首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The biological response modifier OK-432 (Picibanil) (manufactured in Japan) is produced by lyophilization of cultures of the low virulent Su strain of group A Streptococcus pyogenes of human origin. This preparation has been shown to have multiple effects on the immune system and has been used as an anti-cancer therapeutic agent in man. It has been shown that OK-432 augments the cytotoxic activity of human natural killer (NK) cells. We have proposed that natural killer cytotoxic factors (NKCF) derived from NK cells play a role in the mechanism of NK cell-mediated cytotoxicity (CMC). The present study investigates the underlying mechanism of the OK-432-mediated enhancement of NK activity by determining whether OK-432 has an effect on the induction and activity of NKCF produced by NK cells. Treatment of peripheral blood lymphocytes (PBL) with OK-432 for 20 hr and wash resulted in significant augmentation of NK CMC and this enhancement was dependent on the concentration of OK-432 used. Coculture of the OK-432-treated PBL with U937 resulted in a several-fold enhanced production of NKCF in the supernatant. The NKCF produced were similar to those produced by untreated effector cells in that they had the same NK target specificity for lysis. The time kinetics of stimulation of PBL with OK-432 for optimal production of NKCF was found to be 8-12 hr. It was also observed that culture of OK-432-treated PBL in the absence of stimulator cells spontaneously release significant amounts of NKCF into the supernatant. The supernatant containing NKCF was tested for interleukin 2 (IL-2) activity using an IL-2-dependent HT-2 line. It was found that there was no direct correlation between the levels of NKCF and IL-2 activity. The results of this study demonstrate that OK-432 stimulates NK cells to produce NKCF in the presence or absence of stimulator cells. The optimum concentration of OK-432-induced augmentation of NK CMC paralleled that seen for optimum NKCF production, suggesting that one mode of action of OK432 is to enhance NKCF production in a manner reminiscent of IFN and IL-2. The results also point out that OK-432 acts by a mechanism independent of the action of IL-2.  相似文献   

2.
Freshly isolated human peripheral blood monocytes from healthy volunteers were not cytotoxic to allogeneic A375 melanoma cells, but they were activated to the cytotoxic state by incubation in vitro with either des-methyl muramyl dipeptide (norMDP; minimal effective dose, 0.5 micrograms/ml) or recombinant human interferon-gamma (rIFN-gamma; minimal effective dose, 1 U/ml). A combination of subthreshold concentrations of these agents (norMDP, 0.5 micrograms/ml; rIFN-gamma, 10 U/ml) also induced significant cytotoxicity, indicating that the effects of norMDP and rIFN-gamma in monocyte activation are synergistic. Natural human IFN-gamma (nIFN-gamma) and norMDP also had similar synergistic effects. Pretreatment of rIFN-gamma with anti-IFN-gamma antibody completely inhibited its synergistic effect with norMDP in monocyte activation. Because pretreatment of rIFN-gamma and norMDP with polymyxin B did not interfere with their effects in monocyte activation, the preparations were not contaminated with lipopolysaccharide. Moreover, because pretreatment of monocyte monolayers with anti-Leu-11b antibody (anti-natural killer (NK) cell antibody) and complement did not interfere with the synergistic effects of norMDP and rIFN-gamma, whereas pretreatment with anti-Leu-M1 antibody (anti-monocyte antibody) caused complete inhibition of their effects, the observed tumor cytotoxicity of monocyte-rich monolayers was probably not due to a small number of adherent NK cells, but to the stimulation of the monocytes. Natural and recombinant IFN-alpha and IFN-beta at concentrations of greater than or equal to 100 U/ml also induced tumoricidal activity of monocytes, but unlike IFN-gamma, their effects were additive with norMDP, and they had less priming effect than IFN-gamma when they were added before norMDP to monocytes. These findings suggest that recombinant human IFN-gamma has much more synergistic potential with norMDP than IFN-alpha or IFN-beta, and this synergism of rIFN-gamma and norMDP for monocyte activation could be of clinical value in treatment of disseminated malignant diseases, because these compounds are readily available at standardized concentrations.  相似文献   

