首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus sphaericus JG-A12 is a natural isolate recovered from a uranium mining waste pile near the town of Johanngeorgenstadt in Saxony, Germany. The cells of this strain are enveloped by a highly ordered crystalline proteinaceous surface layer (S-layer) possessing an ability to bind uranium and other heavy metals. Purified and recrystallized S-layer proteins were shown to be phosphorylated by phosphoprotein-specific staining, inductive coupled plasma mass spectrometry analysis, and a colorimetric method. We used extended X-ray absorption fine-structure (EXAFS) spectroscopy to determine the structural parameters of the uranium complexes formed by purified and recrystallized S-layer sheets of B. sphaericus JG-A12. In addition, we investigated the complexation of uranium by the vegetative bacterial cells. The EXAFS analysis demonstrated that in all samples studied, the U(VI) is coordinated to carboxyl groups in a bidentate fashion with an average distance between the U atom and the C atom of 2.88 ± 0.02 Å and to phosphate groups in a monodentate fashion with an average distance between the U atom and the P atom of 3.62 ± 0.02 Å. Transmission electron microscopy showed that the uranium accumulated by the cells of this strain is located in dense deposits at the cell surface.  相似文献   

2.
Uranium mining waste piles, heavily polluted with radionuclides and other toxic metals, are a reservoir for bacteria that have evolved special strategies to survive in these extreme environments. Understanding the mechanisms of bacterial adaptation may enable the development of novel bioremediation strategies and other technological applications. Cell isolates of Bacillus sphaericus JG-A12 from a uranium mining waste pile in Germany are able to accumulate high amounts of toxic metals such as U, Cu, Pb, Al, and Cd as well as precious metals. Some of these metals, i.e. U, Cu, Pd(II), Pt(II) and Au(III), are also bound by the highly orderd paracrystalline proteinaceous surface layer (S-layer) that envelopes the cells of this strain. These special capabilities of the cells and the S-layer proteins of B. sphaericus JG-A12 are highly interesting for the clean-up of uranium contaminated waste waters, for the recovery of precious metals from electronic wastes, and for the production of metal nanoclusters. The fabricated nanoparticles are promising for the development of novel catalysts. This work reviews the molecular biology of the S-layer of the strain JG-A12 and the S-layer dependent interactions of the bacterial cells with metals. It presents future perspectives for their application in bioremediation and nanotechnology.  相似文献   

3.
The S-layer of Bacillus sphaericus strain JG-A12, isolated from a uranium-mining site, exhibits a high metal-binding capacity, indicating that it may provide a protective function by preventing the cellular uptake of heavy metals and radionuclides. This property has allowed the use of this and other S-layers as self-assembling organic templates for the synthesis of nanosized heavy metal cluster arrays. However, little is known about the molecular basis of the metal-protein interactions and their impact on secondary structure. We have studied the secondary structure, protein stability, and Pd((II)) coordination in S-layers from the B. sphaericus strains JG-A12 and NCTC 9602 to elucidate the molecular basis of their biological function and of the metal nanocluster growth. Fourier transform infrared spectroscopy reveals similar secondary structures, containing approximately 35% beta-sheets and little helical structure. pH-induced infrared absorption changes of the side-chain carboxylates evidence a remarkably low pK < 3 in both strains and a structural stabilization when Pd((II)) is bound. The COO(-)-stretching absorptions reveal a predominant Pd((II)) coordination by chelation/bridging by Asp and Glu residues. This agrees with XANES and EXAFS data revealing oxygens as coordinating atoms to Pd((II)). The additional participation of nitrogen is assigned to side chains rather than to the peptide backbone. The topology of nitrogen- and carboxyl-bearing side chains appears to mediate heavy metal binding to the large number of Asp and Glu in both S-layers at particularly low pH as an adaptation to the environment from which the strain JG-A12 has been isolated. These side chains are thus prime targets for the design of engineered S-layer-based nanoclusters.  相似文献   

