首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1-[N,O-Bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpipera zine (KN-62), a selective inhibitor of rat brain Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM kinase II) was synthesized and its inhibitory properties in vitro and in vivo were investigated. KN-62 inhibited phosphorylation of exogenous substrate (chicken gizzard myosin 20-kDa light chain) by Ca2+/CaM kinase II with Ki value of 0.9 microM, but no significant effect up to 100 microM on activities of chicken gizzard myosin light chain kinase, rabbit brain protein kinase C, and bovine heart cAMP-dependent protein kinase type II. KN-62 also inhibited the Ca2+/calmodulin-dependent autophosphorylation of both alpha (50 kDa) and beta (60 kDa) subunits of Ca2+/CaM kinase II dose dependently in the presence or absence of exogenous substrate. Kinetic analysis indicated that this inhibitory effect of KN-62 was competitive with respect to calmodulin. However, KN-62 did not inhibit the activity of autophosphorylated Ca2+/CaM kinase II. Moreover, Ca2+/CaM kinase II bound to a KN-62-coupled Sepharose 4B column, but calmodulin did not. These results suggest that KN-62 affects the interaction between calmodulin and Ca2+/CaM kinase II following inhibition of this kinase activity by directly binding to the calmodulin binding site of the enzyme but does not affect the calmodulin-independent activity of already autophosphorylated (activated) enzyme. We examined the effect of KN-62 on cultured PC12 D pheochromocytoma cells. KN-62 suppressed the A23187 (0.5 microM)-induced autophosphorylation of the 53-kDa subunit of Ca2+/CaM kinase in PC12 D cells, which was immunoprecipitated with anti-rat forebrain Ca2+/CaM kinase II polypeptides antibodies coupled to Sepharose 4B, thereby suggesting that KN-62 could inhibit the Ca2+/CaM kinase II activity in vivo.  相似文献   

2.
3.
A 50-kDa protein was recognized in rat embryo fibroblast 3Y1 cells with an affinity-purified antibody against rat brain Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). When the cytosolic extract from quiescent 3Y1 cells was immunoprecipitated with the antibody, the 50-kDa protein in the immunoprecipitate became phosphorylated in a Ca2+- and calmodulin-dependent manner following exposure to [gamma-32P]ATP. Moreover, the reaction proceeded through an intramolecular mechanism. These results suggest that the 50-kDa protein is a subunit of CaM kinase II in rat 3Y1 cells. The addition of 10% fetal calf serum to quiescent 3Y1 cells caused a rapid increase in the phosphorylation of the 50-kDa protein, which was immunoprecipitated with the affinity-purified anti-CaM kinase II antibody. The phosphorylation of CaM kinase II was detected as early as 20 s after the addition of serum, reached the maximal level at 2 min, and decreased to the basal level within 60 min. Platelet-derived growth factor and epidermal growth factor also elicited the phosphorylation of the 50-kDa protein in quiescent 3Y1 cells, while neither insulin nor 12-O-tetradecanoylphorbol-13-acetate did. Calcium ionophores, A23187 and ionomycin, also caused the phosphorylation of the protein in 3Y1 cells. Moreover, phosphopeptide mappings of the phosphorylated 50-kDa subunit generated in response to serum, EGF, and A23187 yielded patterns similar to that generated from the immunoprecipitated 50-kDa subunit phosphorylated in vitro. Phosphoamino acid analysis of the phosphorylated subunit demonstrated that serine residue was the major amino acid labeled under any condition. These results suggest that CaM kinase II undergoes phosphorylation in response to various stimuli that can increase the free Ca2+ concentration in the cytoplasm of quiescent fibroblast cells and therefore probably mediates at least some of the biological actions of growth factors.  相似文献   