3.
Peripheral blood monocytes (PBM) from AIDS patients have exhibited defects in some but not all of the immune functions yet tested. This study has examined the capacity of AIDS PBM to lyse tumor target cells as well as their ability to secrete TNF. Untreated PBM from AIDS patients were significantly cytotoxic to U937 target cells and responded to IFN-gamma pretreatment with augmented cytotoxicity. Both the spontaneous and IFN-gamma-stimulated cytotoxic activity was significantly (p less than 0.01) higher than that observed with normal PBM. The cytotoxic activity depended on the E:T ratio used and was higher in AIDS PBM at all ratios tested (10:1 to 40:1). Because TNF has been implicated in macrophage cell-mediated cytotoxicity, we examined whether the elevated cytotoxic activity of AIDS PBM was associated with an increase in TNF production. Supernatants from PBM cultured overnight with or without IFN-gamma were tested in a bioassay measuring cytotoxicity against U937 target cells as well as in an RIA specific for TNF. Supernatants derived from either unstimulated or IFN-gamma-treated AIDS PBM exhibited significantly higher levels of cytotoxicity than supernatants from normal macrophages. Both normal and AIDS PBM produced higher levels of cytotoxic factors in response to IFN-gamma. As determined by the RIA, AIDS PBM spontaneously released high levels of TNF whereas little TNF was produced by normal PBM. Treatment with IFN-gamma augmented the level of TNF production in both AIDS and normal PBM. These results demonstrate that PBM from AIDS patients have undergone in vivo activation as manifested by both cytotoxicity against tumor target cells and production of TNF. Target cell lysis by both AIDS PBM and their supernatants was inhibited by monoclonal anti-rTNF, suggesting that the increase in PBM cell-mediated cytotoxicity was caused by an increase in TNF production. The significance of these findings in the pathogenesis of the disease is discussed.  相似文献   

4.
For vaccinations based on dendritic cells (DCs), maturation of DCs is critical to the induction of T-cell responses. We tested the efficacy of streptococcal preparation OK-432 as a Good Manufacturing Practice (GMP)-grade maturation agent. OK-432 is currently used in Japan as a cancer immunotherapy drug. Immature monocyte-derived dendritic cells (imMo-DCs) isolated from human peripheral blood monocytes stimulated with granulocyte-macrophage colony stimulating factor and interleukin-4 were exposed to maturation factors, i.e., lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha) plus prostaglandin E2 (PGE2), and OK-432 for 2 days. OK-432 increased expression of activation- and maturation-related molecules such as HLA-DR, CD80, CD83, and CD86 in imMo-DCs at levels similar to that of TNF-alpha plus PGE2, and higher than that of LPS. All agents examined induced allogeneic T-cell proliferation at a similar level. Only OK-432 caused significant production of interleukin-12 (IL-12) p70 and interferon gamma (IFN-gamma) at both the mRNA and protein levels in imMo-DCs. Neutralizing antibody against IL-12 p70 blocked IFN-gamma secretion from OK-432-stimulated Mo-DCs. IL-12 p70 produced by OK-432-stimulated imMo-DCs induced secretion of IFN-gamma by CD4+ T cells. OK-432 and LPS activated nuclear factor kappa B (NF-kappaB) in imMo-DCs. Both secretion of IL-12 p70 and IFN-gamma and activation of NF-kappaB induced by OK-432 were suppressed when imMo-DCs were pretreated with cytochalasin B. These results indicate that uptake of OK-432 by imMo-DCs is an early critical event for IL-12 p70 production and that NF-kappaB activation induced by OK-432 also contributes partially to IL-12 p70 production. In conclusion, OK-432 is a GMP-grade maturation agent and may be a potential tool for DC-based vaccine therapies.  相似文献   