4.
Escherichia coli is a rod-shaped intestinal bacterium which has a size of 1.1-1.5 μm x 2.0-6.0?μm. The fast cell division process and the uncomplicated living conditions have turned E. coli into a widely used host in genetic engineering and into one of the best studied microorganisms of all. We used E. coli BL21(DE3) as host for heterologous expression of S-layer proteins of Lysinibacillus sphaericus JG-A12 in order to enable a fast and high efficient protein production. The S-layer expression induced in E. coli an unusual elongation of the cells, thus producing filaments of > 100 μm in length. In the stationary growth phase, E. coli filaments develop tube-like structures that contain E. coli single cells. Fluorescence microscopic analyses of S-layer expressing E. coli cells that were stained with membrane stain FM (?) 5-95 verify the membrane origin of the tubes. Analyses of DAPI stained GFP-S-layer expressing E. coli support the assumption of a disordered cell division that is induced by the huge amount of recombinant S-layer proteins. However, the underlying mechanism is still not characterized in detail. These results describe the occurrence of a novel stable cell form of E. coli as a result of a disordered cell division process.  相似文献   

5.
The bacterial cell surface layer (S-layer) protein of Bacillus sphaericus CCM 2177 assembles into a square lattice structure and recognizes a distinct type of secondary cell wall polymer (SCWP) as the proper anchoring structure in the rigid cell wall layer. For generating a nanopatterned sensing layer with high density and well defined distance of the ligand on the outermost surface, an S-layer fusion protein incorporating the sequence of a variable domain of a heavy chain camel antibody directed against prostate-specific antigen (PSA) was constructed, produced, and recrystallized on gold chips precoated with thiolated SCWP. The S-layer protein moiety consisted of the N-terminal part which specifically recognized the SCWP as binding site and the self-assembly domain. The PSA-specific variable domain of the camel heavy chain antibody was selected by several rounds of panning from a phage display library of an immunized dromedary, and was produced by heterologous expression in Escherichia coli. For construction of the S-layer fusion protein, the 3'-end of the sequence encoding the C-terminally truncated form rSbpA(31)(-)(1068) was fused via a short linker to the 5'-end of the sequence encoding cAb-PSA-N7. The S-layer fusion protein had retained the ability to self-assemble into the square lattice structure. According to the selected fusion site in the SbpA sequence, the cAb-PSA-N7 moiety remained located on the outer surface of the protein lattice. After recrystallization of the S-layer fusion protein on gold chips precoated with thiolated SCWP, the monomolecular protein lattice was exploited as sensing layer in surface plasmon resonance biochips to detect PSA.  相似文献   

6.
The functional S-layer protein gene slfB of the uranium mining waste pile isolate Bacillus sphaericus JG-A12 was cloned as a polymerase chain reaction product into the expression vector pET Lic/Ek 30 and heterologously expressed in Escherichia coli Bl21(DE3). The addition of His tags to the N and C termini enabled the purification of the recombinant protein by Ni-chelating chromatography. The Ni binding capacity of the His-tagged recombinant S-layer protein was compared with that of the wild-type S layer. The inductively coupled plasma mass spectrometry analyses demonstrate a significantly enhanced Ni binding capability of the recombinant protein. In addition, the self-assembling properties of the purified modified S-layer proteins were studied by light microscopy and scanning electron microscopy. Whereas the wild-type S-layer proteins re-assembled into regular cylindric structures, the recombinant S-layer proteins reassembled into regular sheets that formed globular agglomerating structures. The nanoporous structure of the protein meshwork, together with its enhanced Ni binding capacity, makes the recombinant S-layer attractive as a novel self-assembling biological template for the fabrication of metal nanoclusters and construction of nanomaterials that are of technical interest.  相似文献   

7.
The cellular fatty acid (CFA) composition of the cytoplasmic membrane of a bacillus isolated from a human lung and deposited in the National Collection of Type Cultures as Bacillus sphaericus NCTC 11025 was determined by gas-liquid chromatography. The CFA composition of B. sphaericus 2362, isolated from a microbial larvicide, and those of B. sphaericus reference strains obtained from public collections were also determined. Samples were grouped by hierarchical cluster analysis based on the unpaired-group method using arithmetic averages. Samples that linked at a Euclidean distance of < or = 2.0 U were considered to belong to the same strain. NCTC 11025 and the type strain of B. sphaericus, ATCC 14577, were mixed; all other isolates were monotypic. The predominant fatty acid in NCTC 11025 was 12-methyltetradecanoic acid, while the predominant fatty acid in the remaining isolates was 13-methyltetradecanoic acid. NCTC 11025 linked to the other isolates at a Euclidean distance of 83.8 U, and we concluded that it belongs to a different species that we could not identify. We could distinguish among six DNA homology groups of B. sphaericus by using fatty acids. Within DNA homology group IIA, strain 2362 could be distinguished from other strains belonging to serotype H5a, 5b. We concluded that CFA analysis is a useful technique to determine if future human isolates identified as B. sphaericus in fact belong to other species of bacteria or whether the isolates originated from commercial products.  相似文献   