4.
A cDNA clone for the alpha subunit of mouse brain Ca2+/CaM-dependent protein kinase II (CaM-kinase II) was transcribed in vitro and translated in a rabbit reticulocyte lysate system. Inclusion of [35S]methionine in the translation system yielded a single 35S-polypeptide of about 50 kDa. When the translation system was assayed for CaM-kinase II activity, there was a 5-10-fold enrichment of kinase activity which was totally dependent on Ca2+/calmodulin (CaM). Both the 50-kDa 35S-polypeptide and the Ca2+/CaM-dependent protein kinase activity were quantitatively immunoprecipitated by rat brain CaM-kinase II antibody. When the translated wild-type kinase was subjected to autophosphorylation conditions in the presence of Ca2+, CaM, Mg2+, and ATP, the Ca2+-independent activity (assayed in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid) increased from 5.8 +/- 0.7 to 26.5 +/- 2.1% of total activity (assayed in the presence of Ca2+/CaM). These properties confirm the identity of the kinase translated in vitro as CaM-kinase II. The role of Thr-286 autophosphorylation in formation of the Ca2+-independent activity was investigated by site-directed mutation of Thr-286 to Ala (Ala-286 kinase) and to Asp (Asp-286 kinase). The Ala-286 kinase was completely dependent on Ca2+/CaM for activity prior and subsequent to autophosphorylation. The Asp-286 kinase exhibited 21.9 +/- 0.8% Ca2+-independent activity, and this was not increased by autophosphorylation. These results establish that introduction of negative charge(s) at residue 286, either by autophosphorylation of Thr or by mutation to Asp, is sufficient and necessary to generate the partially Ca2+-independent form of CaM-kinase II.  相似文献   

5.
cDNAs containing the entire coding regions of the alpha and beta subunits of calmodulin-dependent protein kinase II (CaM kinase II) were isolated from a rat cerebrum cDNA library, ligated into an expression vector under the control of SV40 early promoter and introduced into Chinese hamster ovary (CHO) cells. To investigate the role of the alpha and beta subunits and their functional domains in CaM kinase II activity, the properties of the kinases expressed in the transfected cells were studied. CaM kinase II activity was detected in the transfected cells when the alpha and beta cDNAs were introduced into CHO cells simultaneously. RNA transfer blot and protein immunoblot analyses demonstrated the expression of the mRNAs and proteins of both alpha and beta subunits in the cloned cells. When alpha or beta cDNA was introduced into CHO cells separately, a significant level of the enzyme activity was also expressed, indicating that the alpha and beta subunits exhibited enzyme activity individually. The apparent Km values for ATP and MAP 2 were almost the same for the alpha subunit, beta subunit, alpha beta complex, and brain CaM kinase II. However, there was a slight difference in the affinity for calmodulin between the expressed proteins. The alpha and beta subunits expressed in the same cells polymerized to form alpha beta complex of a size similar to that of brain CaM kinase II. The alpha subunit also polymerized to form an oligomer, which showed almost the same S value as that of alpha beta complex and brain CaM kinase II. In contrast, the beta subunit did not polymerize. The alpha subunit, beta subunit, alpha beta complex, and brain CaM kinase II were autophosphorylated with [gamma-32P]ATP in the presence of Ca2+ and calmodulin, which resulted in the appearance of Ca2+-independent activity. The Ca2+-independent activity was 60-75% of the total activity as measured in the presence of Ca2+ plus calmodulin. To examine the functional relationship of peptide domains of the subunits of CaM kinase II, deleted cDNAs were introduced into CHO cells and the properties of the expressed proteins were studied. In cells transfected with alpha or beta cDNA from which the association domain was deleted, a significant level of kinase activity was expressed. However, the expressed proteins showed hardly any autophosphorylation and the appearance of Ca2+-independent enzyme activity was very low, indicating that the association domain was essential for the autophosphorylation and for the appearance of the Ca2+-independent activity.  相似文献   