5.
Human monocytes cultured in a specially prepared medium free of lipopolysaccharide (LPS) constitutively produced a small, though significant, amount of tumor necrosis factor (TNF). Upon addition of LPS, the amount produced remained constant until the LPS concentration reached 1-10 ng/ml, whereupon the production of TNF dramatically increased, eventually becoming 100-fold greater than when the LPS concentration was below 1 ng/ml. Priming the monocytes with recombinant interferon-gamma (rIFN-gamma) before LPS exposure resulted in a 2- to 10-fold increase in TNF production, the highest relative increase being obtained at lower LPS concentrations and in the absence of LPS. Monocyte-produced TNF appears to be the effector molecule in monocyte-mediated killing of some target cell types, since antiserum against recombinant TNF inhibited killing of both actinomycin D-treated and untreated WEHI 164 cells by human monocytes. However, it also appears that TNF may not in all cases be an effector molecule in monocyte-mediated killing, since cytolysis of K562 cells mediated by IFN-gamma/LPS-activated monocytes was not inhibited by antiserum against recombinant TNF. Antiserum which was raised against a monocyte-derived cytotoxic factor and which neutralized recombinant TNF did, however, inhibit monocyte-mediated cytolysis of K562 cells, suggesting that an extracellular factor, perhaps related to TNF, was also involved in monocyte-mediated killing of K562 cells. A TNF-like activity was associated with the monocyte surface membrane, since paraformaldehyde-fixed monocytes expressed cytotoxic activity which was neutralized by antiserum against recombinant TNF. Fixed monocytes activated with rIFN-gamma in addition to LPS before fixation were generally more cytotoxic than those exposed to LPS alone, and those exposed to LPS were much more cytotoxic than those not exposed to LPS. Thus it is possible that high local TNF concentrations may be generated near the target cell upon direct contact between effector and target cells, and that also monocyte-associated TNF may in this way be involved in monocyte-mediated cytotoxicity.  相似文献   

6.
To four ovarian cancer patients with malignant ascites, 10 KE of OK-432 was intraperitoneally administered four times at 2 day intervals for priming, and 40 KE of OK-432 was given on the 13th day after the first injection for triggering. The changes in blood monocyte and peritoneal macrophage levels and the production of tumor necrosis factor (TNF) by blood mononuclear cells (BMCs) and ascitic lymphoid cells (ALCs) were examined. In the two patients in whom TNF was induced in the ascites, TNF production by BMCs and ALCs was noted during priming. After triggering, increases in both the number of peritoneal macrophages and TNF production by ALCs were noted. In the other two patients, in whom TNF was not detected in the ascites, the ratio of peritoneal macrophages to ALCs did not change throughout the study period, and TNF production by the ALCs was not augmented. These findings suggest that OK-432 can exert a primary effect on both peritoneal macrophages and blood monocytes, and that OK-432 triggering can promote an increase in primed peritoneal macrophages and the release of TNF from these cells.  相似文献   

7.
Intratumoral (i.t.) injection of OK-432, a streptococcal preparation, into implanted tumors of mouse hepatocellular carcinoma (MIH-2) showed antitumor effect including tumor eradication. Intraperitoneal administration of same dose OK-432 did not exhibit tumor suppressive effect. In vitro cytotoxic test suggested that direct cytotoxic effect of OK-432 was not associated with antitumor activity by i.t.-OK-432 treatment. It was also found that Toll-like receptor 4 signaling was not involved in i.t.-OK-432 treatment. Three mice out of five, which had shown tumor eradication by i.t.-OK-432 treatment did not reject re-challenge of MIH-2 cells. Splenocytes from i.t.-OK-432 treated mice did not produce IFN-gamma by stimulation with MIH-2 cells in vitro, but produced abundant IFN-gamma by stimulation with OK-432. Immunofluorescence microscopy demonstrated that CD4+T cells, but not CD8+T cells, infiltrated to i.t.-OK-432 treated tumor tissue produced IFN-gamma. Tumor-infiltrating CD4+T cells from i.t.-OK-432 treated tumor tissue produced IFN-gamma by in vitro stimulation with OK-432 higher than those from untreated tumor tissue. IFN-gamma directly induced apoptosis of MIH-2 cells in vitro. Collectively, i.t.-OK-432 treatment induced priming of CD4+T cells to antigenecity of OK-432, and repetitive i.t.-OK-432 treatment induced IFN-gamma production from OK-432-sensitized CD4+T cells in tumor site, leading to apoptosis of MIH-2 cells susceptible to IFN-gamma.  相似文献   

