首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast activation protein (FAP) is a prolyl-cleaving endopeptidase proposed as an anti-cancer drug target. It is necessary to define its cleavage-site specificity to facilitate the identification of its in vivo substrates and to understand its biological functions. We found that the previously identified substrate of FAP, α(2)-anti-plasmin, is not a robust substrate in vitro. Instead, an intracellular protein, SPRY2, is cleavable by FAP and more suitable for investigation of its substrate specificity in the context of the full-length globular protein. FAP prefers uncharged residues, including small or bulky hydrophobic amino acids, but not charged amino acids, especially acidic residue at P1', P3 and P4 sites. Molecular modelling analysis shows that the substrate-binding site of FAP is surrounded by multiple tyrosine residues and some negatively charged residues, which may exert least preference for substrates with acidic residues. This provides an explanation why FAP cannot cleave interleukins, which have a glutamate at either P4 or P2', despite their P3-P2-P1 sites being identical to SPRY2 or α-AP. Our study provided new information on FAP cleavage-site specificity, which differs from the data obtained by profiling with a peptide library or with the denatured protein, gelatin, as the substrate. Furthermore, our study suggests that negatively charged residues should be avoided when designing FAP inhibitors.  相似文献   

2.
Summary Glucose supplements to complex growth media of Escherichia coli affect the production of a recombinant model protein under the control of a temperature-sensitive expression system. The bacterial Crabtree effect, which occurs in the presence of glucose under aerobic conditions, not only represses the formation of citric acid cycle enzymes, but also represses the formation of the plasmid-encoded product even though the synthesis of this protein is under the control of the temperature-inducible lambda P R-promoter/cl857-repressor expression system. When the recombinant E. coli is grown at a moderate temperature (35° C) with protein hydrolysate and glucose as substrates, a biphasic growth and production pattern is observed. In the first phase, the cells grow with a high specific growth rate, utilizing glucose and forming glutamate as a byproduct. The intracellular level of recombinant protein is very low in this phase. Later, glutamate is consumed, indicating an active citric acid cycle. The degradation of glutamate is accompanied by the intracellular accumulation of high amounts of recombinant protein.  相似文献   

3.
4.
The interaction of the hydrogenase maturation endopeptidase HycI with its substrate, the precursor of the large subunit, was studied. Replacement of conserved amino-acid residues in HycI, which have been shown to bind a cadmium ion from the crystallization buffer in crystals of HybD (endopeptidase for hydrogenase 2), abolished or strongly reduced processing activity. Atomic absorption spectroscopy of purified HycI and HybD proteins showed the absence of nickel. In vitro processing assays showed that the reaction requires nickel to be bound to the precursor and the protease does not have a function in nickel delivery to the substrate. Radioactive labelling of cells with 63Ni, devoid of endopeptidase, resolved several forms of the precursor which are possibly intermediates in the maturation pathway. It is concluded that the endopeptidase uses the metal in the large subunit of [NiFe]-hydrogenases as a recognition motif.  相似文献   

5.
We discovered and characterized a novel type D-aspartyl endopeptidase (DAEP) produced extracellularly by Paenibacillus sp. B38. This bacterial DAEP of M(r) 34,798 (named paenidase) appeared to be converted into a smaller form of M(r) 34,169 by the proteolytic removal of 5 amino acid residues from the N-terminal. The intact and modified forms of the enzyme displayed essentially the same enzymatic properties. The enzyme specifically hydrolyzed succinyl-D-aspartic acid alpha-(p-nitroanilide) and succinyl-D-aspartic acid alpha-(4-methylcoumaryl-7-amide) to generate p-nitroaniline and 7-amino-4-methylcoumarin, and internally cleaved a synthetic peptide (D-A-E-F-R-H-[D-Asp]-G-S-Y) of the [D-Asp](7) amyloid beta (Abeta) protein between [D-Asp](7)-G(8). Either was totally inert to the normal Abeta peptide sequence containing L-Asp, instead of D-Asp at the 7th position. Thus, paenidase is the first DAEP from a microorganism that specifically recognizes an internal D-Asp residue to cleave [D-Asp]-X peptide bonds.  相似文献   