6.
The cDNAs encoding the alpha and beta subunits of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) were ligated into the bacterial expression vector pET and expressed in Escherichia coli. The bacterially expressed alpha and beta subunits exhibited Ca2+/calmodulin-dependent activity and were easily purified to apparent homogeneity from cell extracts. To determine the minimum size required for catalytic activity and the properties of the calmodulin-binding domain, mutated CaM kinase II cDNAs were expressed in E. coli and the enzymatic property of expressed proteins was examined. The replacement of Thr-286 of the alpha subunit with the negatively charged amino acid Asp or that of Arg-283 with the neutral amino acid Gly induced the partially Ca2+ independent activity. The mutant enzymes alpha-I(delta 283-478) and alpha-II(delta 359-478), which truncated the C-terminal region of the alpha subunit, exhibited CaM kinase II activity and the activities of alpha-I(delta 283-478) and alpha-II(delta 359-478) were completely independent of and partially dependent on Ca2+ and calmodulin, respectively. However, the truncated protein alpha(delta 250-478), which was only 33 amino acids shorter than the alpha-I(delta 283-478) protein had no enzymatic activity, indicating that alpha-I(delta 283-478) was close to the minimum size of the active form. The mutant enzyme alpha(delta 291-315), which lacked the calmodulin-binding domain exhibited Ca2+ independent activity. The molecular mass was, however, smaller than that expected from the amino acid sequence. The mutant enzyme alpha(delta 304-315), which lacked the C-terminal half of the calmodulin-binding domain of the alpha subunit, however, exhibited Ca(2+)-independent activity without a reduction in molecular size, indicating that residues 304-315 of the alpha subunit constituted the core calmodulin-binding domain.  相似文献   

7.
The molecular conformation of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) from the rat forebrain and cerebellum was studied by means of EM using a quick-freezing technique. Each molecule appeared to be composed of two kinds of particles, with one larger central particle and smaller peripheral particles and had shapes resembling that of a flower with 8 or 10 "petals". A favorable shadowing revealed that each peripheral particle had a thin link to the central particle. We predicted that the 8-petal molecules and 10-petal molecules were octamers and decamers of CaM kinase II subunits, respectively, each assembled with the association domains of subunits gathered in the center, and the catalytic domains in the peripheral particles. Binding of antibodies to the enzyme molecules suggested that molecules with 8 and 10 peripheral particles were homopolymers composed only of beta subunit and of alpha subunit, respectively, specifying that CaM kinase II consists of homopolymer of either alpha or beta subunits.  相似文献   

8.
The autophosphorylation of purified Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM kinase II) on a threonine-containing phosphopeptide common to both the alpha and beta subunits was previously shown to convert this enzyme into a catalytically active Ca2+-independent species. We now have examined the phosphorylation and activation of Ca2+/CaM kinase II in synaptosomes, a Ca2+-dependent neurosecretory system consisting of isolated nerve terminals. Synaptosomes were prelabeled with 32Pi and the alpha subunit of Ca2+/CaM kinase II was immunoprecipitated. Under basal incubation conditions the alpha subunit was phosphorylated. Depolarization of synaptosomes produced a rapid (2-5 s) Ca2+-dependent increase of about 50% in the state of phosphorylation of the alpha subunit. This was followed by a slower increase in the 32P content of the alpha subunit over the next 5 min of depolarization. The enhanced phosphorylation was characterized by an initial rise (2 s) and subsequent decrease (30 s) in the phosphothreonine content of the alpha subunit. In contrast, the phosphoserine content of the alpha subunit slowly increased during the course of depolarization. Thermolytic two-dimensional phosphopeptide maps of the alpha subunit demonstrated that depolarization stimulated the labeling of a phosphopeptide associated with autoactivation. In parallel experiments, unlabeled synaptosomes were depolarized, and lysates of these synaptosomes were assayed for Ca2+/CaM kinase II activity. Depolarization produced a rapid (less than or equal to 2 s) increase in Ca2+-independent Ca2+/CaM kinase II activity. This activity returned to basal levels by 60 s. Thus, depolarization of intact synaptosomes is associated with the transient phosphorylation of Ca2+/CaM kinase II on threonine residues, presumably involving an autophosphorylation mechanism and concomitantly the transient generation of the Ca2+-independent form of Ca2+/CaM kinase II.  相似文献   