8.
Antisera raised against recombinant tumor necrosis factor (TNF) and against the monocyte-derived cytotoxic/cytostatic protein factor (CF), which is related to recombinant TNF, have been compared with respect to their ability to inhibit monocyte-mediated killing of various types of cells which differ in their sensitivity to recombinant TNF. During 6 hr of coculturing monocytes and target cells, the recombinant TNF antiserum inhibited killing of the extremely TNF-sensitive WEHI 164 clone 13 cells and actinomycin D-treated WEHI 164 cells from which the clone 13 cells were derived (parental WEHI 164 cells (P-WEHI 164 cells]. The CF antiserum also inhibited monocyte-mediated killing of these cells during 6 hr of coculturing with monocytes, but on a per volume basis it was less potent than the recombinant TNF antiserum, consistent with the fact that the CF antiserum also was much less potent in inhibiting the cytotoxic activity of recombinant TNF. However, during 72 hr of coculturing with monocytes and target cells, the CF antiserum inhibited monocyte-mediated killing of P-WEHI 164 cells more efficiently than the recombinant TNF antiserum. Moreover, during 72 hr of coculturing with monocytes, only the CF antiserum was able to significantly inhibit monocyte-mediated killing of the relatively recombinant TNF-resistant K562 cells. This suggests that a factor immunologically different from recombinant TNF, perhaps a form of natural TNF differing somewhat immunologically from recombinant TNF, was involved in the killing of K562 cells, and possibly in the killing of P-WEHI 164 cells, during 72 hr of coculturing with monocytes. Although this factor was present extracellularly, it appears that it may act as a monocyte-associated factor in monocyte-mediated killing of K562 cells, since exposure to recombinant interferon-gamma (rIFN-gamma) in the absence of Escherichia coli endotoxin (lipopolysaccharide, LPS) activated the monocytes to mediate killing of K562 cells more efficiently than exposure to LPS alone, despite the fact that only little cytotoxic/cytostatic activity was released from the monocytes without the addition of LPS. The ability of rIFN-gamma and LPS to activate monocytes to produce and release CF has also been studied.  相似文献   

9.
Summary A tumor growth inhibitory factor (TGIF) was induced in the culture supernatant from mixed culture of human peripheral blood mononuclear cells (PBMC) and a streptococcal preparation, OK-432, in vitro. The activity generated in the supernatant increased in a time-dependent fashion and first appeared 6 h after the initiation of culture, reaching its maximum around 48 h. The TGIF was cytostatic against seven of ten human tumor targets, but not against three murine tumor targets. Tumor cell growth was inhibited by a transient contact, i.e., 1 h, with TGIF. The TGIF was produced by lymphocytes but not by monocytes, because the activity was usually enhanced by elimination of plastic-adherent cells from the original PBMC fraction. The TGIF was relatively stable against heating at 56° C for 30 min, but the activity was totally destroyed after heating at 70° C for 5 min. The molecular weight of TGIF was estimated to be about 43×103 daltons by gel filtration. No interferon (IFN) activity was detected in the TGIF-positive fractions obtained by gel filtration, and the TGIF-positive fractions did not inhibit the growth of tumor necrosis factor (TNF)-sensitive mouse L929 cells. The TGIF activity was not significantly affected in neutralizing tests using specific antibodies against human IFN and TNF. The OK-432 was administered i.p. for management of cancer patients with malignant ascites. Ascites-derived mononuclear cells (ASMC) were obtained before and 3 to 5 days after OK-432 injection. The ASMC obtained after the injection produced TGIF in vitro in the absence of OK-432; the preinjection ASMC showed no such production. A positive correlation was found between TGIF-producing activity by ASMC and the effect of OK-432 injection on ascites volume. These results indicate that TGIF is induced in mononuclear cells by OK-432 not only in vitro but also in vivo and plays an important role in inhibition of tumor growth in cancer patients.  相似文献   

