首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Eyes absent (Eya) genes regulate organogenesis in both vertebrates and invertebrates. Mutations in human EYA1 cause congenital Branchio-Oto-Renal (BOR) syndrome, while targeted inactivation of murine Eya1 impairs early developmental processes in multiple organs, including ear, kidney and skeletal system. We have now examined the role of Eya1 during the morphogenesis of organs derived from the pharyngeal region, including thymus, parathyroid and thyroid. The thymus and parathyroid are derived from 3rd pharyngeal pouches and their development is initiated via inductive interactions between neural crest-derived arch mesenchyme, pouch endoderm, and possibly the surface ectoderm of 3rd pharyngeal clefts. Eya1 is expressed in all three cell types during thymus and parathyroid development from E9.5 and the organ primordia for both of these structures failed to form in Eya1(-/-) embryos. These results indicate that Eya1 is required for the initiation of thymus and parathyroid gland formation. Eya1 is also expressed in the 4th pharyngeal region and ultimobranchial bodies. Eya1(-/-) mice show thyroid hypoplasia, with severe reduction in the number of parafollicular cells and the size of the thyroid lobes and lack of fusion between the ultimobranchial bodies and the thyroid lobe. These data indicate that Eya1 also regulates mature thyroid gland formation. Furthermore, we show that Six1 expression is markedly reduced in the arch mesenchyme, pouch endoderm and surface ectoderm in the pharyngeal region of Eya1(-/-) embryos, indicating that Six1 expression in those structures is Eya1 dependent. In addition, we show that in Eya1(-/-) embryos, the expression of Gcm2 in the 3rd pouch endoderm is undetectable at E10.5, however, the expression of Hox and Pax genes in the pouch endoderm is preserved at E9.5-10.5. Finally, we found that the surface ectoderm of the 3rd and 4th pharyngeal region show increased cell death at E10.5 in Eya1(-/-) embryos. Our results indicate that Eya1 controls critical early inductive events involved in the morphogenesis of thymus, parathyroid and thyroid.  相似文献   

2.
3.
Previous studies have implicated Sonic hedgehog (Shh) as an important regulator of pharyngeal region development. Here we show that Shh is differentially expressed within the pharyngeal endoderm along the anterior-posterior axis. In Shh-/- mutants, the pharyngeal pouches and arches formed by E9.5 and marker expression showed that initial patterning was normal. However, by E10.5-E11.0, the first arch had atrophied and the first pouch was missing. Although small, the second, third, and fourth arches and pouches were present. The expression patterns of Fgf8, Pax1, and Bmp4 suggested that pouch identity was abnormal at E10.5 and that Shh is a negative regulator of these genes in the pouches. Despite the loss of pouch identity and an increase in mesenchymal cell death, arch identity markers were expressed normally. Our data show that a Shh-dependent patterning mechanism is required to maintain pouch patterning, independent or downstream of arch identity. Changes in the distribution of Bmp4 and Gcm2 in the third pouch endoderm and subsequent organ phenotypes in Shh-/- mutants suggested that exclusion of Shh from the third pouch is required for dorsal-ventral patterning and for parathyroid specification and organogenesis. Furthermore, this function for Shh may be opposed by Bmp4. Our data suggest that, as in the posterior gut endoderm, exclusion of Shh expression from developing primordia is required for the proper development of pharyngeal-derived organs.  相似文献   

4.
5.
6.
Pbx1 is a TALE-class homeodomain protein that functions in part as a cofactor for Hox class homeodomain proteins. Previous analysis of the in vivo functions of Pbx1 by targeted mutagenesis in mice has revealed roles for this gene in skeletal patterning and development and in the organogenesis of multiple systems. Both RNA expression and protein localization studies have suggested a possible role for Pbx1 in pharyngeal region development. As several Hox mutants have distinct phenotypes in this region, we investigated the potential requirement for Pbx1 in the development of the pharyngeal arches and pouches and their organ derivatives. Pbx1 homozygous mutants exhibited delayed or absent formation of the caudal pharyngeal pouches, and disorganized patterning of the third pharyngeal pouch. Formation of the third pouch-derived thymus/parathyroid primordia was also affected, with absent or hypoplastic primordia, delayed expression of organ-specific differentiation markers, and reduced proliferation of thymic epithelium. The fourth pouch and the fourth pouch-derived ultimobranchial bodies were usually absent. These phenotypes are similar to those previously reported in Hoxa3(-/-) single mutants and Hoxa1(-/-);Hoxb1(-/-) or Hoxa3(+/-);Hoxb3(-/-);Hoxd3(-/-) compound mutants, suggesting that Pbx1 acts together with multiple Hox proteins in the development of the caudal pharyngeal region. However, some aspects of the Pbx1 mutant phenotype included specific defects that were less severe than those found in known Hox mutant mice, suggesting that some functions of Hox proteins in this region are Pbx1-independent.  相似文献   