9.
In addition to physical properties (DeRemer, M. F., Saeli, R. J., and Edelman, A. M. (1992) J. Biol. Chem. 267, 13460-13465), enzymatic and regulatory characteristics indicate that calmodulin (CaM) kinase Ia and CaM kinase Ib are distinct entities. The Km values for ATP and site 1 peptide were similar between the two kinases, however, CaM kinase Ib is approximately 20-fold more sensitive to CaM than is CaM kinase Ia. The kinases also displayed differential sensitivities to divalent metal ions. For both kinases, site 1 peptide, synapsin I, and syntide-2 were highly preferred substrates relative to others tested. A 72-kDa protein from a heat-treated extract of rat pancreas was phosphorylated by CaM kinase Ib but not by CaM kinase Ia. CaM kinase Ia activity displayed a pronounced lag in its time course suggesting enzyme activation over time. Preincubation of CaM kinase Ia in the combined presence of Ca(2+)-CaM and MgATP led to a time-dependent increase in its site 1 peptide kinase activity of up to 15-fold. The extent of activation of CaM kinase Ia correlated with the extent of autophosphorylation. The enzyme retained full Ca(2+)-CaM dependence in the activated state which was rapidly reversible by treatment with protein phosphatase 2A catalytic subunit. Thus, the activation of CaM kinase Ia is a result of its Ca(2+)-CaM-dependent autophosphorylation. CaM kinase Ib was not activated by preincubation under autophosphorylating conditions yet lost approximately 90% of its activity toward either an exogenous substrate (site 1 peptide) or itself (autophosphorylation) after incubation with protein phosphatase 2A catalytic subunit. The deactivated state was not reversed by subsequent incubations under autophosphorylating conditions. Thus, CaM kinase Ib activity is dependent upon phosphorylation by a regulating kinase(s) which is resolved from CaM kinase Ib during purification of the latter.  相似文献   

10.
The regional and tissue-specific expression of the Ca2+/calmodulin-dependent protein kinase, CaM kinase-Gr, were examined. The Mr 65,000 alpha-polypeptide of CaM kinase-Gr is expressed ubiquitously in different anatomical regions of rat brain, whereas an additional Mr 67,000 beta-polypeptide is observed solely in the cerebellum. The alpha-polypeptide appears in the neonatal rat forebrain and cerebellum, whereas the beta-polypeptide appears by the second postnatal week and may reflect cerebellar granule cell differentiation. Most peripheral tissues do not express either CaM kinase-Gr polypeptide. However, rat thymus and thymocytes derived therefrom express CaM kinase-Gr at levels comparable to those of the central nervous system. The identity of the enzyme in rat thymus was corroborated by immunoblot assays, Northern blots, and direct enzyme purification. Rat spleen and testis also produce CaM kinase-Gr, but at lower levels than either thymus or brain. These observations demonstrate selective regional and developmental expression of CaM kinase-Gr polypeptide in brain, and suggest that it may participate in Ca2+ signalling in cells derived both from the immune system as well as the central nervous system.  相似文献   

11.
The kinetic reaction mechanism of calmodulin (CaM)-dependent protein kinase II (CaM-kinase II), including the regulatory mechanism by CaM, was studied by using microtubule-associated protein 2 (MAP2) as substrate under steady-state conditions. The detailed kinetic analyses of the phosphorylation of MAP2 and its inhibitions by the reaction products and by an ATP analogue, 5'-adenylylimidodiphosphate, revealed the rapid-equilibrium random mechanism. In the absence of Ca2+, CaM-kinase II was inactivated by incubation with ATP. The inactivation rate was dependent on the concentrations of ATP and MAP2, suggesting that these substrates can bind to the enzyme even in the absence of Ca2+/CaM. The activation of the enzyme by CaM reached the maximum when about 10 mol of CaM bound to 1 mol of CaM-kinase II, indicating the stoichiometry of the binding of one CaM to one subunit of the enzyme. The enzyme activity as a function of the concentration of CaM showed a sigmoidal curve. The concentration of CaM required for the half-maximal activation was dependent on the concentration of ATP at a fixed concentration of MAP2, although the Hill coefficient was unaffected by the concentration of ATP. A possible reaction mechanism of CaM-kinase II, including the phosphorylation of MAP2 by the enzyme and the binding of CaM to the enzyme, is discussed.  相似文献   

