首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The best-characterized acetylation of newly synthesized histone H4 is the diacetylation of the NH2-terminal tail on lysines 5 and 12. Despite its evolutionary conservation, this pattern of modification has not been shown to be essential for either viability or chromatin assembly in any model organism. We demonstrate that mutations in histone H4 lysines 5 and 12 in yeast confer hypersensitivity to replication stress and DNA-damaging agents when combined with mutations in histone H4 lysine 91, which has also been found to be a site of acetylation on soluble histone H4. In addition, these mutations confer a dramatic decrease in cell viability when combined with mutations in histone H3 lysine 56. We also show that mutation of the sites of acetylation on newly synthesized histone H4 results in defects in the reassembly of chromatin structure that accompanies the repair of HO-mediated double-strand breaks. This defect is not due to a decrease in the level of histone H3 lysine 56 acetylation. Intriguingly, mutations that alter the sites of newly synthesized histone H4 acetylation display a marked decrease in levels of phosphorylated H2A (γ-H2AX) in chromatin surrounding the double-strand break. These results indicate that the sites of acetylation on newly synthesized histones H3 and H4 can function in nonoverlapping ways that are required for chromatin assembly, viability, and DNA damage response signaling.  相似文献   

6.
7.
Histone acetyltransferase 1 (HAT1) is an enzyme that is likely to be responsible for the acetylation that occurs on lysines 5 and 12 of the NH(2)-terminal tail of newly synthesized histone H4. Initial studies suggested that, despite its evolutionary conservation, this modification of new histone H4 played only a minor role in chromatin assembly. However, a number of recent studies have brought into focus the important role of both this modification and HAT1 in histone dynamics. Surprisingly, the function of HAT1 in chromatin assembly may extend beyond just its catalytic activity to include its role as a major histone binding protein. These results are incorporated into a model for the function of HAT1 in histone deposition and chromatin assembly. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.  相似文献   

8.
Nucleotide excision repair (NER) is critical for maintaining genome integrity. How chromatin dynamics are regulated to facilitate this process in chromatin is still under exploration. We show here that a histone H2A variant, Htz1 (H2A.Z), in nucleosomes has a positive function in promoting efficient NER in yeast. Htz1 inherently enhances the occupancy of the histone acetyltransferase Gcn5 on chromatin to promote histone H3 acetylation after UV irradiation. Consequently, this results in an increased binding of a NER protein, Rad14, to damaged DNA. Cells without Htz1 show increased UV sensitivity and defective removal of UV-induced DNA damage in the Htz1-bearing nucleosomes at the repressed MFA2 promoter, but not in the HMRa locus where Htz1 is normally absent. Thus, the effect of Htz1 on NER is specifically relevant to its presence in chromatin within a damaged region. The chromatin accessibility to micrococcal nuclease in the MFA2 promoter is unaffected by HTZ1 deletion. Acetylation on previously identified lysines of Htz1 plays little role in NER or cell survival after UV. In summary, we have identified a novel aspect of chromatin that regulates efficient NER, and we provide a model for how Htz1 influences NER in Htz1 nucleosomes.  相似文献   

9.
Many recent studies have demonstrated recruitment of chromatin-modifying enzymes to double-strand breaks. Instead, we wanted to examine chromatin modifications during the repair of these double-strand breaks. We show that homologous recombination triggers the acetylation of N-terminal lysines on histones H3 and H4 flanking a double-strand break, followed by deacetylation of H3 and H4. Consistent with a requirement for acetylation and deacetylation during homologous recombination, Saccharomyces cerevisiae with substitutions of the acetylatable lysines of histone H4, deleted for the N-terminal tail of histone H3 or H4, deleted for the histone acetyltransferase GCN5 gene or the histone deacetylase RPD3 gene, shows inviability following induction of an HO lesion that is repaired primarily by homologous recombination. Furthermore, the histone acetyltransferases Gcn5 and Esa1 and the histone deacetylases Rpd3, Sir2, and Hst1 are recruited to the HO lesion during homologous recombinational repair. We have also observed a distinct pattern of histone deacetylation at the donor locus during homologous recombination. Our results demonstrate that dynamic changes in histone acetylation accompany homologous recombination and that the ability to modulate histone acetylation is essential for viability following homologous recombination.  相似文献   

10.
11.
Members of histone H1 family bind to nucleosomal and linker DNA to assist in stabilization of higher‐order chromatin structures. Moreover, histone H1 is involved in regulation of a variety of cellular processes by interactions with cytosolic and nuclear proteins. Histone H1, composed of a series of subtypes encoded by distinct genes, is usually differentially expressed in specialized cells and frequently non‐randomly distributed in different chromatin regions. Moreover, a role of specific histone H1 subtype might be also modulated by post‐translational modifications and/or presence of polymorphic isoforms. While the significance of covalently modified histone H1 subtypes has been partially recognized, much less is known about the importance of histone H1 polymorphic variants identified in various plant and animal species, and human cells as well. Recent progress in elucidating amino acid composition‐dependent functioning and interactions of the histone H1 with a variety of molecular partners indicates a potential role of histone H1 polymorphic variation in adopting specific protein conformations essential for chromatin function. The histone H1 allelic variants might affect chromatin in order to modulate gene expression underlying some physiological traits and, therefore could modify the course of diverse histone H1‐dependent biological processes. This review focuses on the histone H1 allelic variability, and biochemical and genetic aspects of linker histone allelic isoforms to emphasize their likely biological relevance.  相似文献   

