首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Root growth and water uptake in winter wheat under deficit irrigation   总被引:20,自引:0,他引:20  
Root growth is critical for crops to use soil water under water-limited conditions. A field study was conducted to investigate the effect of available soil water on root and shoot growth, and root water uptake in winter wheat (Triticum aestivum L.) under deficit irrigation in a semi-arid environment. Treatments consisted of rainfed, deficit irrigation at different developmental stages, and adequate irrigation. The rainfed plots had the lowest shoot dry weight because available soil water decreased rapidly from booting to late grain filling. For the deficit-irrigation treatments, crops that received irrigation at jointing and booting had higher shoot dry weight than those that received irrigation at anthesis and middle grain filling. Rapid root growth occurred in both rainfed and irrigated crops from floral initiation to anthesis, and maximum rooting depth occurred by booting. Root length density and dry weight decreased after anthesis. From floral initiation to booting, root length density and growth rate were higher in rainfed than in irrigated crops. However, root length density and growth rate were lower in rainfed than in irrigated crops from booting to anthesis. As a result, the difference in root length density between rainfed and irrigated treatments was small during grain filling. The root growth and water use below 1.4 m were limited by a caliche (45% CaCO3) layer at about 1.4 m profile. The mean water uptake rate decreased as available soil water decreased. During grain filling, root water uptake was higher from the irrigated crops than from the rainfed. Irrigation from jointing to anthesis increased seasonal evapotranspiration, grain yield, harvest index and water-use efficiency based on yield (WUE), but did not affect water-use efficiency based on aboveground biomass. There was no significant difference in WUE among irrigation treatments except one-irrigation at middle grain filling. Due to a relatively deep root system in rainfed crops, the higher grain yield and WUE in irrigated crops compared to rainfed crops was not a result of rooting depth or root length density, but increased harvest index, and higher water uptake rate during grain filling.  相似文献   

2.
Bouma  Tjeerd J.  Bryla  David R. 《Plant and Soil》2000,227(1-2):215-221
Estimates of root and soil respiration are becoming increasingly important in agricultural and ecological research, but there is little understanding how soil texture and water content may affect these estimates. We examined the effects of soil texture on (i) estimated rates of root and soil respiration and (ii) soil CO2 concentrations, during cycles of soil wetting and drying in the citrus rootstock, Volkamer lemon (Citrus volkameriana Tan. and Pasq.). Plants were grown in soil columns filled with three different soil mixtures varying in their sand, silt and clay content. Root and soil respiration rates, soil water content, plant water uptake and soil CO2 concentrations were measured and dynamic relationships among these variables were developed for each soil texture treatment. We found that although the different soil textures differed in their plant-soil water relations characteristics, plant growth was only slightly affected. Root and soil respiration rates were similar under most soil moisture conditions for soils varying widely in percentages of sand, silt and clay. Only following irrigation did CO2 efflux from the soil surface vary among soils. That is, efflux of CO2 from the soil surface was much more restricted after watering (therefore rendering any respiration measurements inaccurate) in finer textured soils than in sandy soils because of reduced porosity in the finer textured soils. Accordingly, CO2 reached and maintained the highest concentrations in finer textured soils (> 40 mmol CO2 mol−1). This study revealed that changes in soil moisture can affect interpretations of root and soil measurements based on CO2 efflux, particularly in fine textured soils. The implications of the present findings for field soil CO2 flux measurements are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Growth and shoot: root ratio of seedlings in relation to nutrient availability   总被引:28,自引:2,他引:28  
Ericsson  Tom 《Plant and Soil》1995,168(1):205-214
The influence of mineral nutrient availability, light intensity and CO2 on growth and shoot:root ratio in young plants is reviewed. Special emphasis in this evaluation is given to data from laboratory experiments with small Betula pendula plants, in which the concept of steady-state nutrition has been applied.Three distinctly different dry matter allocation patterns were observed when growth was limited by the availability of mineral nutrients: 1, Root growth was favoured when N, P or S were the major growth constraints. 2, The opposite pattern obtained when K, Mg and Mn restricted growth. 3, Shortage of Ca, Fe and Zn had almost no effect on the shoot:root ratio. The light regime had no effect on dry matter allocation except at very low photon flux densities (< 6.5 mol m-2 day-1), in which a small decrease in the root fraction was observed. Shortage of CO2, on the other hand, strongly decreased root development, while an increase of the atmospheric CO2 concentration had no influence on dry matter partitioning. An increased allocation of dry matter to below-ground parts was associated with an increased amount of starch in the tissues. Depletion of the carbohydrate stores occurred under all conditions in which root development was inhibited. It is concluded that the internal balance between labile nitrogen and carbon in the root and the shoot system determines how dry matter is being partitioned in the plant. The consistency of this statement with literature data and existing models for shoot:root regulation is examined.  相似文献   