10.
Cytotoxic effector cells like cytotoxic T cells, NK cells, monocytes/macrophages, and neutrophils can lyse directly HIV-infected or HIV-coated cells in the absence or presence of anti-HIV antibodies. Therefore, these cytotoxic mechanisms can be invoked either in the control of HIV infection at early stages of the disease or in the generalized immunosuppression observed at later stages of the disease. The relationship between anti-HIV effector mechanisms and disease, however, remains elusive. The present study investigates in HIV+ seropositive asymptomatic patients peripheral blood monocytes (PBM)-mediated antibody dependent cellular cytotoxicity (ADCC) against HIV-coated target cells in the presence of heterologous or autologous anti-HIV serum. To test for specific ADCC against HIV Ag, a T4+ CEM.TR line resistant to TNF and macrophage-mediated cytotoxicity was selected in vitro. ADCC was performed in an 18-h 51Cr-release assay using CEM.TR cells coated with inactivated HIV. Unlike PBM from normal controls, significant ADCC was observed by PBM from HIV+ seropositive patients in the presence of pooled HIV+ antiserum. The ADCC activity was specific for HIV and was dependent on the E:T ratio and the antiserum dilution used. Upon activation of PBM with rIFN-gamma, both normal and HIV+ PBM-mediated ADCC against HIV-coated CEM.TR. Furthermore, ADCC activity by PBM from HIV+ seropositive patients in the presence of their autologous serum was examined. Significant ADCC activity was observed and was dependent on the E:T ratio and serum dilution used. The findings demonstrating anti-HIV ADCC activity by PBM from HIV+ seropositive individuals and their autologous sera support the notion that monocyte-mediated ADCC may be operative in vivo.  相似文献   

11.
The mechanism of human peripheral blood monocyte-mediated cytotoxicity for tumor cells was investigated, using the A673 human rhabdomyosarcoma and HT-29 human colon adenocarcinoma lines as target cells. A673 cells were shown to be susceptible to the cytotoxic action of purified recombinant human tumor necrosis factor (TNF). A673 cells were also highly sensitive to the cytotoxic action of peripheral blood monocytes. Clones of A673 cells sensitive and resistant to TNF were isolated and characterized for their sensitivity to monocyte killing. A good correlation was found between the sensitivity of these clones to the cytotoxicity of TNF and their susceptibility to killing by monocytes. A TNF-specific neutralizing monoclonal antibody (MAb) reduced monocyte killing of parental A673 cells and of a TNF-sensitive clone of A673 cells. Inhibition of monocyte killing by this MAb was particularly pronounced at a low effector to target cell ratio. HT-29 cells were relatively resistant to the cytotoxic action of recombinant TNF and to monocyte killing. Treatment of HT-29 cells with recombinant human IFN-gamma increased their susceptibility to both TNF cytotoxicity and monocyte killing. In addition, MAb to TNF inhibited monocyte killing in HT-29 cells sensitized by incubation with IFN-gamma. Our data show that TNF is an important mediator of the cytotoxicity of human monocytes for tumor cells and that IFN-gamma can increase monocyte cytotoxicity by sensitizing target cells to the lytic action of TNF.  相似文献   