12.
Dihydropyridine-sensitive Ca2+ channels from skeletal muscle are multisubunit proteins and are regulated by protein phosphorylation. The purpose of this study was to determine: 1) which subunits are the preferential targets of various protein kinases when the channels are phosphorylated in vitro in their native membrane-bound state and 2) the consequences of these phosphorylations in functional assays. Using as substrates channels present in purified transverse (T) tubule membranes, cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and a multifunctional Ca2+/calmodulin-dependent protein kinase (CaM protein kinase) preferentially phosphorylated the 165-kDa alpha 1 subunit to an extent that was 2-5-fold greater than the 52-kDa beta subunit. A protein kinase endogenous to the skeletal muscle membranes preferentially phosphorylated the beta peptide and showed little activity toward the alpha 1 subunit; however, the extent of phosphorylation was low. Reconstitution of partially purified channels into liposomes was used to determine the functional consequences of phosphorylation by these kinases. Phosphorylation of channels by PKA or PKC resulted in an activation of the channels that was observed as increases in both the rate and extent of Ca2+ influx. However, phosphorylation of channels by either the CaM protein kinase or the endogenous kinase in T-tubule membranes was without effect. Phosphorylation did not affect the sensitivities of the channels toward the dihydropyridines. Taken together, the results demonstrate that the alpha 1 subunit is the preferred substrate of PKA, PKC, and CaM protein kinase when the channels are phosphorylated in the membrane-bound state and that phosphorylation of the channels by PKA and PKC, but not by CaM protein kinase or an endogenous T-tubule membrane protein kinase, results in activation of the dihydropyridine-sensitive Ca2+ channels from skeletal muscle.  相似文献   

13.
The aim of this study was to investigate (a) whether Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) participates in the regulation of plasma membrane Ca2+-ATPase and (b) its possible cross-talk with other kinase-mediated modulatory pathways of the pump. Using isolated innervated membranes of the electrocytes from Electrophorus electricus L., we found that stimulation of endogenous protein kinase A (PKA) strongly phosphorylated membrane-bound CaM kinase II with simultaneous substantial activation of the Ca2+ pump (approximately 2-fold). The addition of cAMP (5-50 pM), forskolin (10 nM), or cholera toxin (10 or 100 nM) stimulated both CaM kinase II phosphorylation and Ca2+-ATPase activity, whereas these activation processes were cancelled by an inhibitor of the PKA alpha-catalytic subunit. When CaM kinase II was blocked by its specific inhibitor KN-93, the Ca2+-ATPase activity decreased to the levels measured in the absence of calmodulin; the unusually high Ca2+ affinity dropped 2-fold; and the PKA-mediated stimulation of Ca2+-ATPase was no longer seen. Hydroxylamine-resistant phosphorylation of the Ca2+-ATPase strongly increased when the PKA pathway was activated, and this phosphorylation was suppressed by inhibition of CaM kinase II. We conclude that CaM kinase II is an intermediate in a complex regulatory network of the electrocyte Ca2+ pump, which also involves calmodulin and PKA.  相似文献   

14.
Bacterial glutamate decarboxylase (GAD) is a homohexameric enzyme of about 330 kDa. Plant GAD differs from the bacterial enzyme in having a C-terminal extension of 33 amino acids within which resides a calmodulin (CaM)-binding domain. In order to assess the role of the C-terminal extension in the formation of GAD complexes and in activation by Ca2+/CaM, we examined complexes formed with the purified full-length recombinant petunia GAD expressed in E. coli, and with a 9 amino acid C-terminal deletion mutant (GADDeltaC9). Size exclusion chromatography revealed that the full-length GAD formed complexes of about 580 kDa and 300 kDa in the absence of Ca2+/CaM, whereas in the presence of Ca2+/CaM all complexes shifted to approximately 680 kDa. With deletion of 9 amino acids from the C-terminus (KKKKTNRVC(500)), the ability to bind CaM in the presence of Ca2+, and to purify it by CaM-affinity chromatography was retained, but the formation of GAD complexes larger than 340 kDa and enzyme activation by Ca2+/CaM were completely abolished. Hence, responsiveness to Ca2+/CaM is associated with the formation of protein complexes of 680 kDa, and requires some or all of the nine C-terminal amino acid residues. We suggest that evolution of plant GAD from a bacterial ancestral enzyme involved the formation of higher molecular weight complexes required for activation by Ca2+/CaM.  相似文献   