7.
The thymus and parathyroid glands in mice develop from a thymus/parathyroid primordium that forms from the endoderm of the third pharyngeal pouch. We investigated the molecular mechanisms that promote this unique process in which two distinct organs form from a single primordium, using mice mutant for Hoxa3 and Pax1. Thymic ectopia in Hoxa3(+/-)Pax1(-/-) compound mutants is due to delayed separation of the thymus/parathyroid primordium from the pharynx. The primordium is hypoplastic at its formation, and has increased levels of apoptosis. The developing third pouch in Hoxa3(+/-)Pax1(-/-) compound mutants initiates normal expression of the parathyroid-specific Gcm2 and thymus-specific Foxn1 genes. However, Gcm2 expression is reduced at E11.5 in Pax1(-/-) single mutants, and further reduced or absent in Hoxa3(+/-)Pax1(-/-) compound mutants. Subsequent to organ-specific differentiation from the shared primordium, both the parathyroids and thymus developed defects. Parathyroids in compound mutants were smaller at their formation, and absent at later stages. Parathyroids were also reduced in Pax1(-/-) mutants, revealing a new function for Pax1 in parathyroid organogenesis. Thymic hypoplasia at later fetal stages in compound mutants was associated with increased death and decreased proliferation of thymic epithelial cells. Our results suggest that a Hoxa3-Pax1 genetic pathway is required for both epithelial cell growth and differentiation throughout thymus and parathyroid organogenesis.  相似文献   

8.
Although it is well established that the Gdnf-Ret signal transduction pathway initiates metanephric induction, no single regulator has yet been identified to specify the metanephric mesenchyme or blastema within the intermediate mesoderm, the earliest step of metanephric kidney development and the molecular mechanisms controlling Gdnf expression are essentially unknown. Previous studies have shown that a loss of Eya 1 function leads to renal agenesis that is a likely result of failure of metanephric induction. The studies presented here demonstrate that Eya 1 specifies the metanephric blastema within the intermediate mesoderm at the caudal end of the nephrogenic cord. In contrast to its specific roles in metanephric development, Eya 1 appears dispensable for the formation of nephric duct and mesonephric tubules. Using a combination of null and hypomorphic Eya 1 mutants, we now demonstrated that approximately 20% of normal Eya 1 protein level is sufficient for establishing the metanephric blastema and inducing the ureteric bud formation but not for its normal branching. Using Eya 1, Gdnf, Six 1 and Pax 2 mutant mice, we show that Eya 1 probably functions at the top of the genetic hierarchy controlling kidney organogenesis and it acts in combination with Six 1 and Pax 2 to regulate Gdnf expression during UB outgrowth and branching. These findings uncover an essential function for Eya 1 as a critical determination factor in acquiring metanephric fate within the intermediate mesoderm and as a key regulator of Gdnf expression during ureteric induction and branching morphogenesis.  相似文献   

9.
Embryos that are homozygous for Splotch, a null allele of Pax3, have a severe neural crest cell (NCC) deficiency that generates a complex phenotype including spina bifida, exencephaly and cardiac outflow tract abnormalities. Contrary to the widely held perception that thymus aplasia or hypoplasia is a characteristic feature of Pax3Sp/Sp embryos, we find that thymic rudiments are larger and parathyroid rudiments are smaller in E11.5-12.5 Pax3Sp/Sp compared to Pax3+/+ embryos. The thymus originates from bilateral third pharyngeal pouch primordia containing endodermal progenitors of both thymus and parathyroid glands. Analyses of Foxn1 and Gcm2 expression revealed a dorsal shift in the border between parathyroid- and thymus-fated domains at E11.5, with no change in the overall cellularity or volume of each shared primordium. The border shift increases the allocation of third pouch progenitors to the thymus domain and correspondingly decreases allocation to the parathyroid domain. Initial patterning in the E10.5 pouch was normal suggesting that the observed change in the location of the organ domain interface arises during border refinement between E10.5 and E11.5. Given the well-characterized NCC defects in Splotch mutants, these findings implicate NCCs in regulating patterning of third pouch endoderm into thymus- versus parathyroid-specified domains, and suggest that organ size is determined in part by the number of progenitor cells specified to a given fate.  相似文献   