4.
Two methods for estimating the size of the maize (Zea mays l.) root system from soil cores taken in the field were compared. The spatially weighed block method of estimation accounted for variation in root density by using 18 samples per plant which varied in distance from plant and soil depth. This method was compared to an estimation which averaged all of the 18 samples together. Both methods gave surprisingly similar estimates for total root growth. Increased root growth in the surface soil layers, due to tillage and N fertilization, did not impact on the estimation of total root growth. Total root length remained unchanged or increased with N fertilization, while root weight remained the same or decreased. Root mass per length decreased with N fertilization. The estimated size of the root system was used to calculate root:shoot weight ratios. The largest root:shoot ratio was found in the vegetative stage and decreased throughout the rest of the season. In this field experiment, the estimated size of the root system at 8 weeks after planting was not significantly different from the size at silking or harvest. Nitrogen fertilization significantly decreased the root:shoot weight ratio. However, tillage did not significantly change the ratio.  相似文献   

5.
Field and growth chamber studies were used to determine the effect of in-furrow application of PGR-IV on root and shoot development, and yield of cotton. In the field study, an in-furrow application of PGR-IV @ 73 mL ha–1 at planting increased yield by 18% compared to the untreated control, and by 11% compared to 2-foliar applications of 292 mL/ha–1 each at pinhead square stage of flower development and at first flower appearance. Growth chamber studies revealed that the in-furrow applications of PGR-IV @ 1.131L/plant dramatically increased root length (+47%), root dry weight (+29%), number of lateral roots per plant (+75%), and nutrient uptake one week after planting. These differences were still apparent five weeks later at pinhead square but to a lesser degree. The yield enhancement from the foliar applications was associated with increases in leaf growth, nutrient uptake, and boll number, whereas the yield enhancement from the soil application was associated with enhanced root growth and nutrient uptake. The positive effect of PGR-IV on root growth and accelerated early-season growth could have very substantial benefits in cotton production.  相似文献   

6.
Root proliferation into nutrient rich zones is an important mechanism in the exploitation of soil nutrients by plants. No studies have examined atmospheric CO2 effects on cotton (Gossypium hirsutum L.) root distribution as affected by localized phosphorus (P). Cotton plants were grown in a Troup sand (loamy, thermic Grossarenic Kandiudults) using 17.2-l containers placed in open top field chambers (OTC) under ambient (360 mol mol–1) or enriched (720 mol mol–1) atmospheric CO2 concentrations for 40 days. Equivalent amounts of P were added (150 mg P per kg of soil) to 100, 50, 25, 12.5, and 6.25% of the total soil volume; control containers with no added P were also included. Under extremely low P (controls), cotton was unresponsive to CO2 enrichment. In treatments with both fertilized and unfertilized soil volumes, root proliferation was greater in the unfertilized soil under elevated CO2 conditions. Stimulation of root growth occurred in the P-fertilized soil fraction; the pattern of stimulation was similar under both CO2 levels. Under ambient CO2, cotton plant response was positive (shoot mass, and total root mass and length) when soil P was confined to relatively small proportions of the total soil volume (6.25 and 12.5%). However, elevated CO2 grown plants tended to respond to P regardless of its distribution.  相似文献   

