首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comprehension of the genetics of host resistance to malaria is essential to understanding the complex host/parasite interaction. Current research is directed towards the genetic dissection of both the murine and human host responses to the disease. Significant progress has been made towards the mapping of novel murine resistance loci. In addition, the role of the major histocompatibility complex in the host response has been examined in both animal models and human populations. Several large segregation analyses, association studies and, more recently, linkage analyses have been conducted in different African populations to examine the role of host genetics in both mild and severe malaria. The results of these studies have been collated within this review. The cloning of genes involved in malarial resistance will lead not only to a greater understanding of this complex disease but, potentially, to the development of effective medical intervention.  相似文献   

2.
Autophagy is a major intracellular pathway for degradation and recycling of long-lived proteins and cytoplasmic organelles that plays an essential role in maintenance of homeostasis in response to starvation and other cellular stresses. Autophagy is also important for a variety of other processes including restriction of intracellular pathogen replication. Our understanding of the fascinating relationship between viruses and the autophagy machinery is still in its infancy but it is clear that autophagy is a newly recognized facet of innate and adaptive immunity against viral infection. Although the autophagy pathway is emerging as a component of host defense, certain viruses have developed strategies to counteract these antiviral mechanisms, and others appear to have co-opted the autophagy machinery as proviral host factors favoring viral replication. The complex interplay between autophagy and viral infection will be discussed in this review.  相似文献   

3.
Macrophages represent the first line of defense against invading Mycobacterium tuberculosis (Mtb). In order to enhance intracellular survival, Mtb targets various components of the host signaling pathways to limit macrophage functions. The outcome of Mtb infection depends on various factors derived from both host and pathogen. A detailed understanding of such factors operating during interaction of the pathogen with the host is a prerequisite for designing new approaches for combating mycobacterial infections. This work analyzed the role of host phospholipase C-γ1 (PLC-γ1) in regulating mycobacterial uptake and killing by J774A.1 murine macrophages. Small interfering RNA mediated knockdown of PLC-γ1 increased internalization and reduced the intracellular survival of both Mtb and Mycobacterium smegmatis (MS) by macrophages. Down-regulation of the host PLC-γ1 was observed during the course of mycobacterial infection within these macrophages. Finally, Mtb infection also suppressed the expression of pro-inflammatory cytokine tumor necrosis factor-α and chemokine (C-C motif) ligand 5 (RANTES) which was restored by knocking down PLC-γ1 in J774A.1 cells. These observations suggest a role of host PLC-γ1 in the uptake and killing of mycobacteria by murine macrophages.  相似文献   

4.
Cryptococcus neoformans (Cn), the major causative agent of human fungal meningoencephalitis, replicates within phagolysosomes of infected host cells. Despite more than a half-century of investigation into host-Cn interactions, host factors that mediate infection by this fungal pathogen remain obscure. Here, we describe the development of a system that employs Drosophila S2 cells and RNA interference (RNAi) to define and characterize Cn host factors. The system recapitulated salient aspects of fungal interactions with mammalian cells, including phagocytosis, intracellular trafficking, replication, cell-to-cell spread and escape of the pathogen from host cells. Fifty-seven evolutionarily conserved host factors were identified using this system, including 29 factors that had not been previously implicated in mediating fungal pathogenesis. Subsequent analysis indicated that Cn exploits host actin cytoskeletal elements, cell surface signaling molecules, and vesicle-mediated transport proteins to establish a replicative niche. Several host molecules known to be associated with autophagy (Atg), including Atg2, Atg5, Atg9 and Pi3K59F (a class III PI3-kinase) were also uncovered in our screen. Small interfering RNA (siRNA) mediated depletion of these autophagy proteins in murine RAW264.7 macrophages demonstrated their requirement during Cn infection, thereby validating findings obtained using the Drosophila S2 cell system. Immunofluorescence confocal microscopy analyses demonstrated that Atg5, LC3, Atg9a were recruited to the vicinity of Cn containing vacuoles (CnCvs) in the early stages of Cn infection. Pharmacological inhibition of autophagy and/or PI3-kinase activity further demonstrated a requirement for autophagy associated host proteins in supporting infection of mammalian cells by Cn. Finally, systematic trafficking studies indicated that CnCVs associated with Atg proteins, including Atg5, Atg9a and LC3, during trafficking to a terminal intracellular compartment that was decorated with the lysosomal markers LAMP-1 and cathepsin D. Our findings validate the utility of the Drosophila S2 cell system as a functional genomic platform for identifying and characterizing host factors that mediate fungal intracellular replication. Our results also support a model in which host Atg proteins mediate Cn intracellular trafficking and replication.  相似文献   