10.
The thymus and parathyroid glands are derived from the third pharyngeal pouch endoderm. The mechanisms that establish distinct molecular domains in the third pouch and control the subsequent separation of these organ primordia from the pharynx are poorly understood. Here, we report that mouse embryos that lack two FGF feedback antagonists, Spry1 and Spry2, display parathyroid and thymus hypoplasia and a failure of these organ primordia to completely separate from the pharynx. We show that FGF ligands and downstream reporter genes are expressed in highly regionalised patterns in the third pouch and that sprouty gene deletion results in upregulated FGF signalling throughout the pouch endoderm. As a consequence, the initiation of markers of parathyroid and thymus fate is altered. In addition, a normal apoptotic programme that is associated with the separation of the primordia from the pharynx is disrupted, resulting in the maintenance of a thymus-pharynx attachment and a subsequent inability of the thymus to migrate to its appropriate position above the heart. We demonstrate that the sprouty genes function in the pharyngeal endoderm itself to control these processes and that the defects in sprouty-deficient mutants are, at least in part, due to hyper-responsiveness to Fgf8. Finally, we provide evidence to suggest that parathyroid hypoplasia in these mutants is due to early gene expression defects in the third pouch, whereas thymus hypoplasia is caused by reduced proliferation of thymic epithelial cells in the thymus primordium.  相似文献   

11.
The parathyroid glands originate from the endoderm of the caudal pharyngeal pouches. How these parathyroids are restricted to developing in the caudal pouches is unclear. In this paper we investigate the role of Shh signalling in patterning the vertebrate pharyngeal pouches, and show that Hh signalling may be involved in restricting the expression of the parathyroid marker Gcm2 in the pharyngeal epithelium. In the chick and mouse, Shh signalling is excluded or highly reduced in the posterior/caudal pouches, where the parathyroid marker Gcm2 is expressed, while remaining at high levels in the more anterior pouches. Moreover, though the block of Shh signalling at early developmental stages results in the loss of chick Gcm2 expression, at later stages, it induces ectopic Gcm2 expression domains in the second and first pharyngeal epithelium, suggesting that HH signalling prevents Gcm2 in those tissues. These ectopic domains go on to express other parathyroid markers but do not migrate and develop into ectopic parathyroids. Differences in the expression of Gcm2 in the chick, mouse and zebrafish, correlate with changing patterns of Shh signalling, indicating a conserved regulatory mechanism that acts to define pouch derivatives.  相似文献   

12.
The thymus and parathyroids originate from the third pharyngeal pouches, which form as endodermal outpocketings in the pharyngeal region beginning on embryonic day 9 (E9.0) of mouse development. Using organ-specific markers, we have previously shown that thymus and parathyroid-specific organ domains are established within the primordium prior to formation of the organs proper: Gcm2 expression defines the prospective parathyroid cells in the dorsal pouch from E9.5, while Foxn1 is expressed in the thymus domain from E11.25. Bmp (bone morphogenetic protein) signaling has been implicated in thymic epithelial cell differentiation and thymus organogenesis. In the present study, we report expression patterns of Bmp4 and Noggin, a Bmp4 antagonist, in the third pharyngeal pouch using two lacZ transgenic mouse strains. Results from this gene expression study revealed localization of Bmp4 expression to the ventral region of the third pharyngeal pouch endoderm at E10.5 and E11.5, in those cells that will express Foxn1 and form the thymus. Conversely, the expression of Noggin was confined to the dorsal region of the pouch and primordium at these stages, and thus appeared to be co-expressed with Gcm2 in the parathyroid domain. This represents the first detailed study of Bmp4 and Noggin expression during the early stages of thymus and parathyroid organogenesis.  相似文献   