7.
Forest soil respiration is the sum of heterotrophic (microbes, soil fauna) and autotrophic (root) respiration. The contribution of each group needs to be understood to evaluate implications of environmental change on soil carbon cycling and sequestration. Three primary methods have been used to distinguish hetero- versus autotrophic soil respiration including: integration of components contributing to in situ forest soil CO2 efflux (i.e., litter, roots, soil), comparison of soils with and without root exclusion, and application of stable or radioactive isotope methods. Each approach has advantages and disadvantages, but isotope based methods provide quantitative answers with the least amount of disturbance to the soil and roots. Published data from all methods indicate that root/rhizosphere respiration can account for as little as 10 percent to greater than 90 percent of total in situ soil respiration depending on vegetation type and season of the year. Studies which have integrated percent root contribution to total soil respiration throughout an entire year or growing season show mean values of 45.8 and 60.4 percent for forest and nonforest vegetation, respectively. Such average annual values must be extrapolated with caution, however, because the root contribution to total soil respiration is commonly higher during the growing season and lower during the dormant periods of the year.  相似文献   

8.
The CO2 production of individual larvae of Apis mellifera carnica, which were incubated within their cells at a natural air humidity of 60–80%, was determined by an open-flow gas analyzer in relation to larval age and ambient temperature. In larvae incubated at 34 °C the amount of CO2 produced appeared to fall only moderately from 3.89±1.57 µl mg–1 h–1 in 0.5-day-old larvae to 2.98±0.57 µl mg–1 h–1 in 3.5-day-old larvae. The decline was steeper up to an age of 5.5 days (0.95±1.15 µl mg–1 h–1). Our measurements show that the respiration and energy turnover of larvae younger than about 80 h is considerably lower (up to 35%) than expected from extrapolations of data determined in older larvae. The temperature dependency of CO2 production was determined in 3.5-day-old larvae, which were incubated at temperatures varying from 18 to 38 °C in steps of 4 °C. The larvae generated 0.48±0.03 µl mg–1 h–1 CO2 at 18 °C, and 3.97±0.50 µl mg–1 h–1 CO2 at 38 °C. The temperature-dependent respiration rate was fitted to a logistic curve. We found that the inflection point of this curve (32.5 °C) is below the normal brood nest temperature (33–36 °C). The average Q10 was 3.13, which is higher than in freshly emerged resting honeybees but similar to adult bees. This strong temperature dependency enables the bees to speed up brood development by achieving high temperatures. On the other hand, the results suggest that the strong temperature dependency forces the bees to maintain thermal homeostasis of the brood nest to avoid delayed brood development during periods of low temperature.Abbreviations m body mass - R rate of development or respiration - TI inflexion point of a logistic (sigmoid) curve - TL lethal temperature - TO temperature of optimum (maximum) developmentCommunicated by G. Heldmaier  相似文献   

9.
Growth and nutrient utilization of alfalfa (Medicago sativa L. cv. Arc) and common bean (Phaseolus vulgaris L. cv. Carioca) were studied in an acid soil adjusted to eight levels of soil acidity by lime addition. Application of lime significantly (P<0.05) increased shoot and root growth for both species. However, common bean was far less sensitive to soil acidity than alfalfa. Maximum alfalfa growth was obtained at a soil pH of 5.8 and maximum bean growth was achieved at pH 5.0. Root and shoot growth of both legumes was positively correlated (P<0.01) with soil pH, exchangeable Ca and exchangeable Mg and negatively correlated (P<0.01) with soil exchangeable Al. Common bean had a lower internal P requirement for maximum growth and was more efficient than alfalfa in taking up Ca and Mg. These characteristics would contribute to the favorable growth of common bean in acid-infertile soils.  相似文献   

10.
Two F2 populations of cotton (Gossypium hirsutum L.) from the crosses of HS46 x MARCABUCAG8US-1-88 (MAR) and HS46 x Pee Dee 5363 (PD5363) were characterized for restriction fragment length polymorphisms (RFLPs) using DNA probes. Seventy-three probe/enzyme combinations were used in the HS46 x MAR population analysis, which resulted in 42 informative polymorphic fragments. These 42 moleclar markers represented 26 polymorphic loci, which consisted of 15 codominant and 11 dominant (+/-) genotypes. Chi-square analyses of these loci fit expected genotypic ratios of 121 and 31, respectively An analysis of these loci with the MAPMAKER program resulted in the establishment of four linkage groups A, B, C, and D with 4,2,2, and 2 loci, respectively, as well as 16 unlinked loci. Six probe-enzyme combinations were assayed on the HS46 x PD5363 population, which resulted in 11 informative polymorphic fragments. These 11 fragments represented 6 polymorphic loci, 1 dominant (+/-) and 5 codominant genotypes. The MAPMAKER analysis of these loci yielded 2 linked loci. Thus, a total of 53 polymorphic fragments and 32 polymorphic loci, representing five linkage groups, were identified among the two families.Contribution of the USDA-ARS in cooperation with the Miss Agric For Exp Stn.  相似文献   