5.
6.
Mice from the majority of inbred strains are resistant to infection by Leishmania major, an obligate intracellular protozoan parasite of macrophages in the mammalian host. In contrast, mice from BALB strains are unable to control infection and develop progressive disease. In this model of infection, genetically determined resistance and susceptibility have been clearly shown to result from the appearance of parasite-specific CD4+ T helper 1 or T helper 2 cells, respectively. This murine model of infection is considered as one of the best experimental systems for the study of the mechanisms operating in vivo at the initiation of polarised T helper 1 and T helper 2 cell maturation. Among the several factors influencing Th cell development, cytokines themselves critically regulate this process. The results accumulated during the last years have clarified some aspects of the role played by cytokines in Th cell differentiation. They are providing critical information that may ultimately lead to the rational devise of means by which to tailor immune responses to the effector functions that are most efficient in preventing and/or controlling infections with pathogens.  相似文献   

7.
The first experimental evidence for the development of polarized CD4+ Th1 and Th2 responses in vivo has been obtained using the murine model of infection with Leishmania major, an intracellular parasite of macrophages in their vertebrate host. Genetically determined resistance and susceptibility to infection with this parasite have been clearly demonstrated to result from the development of polarized Th1 and Th2 responses, respectively. Using this model system, the dominant role of cytokines in the induction of polarized CD4+ responses has been validated in vivo. The requisite role of IL-4 in mediating both Th2 differentiation and susceptibility to infection in BALB/c mice has directed interest towards the search for evidence of IL-4 production early after infection and identification of its cellular source. We have been able to demonstrate a burst of IL-4 production in susceptible BALB/c mice within the first day of infection with L. major and could establish that this rapidly produced IL-4 instructed Th2 lineage commitment of subsequently activated CD4+ T cells and stabilized this commitment by downregulating IL-12 Rbeta2 chain expression, resulting in susceptibility to infection. Strikingly, this early IL-4 response to infection resulted from the cognate recognition of a single epitope in a distinctive antigen, LACK, from this complex microorganism by a restricted population of CD4+ T cells that express Vbeta4-Valpha8 T cell receptors.  相似文献   

8.
Listeria monocytogenes is a rapidly growing, Gram‐positive, facultative intracellular pathogen that has been used for over 5 decades as a model to study basic aspects of infection and immunity. In a murine intravenous infection model, immunisation with a sublethal infection of L. monocytogenes initially leads to rapid intracellular multiplication followed by clearance of the bacteria and ultimately culminates in the development of long‐lived cell‐mediated immunity (CMI) mediated by antigen‐specific CD8+ cytotoxic T‐cells. Importantly, effective immunisation requires live, replicating bacteria. In this review, we summarise the cell and immunobiology of L. monocytogenes infection and discuss aspects of its pathogenesis that we suspect lead to robust CMI. We suggest five specific features of L. monocytogenes infection that positively impact the development of CMI: (a) the bacteria have a predilection for professional antigen‐presenting cells; (b) the bacteria escape from phagosomes, grow, and secrete antigens into the host cell cytosol; (c) bacterial‐secreted proteins enter the major histocompatibility complex (MHC) class I pathway of antigen processing and presentation; (d) the bacteria do not induce rapid host cell death; and (e) cytosolic bacteria induce a cytokine response that favours CMI. Collectively, these features make L. monocytogenes an attractive vaccine vector for both infectious disease applications and cancer immunotherapy.  相似文献   