6.
Purification of recombinant wild-type cutinase from the culture supernatant of Saccharomyces cerevisiae by extraction in aqueous two-phase system was investigated. The partition of the enzyme in a polyethylene glycol (PEG)-potassium phosphate system to the top phase was increased with lower molecular weight PEG. Enzyme partition in a 20% PEG/15% phosphate two-phase system was studied in the presence of detergents, fatty acids, and alcohols, respectively. Addition of 0.5% (w/w) butyrate increased the partition coefficient from 17 to 135 and the purification factor from 10 to 23. The effect of butyrate was also confirmed by using the countercurrent mode of extraction. Recovery of cutinase from the top phase was achieved by a secondary extraction into a new salt phase at a lower pH or a lower temperature. A specific interaction of butyrate to the active site of the enzyme was demonstrated by fluorescence spectroscopy. Size exclusion chromatography showed the cutinase-butyrate complex to be over two times the size of the free enzyme.  相似文献   

7.
Annulate lamellae: an organelle in search of a function   总被引:1,自引:0,他引:1  
E M Merisko 《Tissue & cell》1989,21(3):343-354
  相似文献   

8.
The mini-chain of human cathepsin H has been identified as the major structural element determining the protease's substrate specificity. A genetically engineered mutant of human cathepsin H lacking the mini-chain, des[Glu(-18)-Thr(-11)]-cathepsin H, exhibits endopeptidase activity towards the synthetic substrate Z-Phe-Arg-NH-Mec (kcat = 0.4 s(-1), Km = 92 microM, kcat/Km = 4348 M(-1) s(-1)) which is not cleaved by r-wt cathepsin H. However, the mutant enzyme shows only minimal aminopeptidase activity for H-Arg-NH-Mec (kcat = 0.8 s(-1), Km = 3.6 mM, kcat/Km = 222 M(-1) s(-1)) which is one of the best known substrates for native human cathepsin H (kcat = 2.5 s(-1), Km = 150 microM, kcat/Km = 16666 M(-1) s(-1)). Inhibition studies with chicken egg white cystatin and E-64 suggest that the mini-chain normally restricts access of inhibitors to the active site. The kinetic data on substrates hydrolysis and enzyme inhibition point out the role of the mini-chain as a structural framework for transition state stabilization of free alpha-amino groups of substrates and as a structural barrier for endopeptidase-like substrate cleavage.  相似文献   

9.
Prolyl endopeptidases (PEP) (EC 3.4.21.26), a family of serine proteases with the ability to hydrolyze the peptide bond on the carboxyl side of an internal proline residue, are able to degrade immunotoxic peptides responsible for celiac disease (CD), such as a 33-residue gluten peptide (33-mer). Oral administration of PEP has been suggested as a potential therapeutic approach for CD, although delivery of the enzyme to the small intestine requires intrinsic gastric stability or advanced formulation technologies. We have engineered two food-grade Lactobacillus casei strains to deliver PEP in an in vitro model of small intestine environment. One strain secretes PEP into the extracellular medium, whereas the other retains PEP in the intracellular environment. The strain that secretes PEP into the extracellular medium is the most effective to degrade the 33-mer and is resistant to simulated gastrointestinal stress. Our results suggest that in the future, after more studies and clinical trials, an engineered food-grade Lactobacillus strain may be useful as a vector for in situ production of PEP in the upper small intestine of CD patients.  相似文献   

10.
Neutral endopeptidase from human or bovine tissues retains enzymatic activity following electrophoresis and immobilization in polyacrylamide gels. Infiltration of the gel with a fluorogenic substrate permits identification of the active enzyme by fluorescence associated with a distinct protein band. This technique both separates and identifies the enzymatically active species from a crude cell membrane fraction or from partially purified extracts that contain contaminating proteins. Enzymatic activity is quantitated by photographing the fluorescent bands and scanning the negatives with a laser densitometer. Because as little as 25 ng of enzyme can be detected by this method, it could be used where the amount of material is limited.  相似文献   