11.
One rape (Brassica napus cv. Wesroona) plant and four cotton (Gossypium hirsutum cv. Sicot 3) plants were grown in plastic cells containing soil labelled with 407 kBq of33P g−1 soil. After 5–8 days of growth, the33P depletion zones of all plants were autoradiographed and33P uptake by plants was measured. The autoradiographs were scanned with a microdensitometer and the optical densities at several places within the33P depletion zones of roots were obtained. The volume of soil explored by root hairs was estimated from measurements of root diameters and lengths of roots and root hairs. About half of the total33P depleted by cotion roots came from outside the root hair cylinder whereas most of33P taken up by rape was from within the root hair cylinder. Plants grown in a macrostructured soil may have roots growing in voids, within aggregates or on the surfaces of aggregates. The results of this study demonstrate that root hairs have a strong influence on the accessibility of phosphorus to roots in such a soil, and thus on the phosphorus nutrition of plants.  相似文献   

12.
Little information is available on the variability of the dynamics of the actual and observed root respiration rate in relation to abiotic factors. In this study, we describe I) interactions between soil CO2 concentration, temperature, soil water content and root respiration, and II) the effect of short-term fluctuations of these three environmental factors on the relation between actual and observed root respiration rates. We designed an automated, open, gas-exchange system that allows continuous measurements on 12 chambers with intact roots in soil. By using three distinct chamber designs with each a different path for the air flow, we were able to measure root respiration over a 50-fold range of soil CO2 concentrations (400 to 25000 ppm) and to separate the effect of irrigation on observed vs. actual root respiration rate. All respiration measurements were made on one-year-old citrus seedlings in sterilized sandy soil with minimal organic material.Root respiration was strongly affected by diurnal fluctuations in temperature (Q10 = 2), which agrees well with the literature. In contrast to earlier findings for Douglas-fir (Qi et al., 1994), root respiration rates of citrus were not affected by soil CO2 concentrations (400 to 25000 ppm CO2; pH around 6). Soil CO2 was strongly affected by soil water content but not by respiration measurements, unless the air flow for root respiration measurements was directed through the soil. The latter method of measuring root respiration reduced soil CO2 concentration to that of incoming air. Irrigation caused a temporary reduction in CO2 diffusion, decreasing the observed respiration rates obtained by techniques that depended on diffusion. This apparent drop in respiration rate did not occur if the air flow was directed through the soil. Our dynamic data are used to indicate the optimal method of measuring root respiration in soil, in relation to the objectives and limitations of the experimental conditions.  相似文献   

13.
Biological soil crusts (BSCs) are an important source of organic carbon, and affect a range of ecosystem functions in arid and semiarid environments. Yet the impact of grazing disturbance on crust properties and soil CO2 efflux remain poorly studied, particularly in African ecosystems. The effects of burial under wind-blown sand, disaggregation and removal of BSCs on seasonal variations in soil CO2 efflux, soil organic carbon, chlorophyll a and scytonemin were investigated at two sites in the Kalahari of southern Botswana. Field experiments were employed to isolate CO2 efflux originating from BSCs in order to estimate the C exchange within the crust. Organic carbon was not evenly distributed through the soil profile but concentrated in the BSC. Soil CO2 efflux was higher in Kalahari Sand than in calcrete soils, but rates varied significantly with seasonal changes in moisture and temperature. BSCs at both sites were a small net sink of C to the soil. Soil CO2 efflux was significantly higher in sand soils where the BSC was removed, and on calcrete where the BSC was buried under sand. The BSC removal and burial under sand also significantly reduced chlorophyll a, organic carbon and scytonemin. Disaggregation of the soil crust, however, led to increases in chlorophyll a and organic carbon. The data confirm the importance of BSCs for C cycling in drylands and indicate intensive grazing, which destroys BSCs through trampling and burial, will adversely affect C sequestration and storage. Managed grazing, where soil surfaces are only lightly disturbed, would help maintain a positive carbon balance in African drylands.  相似文献   