15.
The 63-kDa subunit, but not the 60-kDa subunit, of brain calmodulin-dependent cyclic nucleotide phosphodiesterase was phosphorylated in vitro by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II. When calmodulin was bound to the phosphodiesterase, 1.33 +/- 0.20 mol of phosphate was incorporated per mol of the 63-kDa subunit within 5 min with no significant effect on enzyme activity. Phosphorylation in the presence of low concentrations of calmodulin resulted in a phosphorylation stoichiometry of 2.11 +/- 0.21 and increased about 6-fold the concentration of calmodulin necessary for half-maximal activation of the phosphodiesterase. Peptide mapping analyses of complete tryptic digests of the 63-kDa subunit revealed two major (P1, P4) and two minor (P2, P3) 32P-peptides. Calmodulin-binding to the phosphodiesterase almost completely inhibited phosphorylation of P1 and P2 with reduced phosphorylation rates of P3 and P4, suggesting the affinity change of the enzyme for calmodulin may be caused by phosphorylation of P1 and/or P2. When Ca2+/calmodulin-dependent protein kinase II was added without prior autophosphorylation, there was no phosphorylation of the 63-kDa phosphodiesterase subunit or of the kinase itself in the presence of a low concentration of calmodulin, and with excess calmodulin the phosphodiesterase subunit was phosphorylated only at P3 and P4. Thus the 63-kDa subunit of phosphodiesterase has a regulatory phosphorylation site(s) that is phosphorylated by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II and blocked by Ca2+/calmodulin binding to the subunit.  相似文献   

16.
Synaptic junctions (SJs) from rat forebrain were isolated at increasing postnatal ages and examined for endogenous protein kinase activities. Our studies focused on the postnatal maturation of the multifunctional protein kinase designated Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II). This kinase is comprised of a major 50-kilodalton (kDa) and a minor 60-kDa subunit. Experiments examined the developmental properties of CaM-kinase II associated with synaptic plasma membranes (SPMs) and synaptic junctions (SJs), as well as the holoenzyme purified from cytosolic extracts. Large developmental increases in CaM-kinase II activity of SJ fractions were observed between postnatal days 6 and 20; developmental changes were examined for a number of properties including (a) autophosphorylation, (b) endogenous substrate phosphorylation, (c) exogenous substrate phosphorylation, and (d) immunoreactivity. Results demonstrated that forebrain CaM-kinase II undergoes a striking age-dependent change in subunit composition. In early postnatal forebrain the 60-kDa subunit constitutes the major catalytic and immunoreactive subunit of the holoenzyme. The major peak of CaM-kinase II activity in SJ fractions occurred at approximately postnatal day 20, a time near the end of the most active period of in vivo synapse formation. Following this developmental age, CaM-kinase II continued to accumulate at SJs; however, its activity was not as highly activated by Ca2+ plus calmodulin.  相似文献   

17.
A monoclonal antibody against rat brain type II Ca2+/calmodulin-dependent protein kinase (CaM kinase) precipitates three proteins from Drosophila heads with apparent molecular weights similar to those of the subunits of the rat brain kinase. Fly heads also contain a CaM kinase activity that becomes partially independent of Ca2+ after autophosphorylation, as does the rat brain kinase. We have isolated a Drosophila cDNA encoding an amino acid sequence that is 77% identical to the sequence of the rat alpha subunit. All known autophosphorylation sites are conserved, including the site that controls Ca(2+)-independent activity. The gene encoding the cDNA is located between 102E and F on the fourth chromosome. The protein product of this gene is expressed at much higher levels in the fly head than in the body. Thus, both the amino acid sequence and the tissue specificity of the mammalian kinase are highly conserved in Drosophila.  相似文献   