11.
X-linked hypophosphatemic rickets (XLH) is a dominantly inherited disease characterized by renal phosphate wasting, aberrant vitamin D metabolism, and defective bone mineralization. It is known that XLH in humans and in certain mouse models is caused by inactivating mutations in PHEX/Phex (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). By a genome-wide N-ethyl-N-nitrosourea (ENU)-induced mutagenesis screen in mice, we identified a dominant mouse mutation that exhibits the classic clinical manifestations of XLH, including growth retardation, skeletal abnormalities (rickets/osteomalacia), hypophosphatemia, and increased serum alkaline phosphatase (ALP) levels. Mapping and sequencing revealed that these mice carry a point mutation in exon 14 of the Phex gene that introduces a stop codon at amino acid 496 of the coding sequence (Phex(Jrt) also published as Phex(K496X) [Ichikawa et al., 2012]). Fgf23 mRNA expression as well as that of osteocalcin, bone sialoprotein, and matrix extracellular phosphoglycoprotein was upregulated in male mutant long bone, but that of sclerostin was unaffected. Although Phex mRNA is expressed in bone from mutant hemizygous male mice (Phex(Jrt)/Y mice), no Phex protein was detected in immunoblots of femoral bone protein. Stromal cultures from mutant bone marrow were indistinguishable from those of wild-type mice with respect to differentiation and mineralization. The ability of Phex(Jrt)/Y osteoblasts to mineralize and the altered expression levels of matrix proteins compared with the well-studied Hyp mice makes it a unique model with which to further explore the clinical manifestations of XLH and its link to FGF23 as well as to evaluate potential new therapeutic strategies.  相似文献   

12.
Preparation of ribosomes using different procedures (treatment of postmitochondrial-postlysosomal supernatant or microsomes with 1% triton in 0.15 or 0.5 M KCl and subsequent sucrose gradient centrifugation; treatment of microsomes with 1.5% deoxycholate/2% triton) results in purified ribosomes which contain an endopeptidase activity detectable by breakdown of ribosomal proteins to trichloroacetic acid soluble split products. The proteolytic activity can be recovered also in the extracted proteins of whole ribosomes. With ribosomes the pH optimum of proteolytic breakdown is at about 7. The inhibition of the activity by leupeptin, DIFP and soya bean trypsin inhibitor suggests a serine type of the proteolytic activity.  相似文献   

13.
D-amino acids are commonly found in peptide antibiotics and the cell wall peptidoglycan of bacterial cell walls but have not been identified in proteins or enzymes. Here we report the presence of 6-7 A-alanine residues in an endopeptidase of Streptococcus pyogenes, a unique enzyme involved in surface protein attachment that we term LPXTGase. Using D-amino acid oxidase coupled with catalase for the deamination of D-alanine to pyruvic acid (a conversion unique to D-alanine), we were able to identify [14C]pyruvic acid in a [14C]alanine-labeled preparation of purified LPXTGase, which represents 27% of the amino acid composition. Because D-amino acids are not accommodated in ribosomal peptide synthesis, these results suggest that the same process used in assembling peptide antibiotics or a yet unidentified mechanism may synthesize the core protein of this endopeptidase.  相似文献   

14.
The multicatalytic proteinase: a high-Mr endopeptidase.   总被引:1,自引:0,他引:1       下载免费PDF全文
《The Biochemical journal》1988,255(2):750-751
  相似文献   

15.
Coggill P  Bateman A 《PloS one》2012,7(5):e35575
We have identified a new bacterial protein domain that we hypothesise binds to peptidoglycan. This domain is called the YARHG domain after the most highly conserved sequence-segment. The domain is found in the extracellular space and is likely to be composed of four alpha-helices. The domain is found associated with protein kinase domains, suggesting it is associated with signalling in some bacteria. The domain is also found associated with three different families of peptidases. The large number of different domains that are found associated with YARHG suggests that it is a useful functional module that nature has recombined multiple times.  相似文献   

16.
Evidence for an essential histidine in neutral endopeptidase 24.11   总被引:3,自引:0,他引:3  
R C Bateman  L B Hersh 《Biochemistry》1987,26(14):4237-4242
Rat kidney neutral endopeptidase 24.11, "enkephalinase", was rapidly inactivated by diethyl pyrocarbonate under mildly acidic conditions. The pH dependence of inactivation revealed the modification of an essential residue with a pKa of 6.1. The reaction of the unprotonated group with diethyl pyrocarbonate exhibited a second-order rate constant of 11.6 M-1 s-1 and was accompanied by an increase in absorbance at 240 nm. Treatment of the inactivated enzyme with 50 mM hydroxylamine completely restored enzyme activity. These findings indicate histidine modification by diethyl pyrocarbonate. Comparison of the rate of inactivation with the increase in absorbance at 240 nm revealed a single histidine residue essential for catalysis. The presence of this histidine at the active site was indicated by (a) the protection of enzyme from inactivation provided by substrate and (b) the protection by the specific inhibitor phosphoramidon of one histidine residue from modification as determined spectrally. The dependence of the kinetic parameter Vmax/Km upon pH revealed two essential residues with pKa values of 5.9 and 7.3. It is proposed that the residue having a kinetic pKa of 5.9 is the histidine modified by diethyl pyrocarbonate and that this residue participates in general acid/base catalysis during substrate hydrolysis by neutral endopeptidase 24.11.  相似文献   