13.
14.
15.
Epithelial-mesenchymal interactions are crucial for the development of the endoderm of the pharyngeal pouches into the epithelia of thymus and parathyroid glands. Here we investigated the dynamics of epithelial-mesenchymal interactions that take place at the earliest stages of thymic and parathyroid organogenesis using the quail-chick model together with a co-culture system capable of reproducing these early events in vitro. The presumptive territories of thymus and parathyroid epithelia were identified in three-dimensionally preserved pharyngeal endoderm of embryonic day 4.5 chick embryos on the basis of the expression of Foxn1 and Gcm2, respectively: the thymic rudiment is located in the dorsal domain of the third and fourth pouches, while the parathyroid rudiment occupies a more medial/anterior pouch domain. Using in vitro quail-chick tissue associations combined with in ovo transplantations, we show that the somatopleural but not the limb bud mesenchyme, can mimic the role of neural crest-derived pharyngeal mesenchyme to sustain development of these glands up to terminal differentiation. Furthermore, mesenchymal-derived Bmp4 appears to be essential to promote early stages of endoderm development during a short window of time, irrespective of the mesenchymal source. In vivo studies using the quail-chick system and implantation of growth factor soaked-beads further showed that expression of Bmp4 by the mesenchyme is necessary during a 24 h-period of time. After this period however, Bmp4 is no longer required and another signalling factor produced by the mesenchyme, Fgf10, influences later differentiation of the pouch endoderm. These results show that morphological development and cell differentiation of thymus and parathyroid epithelia require a succession of signals emanating from the associated mesenchyme, among which Bmp4 plays a pivotal role for triggering thymic epithelium specification.  相似文献   

16.
Cell fate specification during inner ear development is dependent upon regional gene expression within the otic vesicle. One of the earliest cell fate determination steps in this system is the specification of neural precursors, and regulators of this process include the Atonal-related basic helix-loop-helix genes, Ngn1 and NeuroD and the T-box gene, Tbx1. In this study we demonstrate that Eya1 signaling is critical to the normal expression patterns of Tbx1, Ngn1, and NeuroD in the developing mouse otocyst. We discuss a potential mechanism for the absence of neural precursors in the Eya1-/- inner ears and the primary and secondary mechanisms for the loss of cochleovestibular ganglion cells in the Eya1bor/bor hypomorphic mutant.  相似文献   

17.
18.
Interaction between the ureteric-bud epithelium and the metanephric mesenchyme is important for kidney development. Six1 and Six4 are the mammalian homologs of Drosophila sine oculis, and they are coexpressed in the nephrogenic mesenchyme. Six1-deficient mice show varying kidney defects, while Six4-deficient mice have no apparent abnormalities. Here, we report Six1/Six4-deficient mice that we generated in order to elucidate the functions of Six4 in Six1-deficient kidney development. The Six1/Six4-deficient mice exhibited more severe kidney phenotypes than the Six1-deficient mice; kidney and ureter agenesis was observed in all the neonates examined. The Six1/Six4-deficient metanephric mesenchyme cells were directed toward kidney lineage but failed to express Pax2, Pax8, or Gdnf, whereas the expression of these genes was partially reduced or unchanged in the case of Six1 deficiency. Thus, Six4 cooperates with Six1 in the metanephric mesenchyme to regulate the level of Gdnf expression; this could explain the absence of the ureteric bud in the Six1/Six4-deficient mice. In contrast, Six1 deficiency alone caused defects in mesonephric-tubule formation, and these defects were not exacerbated in the Six1/Six4-deficient mesonephros. These results highlight the fact that Six1 and Six4 have collaborative functions in the metanephros but not in the mesonephros.  相似文献   

19.
20.
Mice deficient for the homeobox gene Six1 display defects in limb muscles consistent with the Six1 expression in myogenic cells. In addition to its myogenic expression domain, Six1 has been described as being located in digit tendons and as being associated with connective tissue patterning in mouse limbs. With the aim of determining a possible involvement of Six1 in tendon development, we have carefully characterised the non-myogenic expression domain of the Six1 gene in mouse and chick limbs. In contrast to previous reports, we found that this non-myogenic domain is distinct from tendon primordia and from tendons defined by scleraxis expression. The non-myogenic domain of Six1 expression establishes normally in the absence of muscle, in Pax3-/- mutant limbs. Moreover, the expression of scleraxis is not affected in early Six1-/- mutant limbs. We conclude that the expression of the Six1 gene is not related to tendons and that Six1, at least on its own, is not involved in limb tendon formation in vertebrates. Finally, we found that the posterior domain of Six1 in connective tissue is adjacent to that of the secreted factor Sonic hedgehog and that Sonic hedgehog is necessary and sufficient for Six1 expression in posterior limb regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号