12.
To determine the potential immunotherapeutic role of interferon-gamma (IFN-gamma) as a mononuclear phagocyte-activating agent, we examined the effector cell function of peripheral blood monocytes from healthy donors and acquired immunodeficiency syndrome (AIDS) patients after either in vitro and/or in vivo treatment with recombinant (r) IFN-gamma. When assayed immediately after a 24-hr in vitro pulse with 300 U/ml, normal and AIDS monocytes behaved similarly with little augmentation of their intrinsically high levels of H2O2 release and activity against Toxoplasma gondii; in contrast, activity toward the more resistant intracellular pathogen, Leishmania donovani, was appreciably enhanced by rIFN-gamma. In addition, upon testing 4 to 6 days after in vitro pulsing, both normal and AIDS monocytes showed clear evidence of persistent activation in all three assays. The capacity of IFN-gamma to similarly activate monocytes in vivo was confirmed in all ten treated AIDS patients by examining cells before and after 24-hr infusions of 0.03 and 0.5 mg of rIFN-gamma/square meter (M2) of body surface area. For postinfusion monocytes tested after 1 day in culture, H2O2 release and antitoxoplasma activity were essentially unchanged, but antileishmanial effects were augmented. After 5 to 7 days in culture, monocytes from treated patients showed 3.2- to 5.9-fold increases in H2O2-releasing capacity and increases of 49 to 68% and 35 to 61% in intracellular activity against T. gondii and L. donovani, respectively. These results indicate that the human monocyte can be induced by rIFN-gamma to express signs of both immediate and persistent activation and suggest that, as a direct activator of mononuclear phagocytes, rIFN-gamma may also have potential as an immunotherapeutic agent for patients with intracellular infections.  相似文献   

13.
Summary The present study was designed to investigate the in vitro effect of OK-432 on interleukin-2-(IL-2) induced lymphokine activated killer (LAK) generation, and especially to test whether OK-432 can substitute for IL-2 or act in synergism with IL-2 for activation of cytotoxic lymphocytes. Surprisingly, our results showed that the addition of OK-432 to 4-day LAK activation cultures significantly inhibited both the generation of cytotoxic effectors to the natural killer (NK) resistant Daudi cell line and the proliferative responses of lymphocytes in a dose dependent manner. The inhibition of activation was total at 0.5 KE/ml of OK-432, a dose which was still effective in augmenting NK activity against K562. The addition of penicillin G potassium (PCGk), which is contained in OK-432 at a concentration of 134,700 units/mg of dried cocci, to the LAK culture system also inhibited LAK generation at equivalent concentrations as contained in the OK-432 preparation. This inhibition of LAK generation by OK-432 was significantly eliminated by dialysis of OK-432. These results indicated that the inhibition of LAK generation was partly due to PCGk contained in the OK-432 preparation, and that OK-432 did not act synergistically with IL-2 in standard LAK activation systems.  相似文献   

14.
J Le  J Vilcek 《Cellular immunology》1984,85(1):278-283
Purified natural and recombinant human immune interferon (IFN-gamma) were found to activate human monocytes from peripheral blood to exert enhanced cytotoxicity against human colon adenocarcinoma HT-29 cells. A marked monocyte activation was observed at low concentrations (1 and 10 U/ml) of IFN-gamma. Marked monocyte activation was also obtained with two lymphokine preparations, produced in peripheral blood mononuclear cell (PBM) cultures induced with phytohemagglutinin (PHA) or by combined stimulation with PHA and 12-O-tetradecanoylphorbol 13-acetate (TPA). The component responsible for macrophage activation in such lymphokine preparations in the past was considered to be "macrophage-activating factor" (MAF). When monoclonal antibody specifically neutralizing IFN-gamma was added to these lymphokine preparations, all MAF activity disappeared, indicating that IFN-gamma is the sole protein showing MAF activity in these preparations.  相似文献   