8.
The extended X-ray absorption fine structure (EXAFS) associated with the iron K-edge has been measured and interpreted for ferritin and haemosiderin extracted from horse spleen, and haemosiderin extracted from the livers of humans with treated primary haemochromatosis, and from the spleens of humans with treated secondary haemochromatosis. For ferritin, the data are consistent with, on average, each iron atom being in an environment comprised of approx. six oxygen atoms at 1.93 +/- 0.02 A, approx. 1.5 iron atoms at 2.95 +/- 0.02 A and approx. 1.1 iron atoms at 3.39 +/- 0.02 A, with a further shell of oxygens at approx. 3.6 A. Iron in horse spleen haemosiderin is in an essentially identical local environment to that in horse spleen ferritin. In contrast, the EXAFS data for primary haemochromatosis haemosiderin indicate that the iron-oxide core is amorphous; only a single shell of approx. six oxygen atoms at approx. 1.94 +/- 0.02 A being apparent. Secondary haemochromatosis haemosiderin shows an ordered structure with approx. 1.4 iron atoms at both 2.97 +/- 0.02 and 3.34 +/- 0.02 A. This arrangement of iron atoms is similar to that in horse spleen haemosiderin, but the first oxygen shell is split with approx. 2.9 atoms at 1.90 +/- 0.02 A and approx. 2.7 at 2.03 +/- 0.02 A, indicative of substantial structural differences between secondary haemochromatosis haemosiderin and horse spleen haemosiderin.  相似文献   

9.
Copper K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the structural details of the coordination environment of the copper sites in eight resting-state samples of beef heart cytochrome c oxidase prepared by different methods. The unusual position and structure of the resting-state copper edge spectrum can be adequately explained by the presence of sulfur-containing ligands, with a significant amount of S----Cu(II) charge transfer (i.e., a covalent site). Quantitative curve-fitting analysis of the copper extended X-ray absorption fine structure (EXAFS) data indicates similar average first coordination spheres for all resting-state samples, regardless of preparation method. The average coordination sphere (per 2 coppers) mainly consists of 6 +/- 1 nitrogens or oxygens at an average Cu-(N,O) distance of 1.99 +/- 0.03 A and 2 +/- 1 sulfurs at an average Cu-S distance of 2.28 +/- 0.02 A. Quantitative curve-fitting analysis of the outer shell of the copper EXAFS indicates the presence of a Cu...Fe interaction at a distance of 3.00 +/- 0.03 A. Proposed structures of the two copper sites based on these and other spectroscopic results are presented, and differences between our results and those of other published copper XAS studies [Powers, L., Chance, B., Ching, Y., & Angiolillo, P. (1981) Biophys. J. 34, 465-498] are discussed.  相似文献   

10.
In the present work, S-layer supported lipid membranes formed by a modified Langmuir-Blodgett technique were investigated by electrochemical impedance spectroscopy (EIS). Basically two intermediate hydrophilic supports for phospholipid- (DPhyPC) and bipolar tetraetherlipid- (MPL from Thermoplasma acidophilum) membranes have been applied: first, the S-layer protein SbpA isolated from Bacillus sphaericus CCM 2177 recrystallized onto a gold electrode; and second, as a reference support, an S-layer ultrafiltration membrane (SUM), which consists of a microfiltration membrane (MFM) with deposited S-layer carrying cell wall fragments. The electrochemical properties and the stability of DPhyPC and MPL membranes were found to depend on the used support. The specific capacitances were 0.53 and 0.69 microF/cm(2) for DPhyPC bilayers and 0.75 and 0.77 microF/cm(2) for MPL monolayers resting on SbpA and SUM, respectively. Membrane resistances of up to 80 mega Ohm cm(2) were observed for DPhyPC bilayers on SbpA. In addition, membranes supported by SbpA exhibited a remarkable long-term robustness of up to 2 days. The membrane functionality could be demonstrated by reconstitution of membrane-active peptides such as valinomycin and alamethicin. The present results recommend S-layer-supported lipid membranes as promising structures for membrane protein-based biosensor technology.  相似文献   

