首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
High-fat (HFD) and high-sucrose diets (HSD) reduce insulin suppression of glucose production in vivo, increase the capacity for gluconeogenesis in vitro, and increase glucose-6-phosphatase (G-6-Pase) activity in whole cell homogenates. The present study examined the effects of HSD and HFD on in vivo gluconeogenesis, the catalytic and glucose-6-phosphate translocase subunits of G-6-Pase, glucokinase (GK) translocation, and glucose cycling. Rats were fed a high-starch control diet (STD; 68% cornstarch), HSD (68% sucrose), or HFD (45% fat) for 7-13 days. The ratio of 3H in C6:C2 of glucose after 3H2O injection into 6- to 8-h-fasted rats was significantly increased in HSD (0.68 +/- 0.07) and HFD (0.71 +/- 0.08) vs. STD (0.40 +/- 0.10). G-6-Pase activity was significantly higher in HSD and HFD vs. STD in both intact and disrupted liver microsomes. HSD and HFD significantly increased the amount of the p36 catalytic subunit protein, whereas the p46 glucose-6-phosphate translocase protein was increased in HSD only. Despite increased nonglycerol gluconeogenesis and increased G-6-Pase, basal glucose and insulin levels as well as glucose production were not significantly different among groups. Hepatocyte cell suspensions were used to ascertain whether diet-induced adaptations in glucose phosphorylation and GK might serve to compensate for upregulation of G-6-Pase. Tracer-estimated glucose phosphorylation and glucose cycling (glucose <--> glucose 6-phosphate) were significantly higher in cells isolated from HSD only. After incubation with either 5 or 20 mM glucose and no insulin, GK activity (nmol. mg protein(-1). min(-1)) in digitonin-treated eluates (translocated GK) was significantly higher in HSD (32 +/- 4 and 146 +/- 6) vs. HFD (4 +/- 1 and 83 +/- 10) and STD (9 +/- 2 and 87 +/- 9). Thus short-term, chronic exposure to HSD and HFD increase in vivo gluconeogenesis and the G-6-Pase catalytic subunit. Exposure to HSD diet also leads to adaptations in glucose phosphorylation and GK translocation.  相似文献   

3.
4.
5.
The multicomponent hepatic glucose 6-phosphatase (Glc-6-Pase) system catalyzes the terminal step of hepatic glucose production and plays a key role in the regulation of blood glucose. We used the chlorogenic acid derivative S 3483, a reversible inhibitor of the glucose-6-phosphate (Glc-6-P) translocase component, to demonstrate for the first time upregulation of Glc-6-Pase expression in rat liver in vivo after inhibition of Glc-6-P translocase. In accordance with its mode of action, S 3483-treatment of overnight-fasted rats induced hypoglycemia and increased blood lactate, hepatic Glc-6-P, and glycogen. The metabolic changes were accompanied by rapid and marked increases in Glc-6-Pase mRNA (above 35-fold), protein (about 2-fold), and enzymatic activity (about 2-fold). Maximal mRNA levels were reached after 4 h of treatment. Glycemia, blood lactate, and Glc-6-Pase mRNA levels returned to control values, whereas Glc-6-P and glycogen levels decreased but were still elevated 2 h after S 3483 withdrawal. The capacity for Glc-6-P influx was only marginally increased after 8.5 h of treatment. Prevention of hypoglycemia by euglycemic clamp did not abolish the increase in Glc-6-Pase mRNA induced by S 3483 treatment. A similar pattern of hypoglycemia and possibly of associated counterregulatory responses elicited by treatment with the phosphoenolpyruvate carboxykinase inhibitor 3-mercaptopicolinic acid could account for only a 2-fold induction of Glc-6-Pase mRNA. These findings suggest that the significant upregulation of Glc-6-Pase gene expression observed after treatment of rats in vivo with an inhibitor of Glc-6-P translocase is caused predominantly either by S 3483 per se or by the compound-induced changes of intracellular carbohydrate metabolism.  相似文献   