15.
Lymphokine-activated killer (LAK) cells are cytotoxic for a variety of autologous and allogeneic tumor cells as well as modified autologous cells. It is assumed that LAK cells lyse their targets solely by direct cell to cell contact, possibly involving the degranulation and exocytosis of pore-forming elements, similar to that observed with cytotoxic T lymphocytes and NK cells. Reported here are studies demonstrating that LAK cells release factor(s) that are cytotoxic for a human breast carcinoma cell line, MCF-7, when stimulated with tumor cells. The factor(s) are slow acting and maximum cytotoxicity is observed only in a 72-h cytotoxic assay. The ability of LAK cells to secrete cytotoxic factor(s) is dependent on both the ratio of LAK cells to stimulating tumor cells as well as the length of their coincubation. A number of similarly slow acting cytokines that are cytostatic and/or cytotoxic for tumor cells have been described. We tested the ability of specific polyclonal antibodies directed against TNF, IFN-alpha, IFN-beta, and IFN-gamma to neutralize the cytotoxic supernatant activity. Only antibodies specific for IFN-gamma and TNF were neutralizing. We measured the amounts of IFN-gamma and TNF in the cytotoxic supernatants and determined that increased amounts of IFN-gamma and TNF were released after LAK cell-tumor cell interactions compared to supernatants of LAK cells alone or tumor cell alone. Comparable concentrations of human rIFN-gamma and rTNF resulted in similar levels (50 to 90%) of MCF-7 cell cytotoxicity as those observed with the stimulated LAK cell supernatants. We thus concluded that the majority of the cytotoxic activity released by LAK cells when stimulated with tumor cells was attributed to the synergistic activities of IFN-gamma and TNF. The significance of these observations in relation to the possible mechanisms by which LAK cells mediate cytolysis is discussed.  相似文献   

16.
Monocyte complement stimulator (MCS), a product of T lymphocytes, is defined by its ability to stimulate the synthesis and secretion of the second complement component (C2) by monocytes. Most macrophage-activating factor (MAF) activity present in lymphokine-rich culture supernatants has recently been found to be due to interferon-gamma (IFN-gamma). We therefore hypothesized that IFN-gamma may have MCS activity as well. We tested recombinant, E. coli-derived, human IFN-gamma (rIFN-gamma) for its effects on C2 production by adherent peripheral blood monocytes and U937 cells, a human monocytic cell line. Recombinant IFN-gamma in concentrations ranging from 0.1 to 300 U/ml (0.003 to 8.8 ng/ml) stimulates C2 production by both cell populations. Exposure of responding cells for at least 24 hr is required for maximal stimulation. To determine the contribution of IFN-gamma toward total MCS activity in crude lymphokine-rich supernatants, we employed a solid-phase immunoabsorption technique with the use of a monoclonal anti-IFN-gamma antibody. This technique removed all IFN-gamma detectable by a sensitive ELISA, but MCS activity was decreased by only 40 to 50%. Additionally, MCS activity of these supernatants did not correlate with IFN-gamma content as determined by ELISA. By using another method to eliminate IFN-gamma activity, acid dialysis destroyed all rIFN-gamma activity, as measured by stimulation of U937 C2 synthesis, but eliminated only 30 to 67% of MCS activity from crude lymphokine preparations. Thus IFN-gamma stimulates C2 production by monocytes and U937 cells and apparently accounts for some, but not all, MCS activity present in lymphokine-rich supernatants. Other lymphokines are present in such supernatants that also possess this activity.  相似文献   

17.
Summary The present study was designed to examine the mechanism by which OK-432 triggers the cytotoxic activity of peritoneal exudate cells (PEC). When OK-432 was incubated with freshly harvested mouse serum, the formation of complexes of OK-432 with the third component of complement (C3) was demonstrated by using 131I-labeled mouse C3. The formation of C3-OK-432 complexes was totally abolished by a chelating compound, EDTA, which had been shown to inhibit the OK-432 induced activation of the alternative complement pathway. The C3-OK-432 complexes thus obtained bound to the resident PEC, which were subsequently shown to be activated. These activated PEC had augmented cytostatic activity against MM2 cells, a mouse mammary carcinoma.Further, the PEC from mice which had received an IP injection of OK-432 4–5 days previously were cytostatic against MM2 cells and also inhibited the growth of MM2 cells in culture. In contrast, resident PEC stimulated rather than inhibited the 3H-thymidine uptake by MM2 cells and the growth of MM2 cells. The mechanism of PEC (presumably macrophages) activation by OK-432 is discussed.  相似文献   