14.
Soil N availability may play an important role in regulating the long-term responses of plants to rising atmospheric CO2 partial pressure. To further examine the linkage between above- and belowground C and N cycles at elevated CO2, we grew clonally propagated cuttings of Populus grandidentata in the field at ambient and twice ambient CO2 in open bottom root boxes filled with organic matter poor native soil. Nitrogen was added to all root boxes at a rate equivalent to net N mineralization in local dry oak forests. Nitrogen added during August was enriched with 15N to trace the flux of N within the plant-soil system. Above-and belowground growth, CO2 assimilation, and leaf N content were measured non-destructively over 142 d. After final destructive harvest, roots, stems, and leaves were analyzed for total N and 15N. There was no CO2 treatment effect on leaf area, root length, or net assimilation prior to the completion of N addition. Following the N addition, leaf N content increased in both CO2 treatments, but net assimilation showed a sustained increase only in elevated CO2 grown plants. Root relative extension rate was greater at elevated CO2, both before and after the N addition. Although final root biomass was greater at elevated CO2, there was no CO2 effect on plant N uptake or allocation. While low soil N availability severely inhibited CO2 responses, high CO2 grown plants were more responsive to N. This differential behavior must be considered in light of the temporal and spatial heterogeneity of soil resources, particularly N which often limits plant growth in temperate forests.  相似文献   

15.
Surface-irrigated cotton (Gossypium hirsutum L.) grown on slowly draining clay soil is subjected to short-term periods of waterlogging at each irrigation which generally results in reduced productivity. The sequence of above- and below-ground plant responses to transient waterlogging and the role of N availability in modifying the immediate responses were studied. Lysimeters of Marah clay loam (a Natrustalf) were instrumented to monitor soil and plant responses to a 7-day waterlogging event beginning 67 days after sowing. Cotton (‘Deltapine 61’) plants (8 per lysimeter) were grown with two levels of added N (300 kg ha−1 and 30 kg ha−1) and two irrigation treatments (flooded and control). Measured soil-O2 levels decreased rapidly upon surface flooding because water displaced air and root zone respiration consumed O2. The rate of O2 consumption was 2.7 times greater in the high-N treatment than the low-N treatment. This difference was associated with a 1.8 fold difference in numbers of observed roots. Root growth was only slightly affected by flooding. Leaf growth decreased by 28%, foliage temperature increased 2.3% and apparent photosynthesis decreased by 16%. It is suggested that flooding reduced photosynthetic activity within 2 days while other stress symptoms became apparent after about 6 days. Although this stress was reflected in a trend for decreased plant productivity, the effect of flooding on boll dry mass at harvest was not significant at the level of replication used. The single waterlogging did not cause yield reductions comparable to those observed elsewhere when several waterlogging events were imposed. Contribution from the CSIRO, Centre for Irrigation Research, Griffith, NSW, Australia and USDA-ARS, Morris, MI, USA, in cooperation with the univ. of Minnesota.  相似文献   

16.
Summary The biological nature of soil H2-consumption has been investigated. Soil microorganisms were capable to remove H2 present in the gas phase at concentrations in the range of 200 ppm at rates varying between 0.2 and 1.0 l.min–1. 100 g–1. Free soil enzymes did not contribute significantly at the H2 concentrations tested. Oxygen seemed to be the predominant electron acceptor. The influence of microbiological and physical soil properties on the H2-uptake activity was examined for 38 soils.A highly significant correlation between biomass-C and H2-uptake rate of the soil was noted, suggesting that the latter parameter might be useful as an indirect estimation of soil microbial biomass. The correlation was however not applicable for soils recently grown with legumes. Indeed, soya plants nodulated with aRhizobium strain with a weak hydrogen uptake capability, strongly increased the hydrogen oxidizing capability of the surrounding soil.  相似文献   