6.
Glucose is the main physiological stimulus for insulin biosynthesis and secretion by pancreatic beta-cells. Glucose-6-phosphatase (G-6-Pase) catalyzes the dephosphorylation of glucose-6-phosphate to glucose, an opposite process to glucose utilization. G-6-Pase activity in pancreatic islets could therefore be an important factor in the control of glucose metabolism and, consequently, of glucose-dependent insulin secretion. While G-6-Pase activity has been shown to be present in pancreatic islets, the gene responsible for this activity has not been conclusively identified. A homolog of liver glucose-6-phosphatase (LG-6-Pase) specifically expressed in islets was described earlier; however, the authors could not demonstrate enzymatic activity for this protein. Here we present evidence that the previously identified islet-specific glucose-6-phosphatase-related protein (IGRP) is indeed the major islet glucose-6-phosphatase. IGRP overexpressed in insect cells possesses enzymatic activity comparable to the previously described G-6-Pase activity in islets. The K(m) and V(max) values determined using glucose-6-phosphate as the substrate were 0.45 mm and 32 nmol/mg/min by malachite green assay, and 0.29 mm and 77 nmol/mg/min by glucose oxidase/peroxidase coupling assay, respectively. High-throughput screening of a small molecule library led to the identification of an active compound that specifically inhibits IGRP enzymatic activity. Interestingly, this inhibitor did not affect LG-6-Pase activity, while conversely LG-6-Pase inhibitors did not affect IGRP activity. These data demonstrate that IGRP is likely the authentic islet-specific glucose-6-phosphatase catalytic subunit, and selective inhibitors to this molecule can be obtained. IGRP inhibitors may be an attractive new approach for the treatment of insulin secretion defects in type 2 diabetes.  相似文献   

7.
The prevalence of obesity is increasing globally, and obesity is a major risk factor for metabolic diseases such as type 2 diabetes. Previously, we reported that oral administration of homobrassinolide (HB) to healthy rats triggered a selective anabolic response that was associated with lower blood glucose. Therefore, the aim of this study was to evaluate the effects of HB administration on glucose metabolism, insulin sensitivity, body composition, and gluconeogenic gene expression profiles in liver of C57BL/6J high-fat diet-induced obese mice. Acute oral administration of 50-300 mg/kg HB to obese mice resulted in a dose-dependent decrease in fasting blood glucose within 3 h of treatment. Daily chronic administration of HB (50 mg/kg for 8 wk) ameliorated hyperglycemia and improved oral glucose tolerance associated with obesity without significantly affecting body weight or body composition. These changes were accompanied by lower expression of two key gluconeogenic enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase), and increased phosphorylation of AMP-activated protein kinase in the liver and muscle tissue. In vitro, HB treatment (1-15 μM) inhibited cyclic AMP-stimulated but not dexamethasone-stimulated upregulation of PEPCK and G-6-Pase mRNA levels in H4IIE rat hepatoma cells. Among a series of brassinosteroid analogs related to HB, only homocastasterone decreased glucose production in cell culture significantly. These results indicate the antidiabetic effects of brassinosteroids and begin to elucidate their putative cellular targets both in vitro and in vivo.  相似文献   

8.
This study was conducted to test the hypothesis of the activation of glucose-6-phosphatase (G-6-Pase) in situations where the liver is supposed to sustain high glucose supply, such as during the counterregulatory response to hypoglycemia. Hypoglycemia was induced by insulin infusion in anesthetized rats. Despite hyperinsulinemia, endogenous glucose production (EGP), assessed by [3-(3)H]glucose tracer dilution, was paradoxically not suppressed in hypoglycemic rats. G-6-Pase activity, assayed in a freeze-clamped liver lobe, was increased by 30% in hypoglycemia (P < 0.01 vs. saline-infused controls). Infusion of epinephrine (1 microg x kg(-1) x min(-1)) in normal rats induced a dramatic 80% increase in EGP and a 60% increase in G-6-Pase activity. In contrast, infusion of dexamethasone had no effect on these parameters. Similar insulin-induced hypoglycemia experiments performed in adrenalectomized rats did not induce any stimulation of G-6-Pase. Infusion of epinephrine in adrenalectomized rats restored a stimulation of G-6-Pase similar to that triggered by hypoglycemia in normal rats. These results strongly suggest that specific activatory mechanisms of G-6-Pase take place and contribute to EGP in situations where the latter is supposed to be sustained.  相似文献   

9.
Novel concepts in insulin regulation of hepatic gluconeogenesis   总被引:1,自引:0,他引:1  
The regulation of hepatic gluconeogenesis is an important process in the adjustment of the blood glucose level, and pathological changes in the glucose production of the liver are a central characteristic in type 2 diabetes. The pharmacological intervention in signaling events that regulate the expression of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and the catalytic subunit glucose-6-phosphatase (G-6-Pase) is regarded as a potential strategy for the treatment of metabolic aberrations associated with this disease. However, such intervention requires a detailed understanding of the molecular mechanisms involved in the regulation of this process. Glucagon and glucocorticoids are known to increase hepatic gluconeogenesis by inducing the expression of PEPCK and G-6-Pase. The coactivator protein PGC-1 has been identified as an important mediator of this regulation. In contrast, insulin is known to suppress both PEPCK and G-6-Pase gene expression by the activation of PI 3-kinase. However, PI 3-kinase-independent pathways can also lead to the inhibition of gluconeogenic enzymes. This review focuses on signaling mechanisms and nuclear events that transduce the regulation of gluconeogenic enzymes.  相似文献   