18.
《The Journal of cell biology》1990,111(5):1763-1773
The role of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) in nuclear envelope breakdown (NEB) was investigated in sea urchin eggs. The eggs contain a 56-kD polypeptide which appears to be a homologue of neuronal CaM kinase. For example, it undergoes Ca2+/calmodulin-dependent autophosphorylation that converts it to a Ca2(+)-independent species, a hallmark of multifunctional CaM kinase. It is homologous to the alpha subunit of rat brain CaM kinase. Autophosphorylation and substrate phosphorylation by the sea urchin egg kinase are inhibited in vitro by CaMK(273-302), a synthetic peptide corresponding to the autoinhibitory domain of the neuronal CaM kinase. This peptide inhibited NEB when microinjected into sea urchin eggs. Only one mAb to the neuronal enzyme immunoprecipitated the 56-kD polypeptide. Only this antibody blocked or significantly delayed NEB when microinjected into sea urchin eggs. These results suggest that sea urchin eggs contain multifunctional CaM kinase, and that this enzyme is involved in the control of NEB during mitotic division.  相似文献   

19.
Calmodulin-Dependent Protein Phosphorylation in Synaptic Junctions   总被引:8,自引:4,他引:4  
Synaptic junctions (SJs) from rat forebrain were examined for Ca2+/calmodulin (CaM)-dependent kinase activity and compared to synaptic plasma membrane (SPM) and postsynaptic density (PSD) fractions. The kinase activity in synaptic fractions was examined for its capacity to phosphorylate endogenous proteins or exogenous synapsin I, in the presence or absence of Ca2+ plus CaM. When assayed for endogenous protein phosphorylation, SJs contained approximately 25-fold greater amounts of Ca2+/CAM-dependent kinase activity than SPMs, and fivefold more activity than PSDs. When kinase activities were measured by phosphorylation of exogenous synapsin I, SJs contained fourfold more activity than SPMs, and 10-fold more than PSDs. The phosphorylation of SJ proteins of 60- and 50-kilodalton (major PSD protein) polypeptides were greatly stimulated by Ca2+/CaM; levels of phosphorylation for these proteins were 23- and 17-fold greater than basal levels, respectively. Six additional proteins whose phosphorylation was stimulated 6-15-fold by Ca2+/CAM were identified in SJs. These proteins include synapsin I, and proteins of 240, 207, 170, 140, and 54 kilodaltons. The 54-kilodalton protein is a highly phosphorylated form of the major PSD protein and the 170-kilodalton component is a cell-surface glycoprotein of the postsynaptic membrane that binds concanavalin A. The CaM-dependent kinase in SJ fractions phosphorylated endogenous phosphoproteins at serine and/or threonine residues. Ca2+-dependent phosphorylation in SJ fractions was strictly dependent on exogenous CaM, even though SJs contained substantial amounts of endogenous CaM (15 micrograms CaM/mg SJ protein). Exogenous CaM, after being functionally incorporated into SJs, was rapidly removed by sequential washings. These observations suggest that the SJ-associated CaM involved in regulating Ca2+-dependent protein phosphorylation may be in dynamic equilibrium with the cytoplasm. These findings indicate that a brain CaM-dependent kinase(s) and substrate proteins are concentrated at SJs and that CaM-dependent protein phosphorylation may play an important role in mechanisms that underlie synaptic communication.  相似文献   

20.
We investigated the effect of staurosporine on Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) purified from rat brain. (a) Staurosporine (10-100 nM) inhibited the activity of CaM kinase II. The half-maximal and maximal inhibitory concentrations were 20 and 100 nM, respectively. (b) The inhibition with staurosporine was of the noncompetitive type with respect to ATP, calmodulin, and phosphate acceptor (beta-casein). (c) Staurosporine suppressed the auto-phosphorylation of alpha- and beta-subunits of CaM kinase II at concentrations similar to those at which the enzyme activity was inhibited. (d) Staurosporine also attenuated the Ca2+/calmodulin-independent activity of the autophosphorylated CaM kinase II. These results suggest that staurosporine inhibits CaM kinase II by interacting with the catalytic domain, distinct from the ATP-binding site or substrate-binding site, of the enzyme and that staurosporine is an effective inhibitor for CaM kinase II in the cell system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号