11.
The surface layer protein encoding genes from five mosquito-pathogenic Bacillus sphaericus isolates were amplified and sequenced. Negative staining of the S-layer protein extracted from the cell wall of wild-type B. sphaericus C3-41 was prepared. It showed a flat-sheet crystal lattice structure. Two genes encoding the entire and N-terminally truncated S-layer protein (slpC and DeltaslpC respectively), were ligated into plasmid pET28a and expressed in Escherichia coli. SDS-PAGE revealed that about 130 KD and 110 KD proteins could be expressed in the cytoplasm of recombinant E. coli BL21(pET28a/slpC) and E. coli BL21(pET28a/DeltaslpC) respectively. Furthermore, an intracellular sheet-like or fingerprint-shape structure was investigated in two recombinant strains, which expressed SlpC and DeltaSlpC protein respectively, by ultrathin microscopy study, but bioassay results suggested that the S-layer protein of wild B. sphaericus C3-41 and recombinant E. coli BL21 (pET28a/slpC) have no direct toxicity against mosquito larvae. These results should provide information for further understanding of the function of S-layer protein of pathogenic B. sphaericus.  相似文献   

12.
AIMS: To fabricate and analyse Pd nanoparticles on immobilized bacterial cells. METHODS AND RESULTS: Biological ceramic composites (biocers) were used as a template to produce Pd(0) nanoparticles. The metal-binding cells of the uranium mining waste pile isolate, Bacillus sphaericus JG-A12 were used as a biological component of the biocers and immobilized by using sol-gel technology. Vegetative cells and surface-layer proteins of this strain are known to bind high amounts of Pd(II) that can be reduced to Pd(0) particles by the addition of a reducing agent. Sorption of Pd(II) by the biocers from a metal complex solution was studied by inductively coupled plasma mass spectroscopy analyses. After embedding into sol-gel ceramics, the cells retained their Pd(II)-binding capability. Pd(0) nanoclusters were produced by the addition of hydrogen as reducing agent after the sorption of Pd(II). The interactions of Pd(0) with the biocers and the formed Pd(0) nanoparticles were investigated by extended X-ray absorption fine structure spectroscopy. The particles had a size of 0.6-0.8 nm. CONCLUSIONS: Bacterial cells that were immobilized by embedding into sol-gel ceramics were used as a template to produce Pd nanoclusters of a size smaller than 1 nm. These particles possess interesting physical and chemical properties. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of embedded bacterial cells as template enabled the fabrication of immobilized Pd(0) nanoparticles. These particles are highly interesting for technical applications, such as the development of novel catalysts.  相似文献   

13.
A fusion protein based on the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and the enzyme laminarinase (LamA) from Pyrococcus furiosus was designed and overexpressed in Escherichia coli. Due to the construction principle, the S-layer fusion protein fully retained the self-assembly capability of the S-layer moiety, while the catalytic domain of LamA remained exposed at the outer surface of the formed protein lattice. The enzyme activity of the S-layer fusion protein monolayer obtained upon recrystallization on silicon wafers, glass slides and different types of polymer membranes was determined colorimetrically and related to the activity of sole LamA that has been immobilized with conventional techniques. LamA aligned within the S-layer fusion protein lattice in a periodic and orientated fashion catalyzed twice the glucose release from the laminarin polysaccharide substrate in comparison to the randomly immobilized enzyme. In combination with the good shelf-life and the high resistance towards temperature and diverse chemicals, these novel composites are regarded a promising approach for site-directed enzyme immobilization.  相似文献   