10.
Chronic diabetes extensively complicates the glucose metabolism to onset and progress the complication. Concurrently, several contemporary medicines, especially organo-metallic formulations, are emerging to treat hyperglycemia. The current study aims to emphasize the gold nanoparticles (GNPs) potential for glucose metabolism regulation in Streptozotocin (STZ) induced diabetes. Quantitative real-time polymerase chain reaction (RT-PCR) was carried out to detect the mRNA expression of Glucose transporters 2 (GLUT2), Glucokinase (GK) and Glucose 6 Phosphatase (G-6-Pase). The study shows remarkable results such as the prognostic effect of GNPs in reinforcing the repression of enzyme complex G-6-Pase about 13.3-fold when compared to diabetes control. Also, molecular docking studies showed significant inhibition of G-6-Pase by the terpenoid ligands with alpha and beta amyrin from leaf extract of Couroupita guianensis. Thus the study explored the novel mechanism of G-6-Pase downregulated by GNPs intervention that majorly contributes to the regulation of circulatory glucose homeostasis during diabetes.  相似文献   

11.
[(18)F]-2-Fluoro-2-deoxyglucose (FDG) is a glucose analog currently utilized for positron emission tomography imaging studies in humans. FDG taken up by the liver is rapidly released. This property is attributed to elevated glucose-6-phosphatase (Glc-6-Pase) activity. To characterize this issue we studied the relationship between Glc-6-Pase activity and FDG release kinetics in a cell culture system. We overexpressed the Glc-6-Pase catalytic unit in a Glc-6-Pase-deficient mouse hepatocyte (Ho-15) and in A431 tumor cell lines. Glc-6-Pase enzyme activity and FDG release rates were determined in cells transfected with the Glc-6-Pase gene (Ho-15-D3 and A431-AC3), in mock-transfected cells of both cell lines, and in wild-type mouse hepatocytes (WT10) as control. Although the highest level of Glc-6-Pase activity was measured in A431-AC3, Ho-15-D3 cells showed much faster FDG release rates. The faster FDG release correlated with the level of glucose 6-phosphate transporter (Glc-6-PT) mRNA, which was found to be expressed at higher levels in Ho-15 compared with A431 cells. Overexpression of Glc-6-PT in A431-AC3 produced a dramatic increase in FDG release compared with control cells. This study gives the first direct evidence that activity of the Glc-6-Pase complex can be quantified in vivo by measuring FDG release. Adequate levels of Glc-6-Pase catalytic unit and Glc-6-PT are required for this function. FDG-positron emission tomography may be utilized to evaluate functional status of the Glc-6-Pase complex.  相似文献   

12.
13.
2-Deoxy[14C]glucose-6-phosphate (2-[14C]DG-6-P) dephosphorylation and glucose-6-phosphatase (G-6-Pase) activity were examined in cultured rat astrocytes under conditions similar to those generally used in assays of glucose utilization. Astrocytes were loaded with 2-[14C]DG-6-P by preincubation for 15 min in medium containing 2 mM glucose and 50 microM 2-deoxy[14C]glucose (2-[14C]DG). The medium was then replaced with identical medium including 2 mM glucose but lacking 2-[14C]DG, and incubation was resumed for 5 min to diminish residual free 2-[14C]DG levels in the cells by either efflux or phosphorylation. The medium was again replaced with fresh 2-[14C]DG-free medium, and the incubation was continued for 5, 15, or 30 min. Intracellular and extracellular 14C contents were measured at each time point, and the distribution of 14C between 2-[14C]DG and 2-[14C]DG-6-P was characterized by paper chromatography. The results showed little if any hydrolysis of 2-[14C]DG-6-P or export of free 2-[14C]DG from cells to medium; there were slightly increasing losses of 2-[14C]DG and 2-[14C]DG-6-P into the medium with increasing incubation time, but they were in the same proportions found in the cells, suggesting they were derived from nonadherent or broken cells. Experiments carried out with medium lacking glucose during the assay for 2-deoxyglucose-6-phosphatase activity yielded similar results. Evidence for G-6-Pase activity was also sought by following the selective detritiation of glucose from the 2-C position when astrocytes were incubated with [2-3H]glucose and [U-14C]glucose in the medium. No change in the 3H/14C ratio was found in incubations for as long as 15 min. These results indicate negligible G-6-Pase activity in cultured astrocytes.  相似文献   

14.
15.
The enzyme glucose-6-phosphatase (G-6-Pase) catalyzes the hydrolysis of glucose-6-phosphate (G-6-P) to glucose. This is one of the key steps in gluconeogenesis and is critically important in maintaining stable blood glucose levels in most mammals. G-6-Pase is primarily found in the endoplasmic reticulum (ER) of hepatocytes and can easily be studied using isolated microsomes prepared from liver ER. A three-part undergraduate laboratory exercise uses rat liver microsomes to focus on the enzymatic analysis of G-6-Pase. The assessment of G-6-Pase activity is conducted using a stopped assay protocol combined with a colorimetric determination of inorganic phosphate (Pi) levels. The laboratory exercise was designed to carry out an independent inhibition investigation using orthovanadate, a competitive inhibitor of G-6-Pase with potential clinical importance. The format of the three-part investigation provides a useful mechanism for demonstrating enzyme kinetics and competitive inhibition using an enzyme that is important for carbohydrate metabolism and glycogen storage disease.  相似文献   