9.
10.
The murine gene Fv-1 has been shown to exert a major influence over the replication of ecotropic murine leukemia viruses. Studies of the replication of Friend murine leukemia virus have shown that the restriction of viral replication occurs intracellularly after the initiation of viral DNA synthesis. The precise mechanism of the block imposed by the Fv-1 gene product is not completely understood. Our studies of Fv-1 restrictive infection have shown a variable decrease in the accumulation of intracellular unintegrated form I viral DNA. Analysis by microinjection of the viral DNA formed in nonpermissively infected BALB/c cells indicates that this DNA is infectious. These studies indicate that the form I DNA accumulated in nonpermissively infected BALB/c cells contains the complete viral sequences necessary for the production of viral progeny, and therefore, they suggest that the Fv-1 host restrictive mechanism recognizes viral factors other than form I DNA alone. These results support the possibility that Fv-1 host restriction occurs after formation of infectious viral DNA, perhaps at the integration step itself.  相似文献   

11.
Brucella species are facultative intracellular bacterial pathogens that cause brucellosis, a global zoonosis of profound importance. Although recent studies have demonstrated that Brucella spp. replicate within an intracellular compartment that contains endoplasmic reticulum (ER) resident proteins, the molecular mechanisms by which the pathogen secures this replicative niche remain obscure. Here, we address this issue by exploiting Drosophila S2 cells and RNA interference (RNAi) technology to develop a genetically tractable system that recapitulates critical aspects of mammalian cell infection. After validating this system by demonstrating a shared requirement for phosphoinositide 3-kinase (PI3K) activities in supporting Brucella infection in both host cell systems, we performed an RNAi screen of 240 genes, including 110 ER-associated genes, for molecules that mediate bacterial interactions with the ER. We uncovered 52 evolutionarily conserved host factors that, when depleted, inhibited or increased Brucella infection. Strikingly, 29 of these factors had not been previously suggested to support bacterial infection of host cells. The most intriguing of these was inositol-requiring enzyme 1 (IRE1), a transmembrane kinase that regulates the eukaryotic unfolded protein response (UPR). We employed IRE1alpha(-/-) murine embryonic fibroblasts (MEFs) to demonstrate a role for this protein in supporting Brucella infection of mammalian cells, and thereby, validated the utility of the Drosophila S2 cell system for uncovering novel Brucella host factors. Finally, we propose a model in which IRE1alpha, and other ER-associated genes uncovered in our screen, mediate Brucella replication by promoting autophagosome biogenesis.  相似文献   

12.
A. Hoerauf    Ch. Rascher    R. Bang    A. Pahl    W. Solbach    K. Brune    M. Röllinghoff  & H. Bang 《Molecular microbiology》1997,24(2):421-429
The antiparasitic effects of cyclosporin A were examined in leishmanial infection by analysing the role of CsA-binding proteins (cyclophilins) in the host–parasite interaction. We hypothesized that the leishmanicidal effects of CsA on Leishmania major infected macrophages might be mediated through a cyclophilin of either the parasite or the host cell. Two cyclophilins (20 and 22 kDa) were purified from L. major parasites and N-terminally sequenced. Although enzyme activity of these cyclophilins was inhibited by CsA, pretreatment of L. major parasites with CsA did not result in reduction of a subsequent macrophage infection, arguing against a role of L. major cyclophilins as infectivity potentiators. However, host-cell cyclophilin A (CypA) was found to be critically involved in the intracellular replication of L. major parasites in murine macrophages. An antisense oligonucleotide to murine CypA was constructed and added to cultures of peritoneal macrophages prior to infection with L. major parasites. This treatment strongly reduced the expression of CypA in macrophages and resulted in the inhibition of the intracellular replication of L. major amastigotes. These data indicate that interaction of amastigotes with host-cell cyclophilin is an important part of the intracellular replication machinery of L. major and define, for the first time, a direct involvement of a cyclophilin in the survival strategies of an intracellular parasite.  相似文献   