12.
13.
The Hat1 histone acetyltransferase has been implicated in the acetylation of histone H4 during chromatin assembly. In this study, we have characterized the Hat1 complex from the fission yeast Schizosaccharomyces pombe and have examined its role in telomeric silencing. Hat1 is found associated with the RbAp46 homologue Mis16, an essential protein. The Hat1 complex acetylates lysines 5 and 12 of histone H4, the sites that are acetylated in newly synthesized H4 in a wide range of eukaryotes. Deletion of hat1 in S. pombe is itself sufficient to cause the loss of silencing at telomeres. This is in contrast to results obtained with an S. cerevisiae hat1Δ strain, which must also carry mutations of specific acetylatable lysines in the H3 tail domain for loss of telomeric silencing to occur. Notably, deletion of hat1 from S. pombe resulted in an increase of acetylation of histone H4 in subtelomeric chromatin, concomitant with derepression of this region. A similar loss of telomeric silencing was also observed after growing cells in the presence of the deacetylase inhibitor trichostatin A. However, deleting hat1 did not cause loss of silencing at centromeres or the silent mating type locus. These results point to a direct link between Hat1, H4 acetylation, and the establishment of repressed telomeric chromatin in fission yeast.  相似文献   

14.
15.
16.
Histone acetyltransferase 1 is an evolutionarily conserved type B histone acetyltransferase that is thought to be responsible for the diacetylation of newly synthesized histone H4 on lysines 5 and 12 during chromatin assembly. To understand the function of this enzyme in a complex organism, we have constructed a conditional mouse knockout model of Hat1. Murine Hat1 is essential for viability, as homozygous deletion of Hat1 results in neonatal lethality. The lungs of embryos and pups genetically deficient in Hat1 were much less mature upon histological evaluation. The neonatal lethality is due to severe defects in lung development that result in less aeration and respiratory distress. Many of the Hat1−/− neonates also display significant craniofacial defects with abnormalities in the bones of the skull and jaw. Hat1−/− mouse embryonic fibroblasts (MEFs) are defective in cell proliferation and are sensitive to DNA damaging agents. In addition, the Hat1−/− MEFs display a marked increase in genome instability. Analysis of histone dynamics at sites of replication-coupled chromatin assembly demonstrates that Hat1 is not only responsible for the acetylation of newly synthesized histone H4 but is also required to maintain the acetylation of histone H3 on lysines 9, 18, and 27 during replication-coupled chromatin assembly.  相似文献   

17.
The SAS3-dependent NuA3 histone acetyltransferase complex was originally identified on the basis of its ability to acetylate histone H3 in vitro. Whether NuA3 is capable of acetylating histones in vivo, or how the complex is targeted to the nucleosomes that it modifies, was unknown. To address this question, we asked whether NuA3 is associated with chromatin in vivo and how this association is regulated. With a chromatin pulldown assay, we found that NuA3 interacts with the histone H3 amino-terminal tail, and loss of the H3 tail recapitulates phenotypes associated with loss of SAS3. Moreover, mutation of histone H3 lysine 14, the preferred site of acetylation by NuA3 in vitro, phenocopies a unique sas3Delta phenotype, suggesting that modification of this residue is important for NuA3 function. The interaction of NuA3 with chromatin is dependent on the Set1p and Set2p histone methyltransferases, as well as their substrates, histone H3 lysines 4 and 36, respectively. These results confirm that NuA3 is functioning as a histone acetyltransferase in vivo and that histone H3 methylation provides a mark for the recruitment of NuA3 to nucleosomes.  相似文献   

18.
M Noll 《Cell》1976,8(3):349-355
The subunit structure of Neurospora chromatin which contains a full histone complement (Goff, 1976) exhibits both differences and similarities to chromatin of higher eucaryotes. The size of the DNA per subunit is only 170 +/- 5 base pairs, as compared to 200 base pairs in higher eucaryotes. However, the internal structures of the subunits are closely related. They contain 140 base pairs of DNA that are more tightly associated with the histone core and similarly arranged on the outside of the subunit. Hence the difference in structure resides in a shorter linker region of adjacent subunits in Neurospora chromatin. This is supported by a reduced primary cutting site and a lower content of lysines in histone H1. The role of H1 and its relation to the linker region are discussed.  相似文献   

19.
Histone modifications represent an important epigenetic mechanism for the organization of higher order chromatin structure and gene regulation. Methylation of position-specific lysine residues in the histone H3 and H4 amino termini has linked with the formation of constitutive and facultative heterochromatin as well as with specifically repressed single gene loci. Using an antibody, directed against dimethylated lysine 9 of histone H3 and several other lysine methylation sites, we visualized the nuclear distribution pattern of chromatin flagged by these methylated lysines in 3D preserved nuclei of normal and malignant cell types. Optical confocal serial sections were used for a quantitative evaluation. We demonstrate distinct differences of these histone methylation patterns among nuclei of different cell types after exit of the cell cycle. Changes in the pattern formation were also observed during the cell cycle. Our data suggest an important role of methylated histones in the reestablishment of higher order chromatin arrangements during telophase/early G1. Cell type specific histone methylation patterns are possibly casually involved in the formation of cell type specific heterochromatin compartments, composed of (peri)centromeric regions and chromosomal subregions from neighboring chromosomes territories, which contain silent genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号