16.
17.
Summary

Hepatic glucose-6-phosphatase (G-6-Pase) catalyses the terminal step of hepatic glucose production and it plays a key role in the maintenance of blood glucose homeostasis. Hepatic G-6-Pase is an integral resident endoplasmic reticulum (ER) protein and it is part of a multicomponent system. Its active site is situated inside the lumen of the ER and transport proteins are needed to allow its substrates, glucose-6-phosphate (G-6-P) (and pyrophosphate), and its products, phosphate and glucose, to cross the ER membrane. In addition, a calcium-binding protein is also associated with the G-6-Pase enzyme. Recent immunological studies have shown that G-6-Pase (which has conventionally been thought to be present only in the gluconeogenic organs) is present in minor cell types in a variety of human tissues and that its distribution changes dramatically during human development. In all the tissues, enzymatic analysis, direct transport assays and/or immunological detection of the ER glucose and phosphate transport proteins have been used to demonstrate the presence and activity of the whole G-6-Pase system. The G-6-Pase protein is very hydrophobic and has proved difficult to purify to homogeneity. Four proteins of the system have now been isolated and polyclonal antibodies have been raised against them; two have also been cloned. The available sequences, together with topologicai studies, have given some information about both the topology of the proteins in the ER and the probable mechanisms by which the proteins are retained in the ER.  相似文献   

18.
19.
V. Panich 《Human genetics》1973,17(2):169-171
Summary Partially purified G-6-PD from 4 deficient Thai males presenting with acute hemolytic anemia showed low Km G-6-P consumption, and very high consumption of 2d G-6-P, Gal-6-P, and dTPN. DPN consumption was zero. The enzyme had very biphasic pH optimum curve and very low heat stability. Electrophoretic mobility was 103–106% of normal. These properties are very similar to those of G-6-PD Union. The enzyme of these 4 subjects is thus named G-6-PD Union (Thai).
Zusammenfassung Teilweise gereinigtes G-6-PD von 4 Thai-Männern, die wegen einer hämolytischen Anämie zur Behandlung kamen, zeigten eine niedrige km G-6-P, dagegen hohe 2d G-6-P, Gal-6-P und dTPN-Utilisation. DPN-Utilisation was O. Das Enzym zeigte eine starke biphasische pH-Optimum-Kurve und sehr geringe Hitzestabilität. Die elektrophoretische Wanderungsgeschwindigkeit war 103–106% des Normalen. Diese Eigenschaften sind sehr ähnlich denen des G-6-PD-Union. Deshalb wird das Enzym dieser drei Personen als G-6-PD-Union (Thai) bezeichnet.


Supported by U.S. Public Health research grant AM 09805 from the National Institute of Arthritis and Metabolic Diseases and research grant no G3/181/74 from the World Health Organization.  相似文献   

20.
The aim of these studies was to investigate the effect of hyperglycemia with or without hyperinsulinemia on hepatic gluconeogenic flux, with the hypothesis that inhibition would be greatest with combined hyperglycemia/hyperinsulinemia. A glycogen phosphorylase inhibitor (BAY R3401) was used to inhibit glycogen breakdown in the conscious overnight-fasted dog, and the effects of a twofold rise in plasma glucose level (HI group) accompanied by 1) euinsulinemia (HG group) or 2) a fourfold rise in plasma insulin were assessed over a 5-h experimental period. Hormone levels were controlled using somatostatin with portal insulin and glucagon infusion. In the HG group, net hepatic glucose uptake and net hepatic lactate output substantially increased. There was little or no effect on the net hepatic uptake of gluconeogenic precursors other than lactate (amino acids and glycerol) or on the net hepatic uptake of free fatty acids compared with the control group. Consequently, whereas hyperglycemia had little effect on gluconeogenic flux to glucose 6-phosphate (G-6-P), net hepatic gluconeogenic flux was reduced because of increased hepatic glycolytic flux during hyperglycemia. Net hepatic glycogen synthesis was increased by hyperglycemia. The effect of hyperglycemia on gluconeogenic flux to G-6-P and net hepatic gluconeogenic flux was similar. We conclude that, in the absence of appreciable glycogen breakdown, the increase in glycolytic flux that accompanies hyperglycemia results in decreased net carbon flux to G-6-P but no effect on gluconeogenic flux to G-6-P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号