14.
The three-dimensional structure of the Acetogenium kivui surface layer (S-layer) has been determined to a resolution of 1.7 nm by electron crystallographic techniques. Two independent reconstructions were made from layers negatively stained with uranyl acetate and Na-phosphotungstate. The S-layer has p6 symmetry with a center-to-center spacing of approximately 19 nm. Within the layer, six monomers combine to form a ring-shaped core surrounded by a fenestrated rim and six spokes that point towards the axis of threefold symmetry and provide lateral connectivity to other hexamers in the layer. The structure of the A. kivui S-layer protein is very similar to that of the Bacillus brevis middle wall protein, with which it shares an N-terminal domain of homology. This domain is found in several other extracellular proteins, including the S-layer proteins from Bacillus sphaericus and Thermus thermophilus, Omp alpha from Thermotoga maritima, an alkaline cellulase from Bacillus strain KSM-635, and xylanases from Clostridium thermocellum and Thermoanaerobacter saccharolyticum, and may serve to anchor these proteins to the peptidoglycan. To our knowledge, this is the first example of a domain conserved in several S-layer proteins.  相似文献   

15.
Extended x-ray absorption fine structure (EXAFS) studies were performed on reaction centers (RC) of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26. RC containing two, one, and no quinones (2Q, 1Q, 0Q) samples were studied. The average ligand distance of the first coordination shell was determined to be 2.10 +/- 0.02 A with a more distant shell at 4.14 +/- 0.05 A. The Fe2+ site in RC was found to have a very large structural disorder parameter, from which a spread in ligand distance per iron site of approximately +/- 0.1 A was deduced. The most likely coordination number of the first shell is six, with a mixture of oxygens and nitrogens as ligands. The edge absorption results are consistent with the Fe2+ being in distorted octahedral environment. The EXAFS spectra of the 2Q and 1Q samples with and without O-phenanthroline were found to be the same. This indicates that either the secondary quinone and o-phenanthroline do not bind to Fe2+ or that they replace an equivalent ligand. The 0Q sample showed a 12% decrease in the EXAFS amplitude, which was restored upon addition of o-phenanthroline. These results can be explained by either a loss of a ligand or a severe conformational change when the primary quinone was removed.  相似文献   

16.
The main toxicity mechanism of Lysinibacillus sphaericus, which is used in the control of mosquitoes, is its binary toxin produced during sporulation; additionally the Mtx1, Mtx2 and Mtx 3 toxins are expressed in vegetative cells. Mosquito larvicidal potency of the S-layer protein that is expressed in vegetative cells has been determined. The protein is similar to other S-layer proteins of mosquitocidal L. sphaericus strains. The LC50 values of the S-layer protein of the L. sphaericus OT4b25, OT4b26, and III(3)7 strains against third-instar larvae of Culex quinquefasciatus were 8.7, 24 and 0.68 μg/ml, respectively. To our knowledge this is the first study showing the mosquito larvicidal potency of the S-layer protein from Lysinibacillus sphaericus.  相似文献   

17.
Metal biosorption by surface-layer proteins from Bacillus species   总被引:1,自引:0,他引:1  
Bacillus species have been involved in metal association as biosorbents, but there is not a clear understanding of this chelating property. In order to evaluate this metal chelating capacity, cultures and spores from Grampositive bacteria of species either able or unable to produce surface layer proteins (S-layers) were analyzed for their capacity of copper biosorption. Only those endowed of S-layers, like Bacillus sphaericus and B. thuringiensis, showed a significant biosorption capacity. This capacity (nearly 50%) was retained after heating of cultures, thus supporting that structural elements of the envelopes are responsible for such activity. Purified Slayers from two Bacillus sphaericus strains had the ability to biosorb copper. Copper biosorption parameters were determined for strain B. sphaericus 2362, and after analyses by means of the Langmuir model, the affinity and capacity were shown to be comparable to other bacterial biosorbents. A competitive effect of Ca2+ and Zn2+, but not of Cd2+, was also observed, thus indicating that other cations may be biosorbed by this protein. Spores that have been shown to be proficient for copper biosorption were further analyzed for the presence of Slayer content. The retention of S-layers by these spores was clearly observed, and after extensive treatment to eliminate the S-layers, the biosorption capacity of these spores was significantly reduced. For the first time, a direct correlation between S-layer protein content and metal biosorption capacity is shown. This capacity is linked to the retention of S-layer proteins attached to Bacillus spores and cells.  相似文献   

