH-terminal 13 residues of original colicin E1 and was altered in 6 residues of the new COOH-terminal portion. The aberrant colicin E1 that was inducibly synthesized remained inside the cells. These results indicate that colicin E1 is exported with the aid of a product of the downstream gene and that the COOH-terminal portion is necessary for the export. The binding of colicin E1 to the cytoplasmic membrane through the internal signal-like sequence may be a step in the protein export process.  相似文献   

20.
Membrane topology of penicillin-binding protein 3 of Escherichia coli   总被引:12,自引:4,他引:8  
The beta-lactamase fusion vector, pJBS633, has been used to analyse the organization of penicillin-binding protein 3 (PBP3) in the cytoplasmic membrane of Escherichia coli. The fusion junctions in 84 in-frame fusions of the coding region of mature TEM beta-lactamase to random positions within the PBP3 gene were determined. Fusions of beta-lactamase to 61 different positions in PBP3 were obtained. Fusions to positions within the first 31 residues of PBP3 resulted in enzymatically active fusion proteins which could not protect single cells of E. coli from killing by ampicillin, indicating that the beta-lactamase moieties of these fusion proteins were not translocated to the periplasm. However, all fusions that contained greater than or equal to 36 residues of PBP3 provided single cells of E. coli with substantial levels of resistance to ampicillin, indicating that the beta-lactamase moieties of these fusion proteins were translocated to the periplasm. PBP3 therefore appeared to have a simple membrane topology with residues 36 to the carboxy-terminus exposed on the periplasmic side of the cytoplasmic membrane. This topology was confirmed by showing that PBP3 was protected from proteolytic digestion at the cytoplasmic side of the inner membrane but was completely digested by proteolytic attack from the periplasmic side. PBP3 was only inserted in the cytoplasmic membrane at its amino terminus since replacement of its putative lipoprotein signal peptide with a normal signal peptide resulted in a water-soluble, periplasmic form of the enzyme. The periplasmic form of PBP3 retained its penicillin-binding activity and appeared to be truly water-soluble since it fractionated, in the absence of detergents, with the expected molecular weight on Sephadex G-100 and was not retarded by hydrophobic interaction chromatography on Phenyl-Superose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号