18.
P48 induces tumor necrosis factor and IL-1 secretion by human monocytes   总被引:3,自引:0,他引:3  
Bacterial products are potent stimulators of TNF and IL-1 release, however, the factors that regulate cytokine secretion in the absence of bacterial products are not well defined. P48 is a cytokine recently identified in the supernatant of the human null cell leukemia cell line Reh, which induces differentiation and cytolytic activity in HL-60 cells. P48 has been purified to homogeneity and is distinct from TNF-alpha TNF-beta, IFN-gamma, IL-6, and macrophage CSF. In the present study we examined the ability of P48 to stimulate cytokine release by human peripheral blood monocytes. P48 stimulated the secretion of TNF and IL-1 in a dose-dependent manner. Priming the monocytes with IFN-gamma enhanced P48-induced cytokine release but was not a requirement for secretion. Cytokine secretion was in response to P48 and was not caused by endotoxin contamination. The cytokine-inducing activity of P48 was extremely sensitive to heat treatment but could not be eliminated by using polymyxin B. Polyclonal antisera to P48 completely blocked the cytokine-inducing activity. P48 may be an important new member of the cytokine network involved in the regulation of cytokine secretion by monocytes.  相似文献   

19.
Cytotoxicity of activated monocytes on endothelial cells   总被引:4,自引:0,他引:4  
Unstimulated human monocytes did not express appreciable levels of cytotoxicity on normal human umbilical vein endothelial cells (EC) in a 24-48 hr TdR release assay. On activation with IFN-gamma and LPS, monocytes had appreciable cytotoxicity on EC. Monocyte cytotoxicity on EC was not dependent on the presence of contaminating lymphoid cells. Recombinant TNF, IL-1, and IL-6 as well as monocyte supernatants did not exert a cytotoxic effect on EC. Moreover, anti-TNF, anti-IL-1, and anti-IL-6 antibodies, as well as scavengers of reactive oxygen intermediates, did not affect the cytotoxicity of activated monocytes on EC. Antibodies against the beta-chain (CD18) of leukocyte integrins inhibited the adhesion and cytotoxicity of activated monocytes on EC. Pretreatment of EC with IL-1 augmented the adhesion of monocytes on EC. Normal monocytes were not cytotoxic on IL-1-pretreated EC and IL-1 treatment did not increase the susceptibility of EC to activated monocytes. Thus adhesion is necessary but not sufficient for monocyte killing of EC. Anti-alpha L (LFA-1) antibodies markedly reduced monocyte cytotoxicity on EC, although anti-alpha X (p150) antibodies had only a modest effect. Anti-alpha M (Mac-1/CR3) antibodies were intermediate inhibitors of EC killing by activated monocytes. Thus, alpha L, beta 2 (LFA-1), and, to a lesser extent, alpha M, beta 2 (Mac-1/CR3) and alpha X, beta 2 (p 150, 95) integrins are the main adhesive structures involved in the cytotoxic interaction of activated monocytes with EC. Monocyte-mediated damage of EC could play a role as a mechanism of tissue injury under conditions of local or systemic activation of mononuclear phagocytes.  相似文献   

20.
Several tumor target cell lines, prototypically K562 cells, are resistant to lysis by recombinant tumor necrosis factor (TNF alpha) but are killed by monocytes expressing membrane-associated TNF, suggesting that membrane TNF could account for monocyte-mediated cytotoxicity. Formaldehyde-fixed monocytes or extracted monocyte membrane fragments are cytotoxic to K562 target cells. Treatment of monocytes with interferon-gamma (IFN-gamma) increases cytotoxicity by live and fixed cells or by extracted monocyte membranes. Both TNF and TNF receptors are detectable on monocyte membranes by FACS analysis, and the levels of each are modulated by treatment with IFN-gamma. Cytotoxicity can be inhibited by either anti-TNF or anti-TNF receptor antibodies. Incubation of effector cells with exogenous soluble TNF prior to fixation or membrane preparation increases their cytotoxicity. In contrast, incubation of the target cells with exogenous TNF neither increases nor decreases killing by effector cell membrane fragments or intact effector cells. The data suggest that the TNF receptors on the effector cell, but not on the target cell, play a crucial role in TNF-mediated cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号