18.
Using the vector pGEM-4-blue, a 4,251-base-pair DNA fragment containing the gene for the surface (S)-layer protein of Bacillus sphaericus 2362 was cloned into Escherichia coli. Determination of the nucleotide sequence indicated an open reading frame (ORF) coding for a protein of 1,176 amino acids with a molecular size of 125 kilodaltons (kDa). A protein of this size which reacted with antibody to the 122-kDa S-layer protein of B. sphaericus was detected in cells of E. coli containing the recombinant plasmid. Analysis of the deduced amino acid sequence indicated a highly hydrophobic N-terminal region which had the characteristics of a leader peptide. The first amino acid of the N-terminal sequence of the 122-kDa S-layer protein followed the predicted cleavage site of the leader peptide in the 125-kDa protein. A sequence characteristic of promoters expressed during vegetative growth was found within a 177-base-pair region upstream from the ORF coding for the 125-kDa protein. This putative promoter may account for the expression of this gene during the vegetative growth of B. sphaericus and E. coli. The gene for the 125-kDa protein was followed by an inverted repeat characteristic of terminators. Downstream from this gene (11.2 kilobases) was an ORF coding for a putative 80-kDa protein having a high sequence similarity to the 125-kDa protein. Evidence was presented indicating that this gene is cryptic.  相似文献   

19.
The metal binding site in the lysosomal copper metallothionein from canine liver (LyCuLP) was examined with X-ray edge and extended X-ray absorption fine structure (EXAFS) spectroscopies. The k-absorption edge spectrum of LyCuLP was consistent with the coordination of univalent copper. The Fourier transform of the EXAFS data showed four resolved shells of backscattering atoms. Comparisons between the phase and amplitude functions derived from the isolated shells to those of Cu-Cu, Cu-S, and Cu-N model compounds showed that each copper was coordinated by four sulfur atoms at a distance of 2.27 +/- 0.02 A. Analysis of the outer shell data indicated backscattering copper atoms at 2.74 +/- 0.05, 3.32 +/- 0.05, and 3.88 +/- 0.05 A. Interatomic distances determined from the EXAFS data were compared to the distances observed by X-ray crystallographic analysis of adamantane-like clusters containing four and five copper atoms and a cubic cluster containing four copper atoms, structurally similar to the 4Fe-4S clusters in some ferredoxins. The results of these comparisons suggest that the copper complexed in LyCuLP is arranged in an adamantane-like cluster. The structure derived for this protein may be conserved in other copper metallothioneins.  相似文献   

20.
Crystalline bacterial cell surface layer (S-layer) proteins are composed of a single protein or glycoprotein species. Isolated S-layer subunits frequently recrystallize into monomolecular protein lattices on various types of solid supports. For generating a functional protein lattice, a chimeric protein was constructed, which comprised the secondary cell wall polymer-binding region and the self-assembly domain of the S-layer protein SbpA from Bacillus sphaericus CCM 2177, and a single variable region of a heavy chain camel antibody (cAb-Lys3) recognizing lysozyme as antigen. For construction of the S-layer fusion protein, the 3'-end of the sequence encoding the C-terminally truncated form rSbpA(31)(-)(1068) was fused via a short linker to the 5'-end of the sequence encoding cAb-Lys3. The functionality of the fused cAb-Lys3 in the S-layer fusion protein was proved by surface plasmon resonance measurements. Dot blot assays revealed that the accessibility of the fused functional sequence for the antigen was independent of the use of soluble or assembled S-layer fusion protein. Recrystallization of the S-layer fusion protein into the square lattice structure was observed on peptidoglycan-containing sacculi of B. sphaericus CCM 2177, on polystyrene or on gold chips precoated with thiolated secondary cell wall polymer, which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Thereby, the fused cAb-Lys3 remained located on the outer S-layer surface and accessible for lysozyme binding. Together with solid supports precoated with secondary cell wall polymers, S-layer fusion proteins comprising rSbpA(31)(-)(1068) and cAbs directed against various antigens shall be exploited for building up monomolecular functional protein lattices as required for applications in nanobiotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号