17.
We have expressed a truncated form of the alpha1 kinase domain of AMP-activated protein kinase (AMPK) in Escherichia coli as a glutathione-S-transferase fusion (GST-KD). A T172D mutant version did not require prior phosphorylation and was utilized for most subsequent studies. We have also created a recombinant substrate (GST-ACC) by expressing 34 residues around the major phosphorylation site (Ser79) on rat acetyl-CoA carboxylase-1/alpha (ACC1) as a GST fusion. This was an excellent substrate that was phosphorylated with similar kinetic parameters to ACC1 by both native AMPK and the bacterially expressed kinase domain. We also constructed a structural model for the binding of the ACC1 sequence to the kinase domain, based on crystal structures for related protein kinases. The model was tested by making a total of 25 mutants of GST-ACC and seven mutants of GST-KD, and measuring kinetic parameters with different combinations. The results reveal that AMPK and ACC1 interact over a much wider region than previously realized (>20 residues). The features of the interaction can be summarised as follows: (i) an amphipathic helix from P-16 to P-5 on the substrate binds in a hydrophobic groove on the large lobe of the kinase; (ii) basic residues at P-6 and P-4 bind to two acidic patches (D215/D216/D217 and E103/D100/E143, respectively), on the large lobe; (iii) a histidine at P+3 interacts with D56 on the small lobe; (iv) the side-chain of P+4 leucine could not be precisely positioned, but a new finding was that asparagine or glutamine could replace a hydrophobic residue at this position. These interactions position the serine residue to be phosphorylated in close proximity to the gamma-phosphate group of ATP. Although based on modelling rather than a determined structure, this represents one of the most detailed studies of the interaction between a kinase and its substrate achieved to date.  相似文献   

18.
Yeast two-hybrid systems are powerful proteomics tools for the discovery of protein-protein interactions. However, these systems are typically unable to detect interactions dependent on post-translational modifications such as tyrosine phosphorylation. We report a novel yeast tribrid system that expresses a potentially universal protein tyrosine kinase (PTK) substrate to detect diverse PTKs. Validation with the oncogenic kinases v-Abl and v-Src, which exhibit divergent substrate specificities, demonstrated significant potential for cloning PTKs en masse from cDNA libraries.  相似文献   

19.
A nutrient medium was elaborated for the efficient production of glutamyl endopeptidase by the recombinant Bacillus subtilis strain AJ73 bearing the Bacillus intermedius 3-19 glutamyl endopeptidase gene within a multicopy plasmid. Optimal concentrations of the main nutrients, peptone and inorganic phosphate, were found using a multifactor approach. To provide for active growth and efficient glutamyl endopeptidase production, the cultivation medium of the recombinant strain should be enriched in phosphorus, organic and inorganic nitrogen sources, and yeast extract. Complex protein substrates, such as casein and gelatin, enhanced the biosynthesis of glutamyl endopeptidase. At the same time, easily metabolizable carbon sources suppressed it. The production of glutamyl endopeptidase was stimulated by the bivalent cations Ca2+, Mg2+, and Co2+.  相似文献   

20.
We studied the biosynthesis of Bacillus intermedius glutamyl endopeptidase in the recombinant Bacillus subtilis strain AJ73 delta58.21 during the stationary growth phase. We optimized the composition of the culture medium to favor effective enzyme production during the stationary growth phase, and found that the nutritional requirements for glutamyl endopeptidase synthesis were different in the stationary phase and growth retardation phase. Proteinase accumulation was activated by complex organic substrates (casein and gelatin). During final stages of the culture growth, the enzyme production was stimulated by Ca2+, Mn2+, and Co2+ and inhibited by Zn2+, Fe2+, and Cu2+. The synthesis of glutamyl endopeptidase in the late stationary phase was not inhibited by glucose, unlike that in the trophophase during proliferation. We conclude that the regulatory mechanisms of proteinase synthesis during vegetative growth and sporulation are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号