17.
D. A. Walker 《Planta》1981,153(3):273-278
When spinach leaves are re-illuminated, after dark periods of 90 s or less, an initial fluorescence peak is observed which rapidly gives way to a much lower terminal value. After 2 min or more in the dark, however, there is a secondary rise, at about 50–70 s, which then gives way, more slowly, to approximately the same low terminal value as before. The secondary rise is eliminated or disguised by feeding D,L-glyceraldehyde (a specific inhibitor of photosynthetic carbon assimilation) and by manose, 2-deoxyglucose and glucosamine, all of which are believed to sequester cytoplasmic orthophosphate. This secondary rise in fluorescence is discussed in relation to photosynthetic induction and the manner in which these compounds may modulate fluorescence by their effect on the availability of orthophosphate and their consequent impact on the adenylate status of the stroma.Abbreviations DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - CCCP carbonylcyanidchlorophenylhydrazon  相似文献   

18.
The fate, as well as the consequence for plant nutrition, of the additional carbon entering soil under elevated CO2 is largely determined by the activity of soil microorganisms. However, most elevated CO2 studies have documented changes (generally increases) in microbial biomass and total infection by symbiotic organisms, which is only a first step in the understanding of the modification of soil processes. Using a Mediterranean model ecosystem, we complemented these variables by analyzing changes in enzymatic activities, hyphal lengths, and bacterial substrate assimilation, to tentatively identify the specific components affected under elevated CO2 and those which suggest changes in soil organic matter pools. We also investigated changes in the functional structures of arbuscular mycorrhizas. Most of the microbial variables assessed showed significant and substantial increase under elevated CO2, of the same order or less than those observed for root mass and length. The increase in dehydrogenase activity indicates that the larger biomass of microbes was accompanied by an increase in their activity. The increase in hyphal length (predominantly of saprophytic fungi), and xylanase, cellulase and phosphatase activities, suggests an overall stimulation of organic matter decomposition. The higher number of substrates utilized by microorganisms from the soil under elevated CO2 was significant for the amine/amide group. Total arbuscular and vesicular mycorrhizal infection of roots was higher under elevated CO2, but the proportion of functional structures was not modified. These insights into the CO2-induced changes in soil biological activity point towards potential areas of investigation complementary to a direct analysis of the soil organic matter pools.  相似文献   

19.
No significant differences were found between four mathematical equations describing the response of CO2 exchange rate to photosynthetic photon flux density in seven poplar clones under laboratory conditions. Choice of an optimal equation for poplar may be based on the contemplated aims. High significant differences (at p<0.001) were found among the clones.Research was supported by the Instituut tot Aanmoediging van het Wetenschappelijk Onderzoek in Nijverheid en Landbouw (I.W.O.N.L.), Brussels.  相似文献   

20.
Summary This study follows the maturation of the pollen grain of cotton (Gossypium hirsutum L.), particularly the development of the vegetative cytoplasm and the various storage products formed. CTEM, HVEM, stereoscopy, and cyto-histochemistry were used to examine the events occurring during the 9 days before anthesis. Starch began to accumulate in plastids at anthesis minus 9 days and reached a peak concentration shortly before anthesis; lipid deposition followed a similar pattern, but started at 6 days before anthesis. Lipid bodies were always seen closely oppressed to the endoplasmic reticulum (ER). Dictyosomes appear active during the entire 9 days; first producing vesicles involved in the formation of the intine and, later, producing vesicles stored in the pollen grain. The dictyosome vesicles appear to contain polysaccharides and concentrate in layers around the lipid bodies. Ribosomes increase in number from 6 days before anthesis and are particularly numerous in the mature pollen. From anthesis minus 6 days until anthesis, the ER cisternae become increasingly inflated and, in the hours immediately before pollen release, form pockets filled with lipid bodies and dictysosome vesicles. The mature pollen has a core region filled with ER pockets and a peripheral cytoplasm in which such pockets are generally lacking.This research was supported in part by NSF Grant BMS575-22-23 and Grant N.RR-00592 from the Division of Research Resources, National Institutes of Health  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号