13.
14.
Infection with Mycobacterium tuberculosis is a major world health problem. An estimated 2 billion people are presently infected and the disease causes approximately 3 million deaths per year. After bacteria are inhaled into the lung, a complex immune response is triggered leading to the formation of multicellular structures termed granulomas. It is believed that the collection of host granulomas either contain bacteria resulting in a latent infection or are unable to do so, leading to active disease. Thus, understanding granuloma formation and function is essential for improving both diagnosis and treatment of tuberculosis. Granuloma formation is a complex spatio-temporal system involving interactions of bacteria, specific immune cells, including macrophages, CD4+ and CD8+ T cells, as well as immune effectors such as chemokine and cytokines. To study this complex dynamical system we have developed an agent-based model of granuloma formation in the lung. This model combines continuous representations of chemokines with discrete agent representations of macrophages and T cells in a cellular automata-like environment. Our results indicate that key host elements involved in granuloma formation are chemokine diffusion, prevention of macrophage overcrowding within the granuloma, arrival time, location and number of T cells within the granuloma, and an overall host ability to activate macrophages. Interestingly, a key bacterial factor is its intracellular growth rate, whereby slow growth actually facilitates survival.  相似文献   

15.
DNA微阵列技术在细菌感染后宿主反应研究中的应用   总被引:2,自引:1,他引:1  
感染性疾病是病原微生物和宿主紧密相互作用的结果。深入理解宿主对病原微生物感染发生反应的分子基础是预防感染性疾病发生和组织损伤的必要条件。本文通过介绍体内、体外2种感染模型中宿主对细胞内和细胞外致病菌感染后的基因表达谱变化,简述了DNA微阵列技术在病原菌一宿主相互作用中宿主反应研究中的应用。  相似文献   

16.
Although the role of host heredity in susceptibility to infectious diseases is significant, the genetic control of immunity to infection remains poorly understood. Advances in experimental and epidemiological analyses of complex genetic traits have led to the discoveries of novel genetic determinants of host resistance. New loci that control susceptibility to a number of intracellular pathogens have been identified using mouse models of infectious diseases. The contributions of individual loci, however, vary in quantitative and qualitative manner, depending on mechanisms of pathogen virulence and genetic background of the host. In this review, we discuss how genetic analysis of host resistance contributes to further understanding of host immunity and pathogenesis of intracellular infections.  相似文献   

17.
Burkholderia cepacia complex (Bcc) are opportunistic pathogens implicated with nosocomial infections, and high rates of morbidity and mortality, especially in individuals with cystic fibrosis (CF). B. cepacia are naturally resistant to different classes of antibiotics, and can subvert the host innate immune responses by producing quorum sensing (QS) controlled virulence factors and biofilms. It still remains a conundrum as to how exactly the bacterium survives the intracellular environment within the host cells of CF patients and immunocompromised individuals although the bacterium can invade human lung epithelial cells, neutrophils, and murine macrophages. The mechanisms associated with intracellular survival in the airway epithelial cells and the role of QS and virulence factors in B. cepacia infections in cystic fibrosis remain largely unclear. The current review focuses on understanding the role of QS-controlled virulence factors and biofilms, and provides additional impetus to understanding the potentials of QS-inhibitory strategies against B. cepacia.  相似文献   

18.
Competition for cellular iron (Fe) is a vital component of the interaction between host and intracellular pathogen. The host cell requires Fe for the execution of antimicrobial effector mechanisms, whereas most bacteria have an obligate requirement for Fe to sustain growth and intracellular survival. In this study, we show that chelation of host Fe in vivo exacerbates murine salmonellosis, resulting in increased bacterial load and decreased survival times. We further demonstrate that host Fe deprivation results in an inability to induce the NADPH oxidase-dependent production of reactive oxygen, an essential host defense mechanism for the early control of Salmonella typhimurium infection. Thus, altering the equilibrium of intracellular Fe influences the course of infection to the benefit of the pathogen.  相似文献   

19.
20.
A general association of human and primate lymphotropic herpesviruses (gamma-herpesviruses) with the development of lymphomas, as well as other tumors, especially in immunocompromised hosts, has been well documented. The lack of relevant small animal models for human gamma-herpesviruses has impeded progress in understanding the role of these viruses in the development of chronic disease. Recent research characterizing infection of inbred strains of mice with a murine gamma-herpesvirus, gamma-herpesvirus 68 (gammaHV68), is providing insights into viral and host factors involved in the establishment and control of chronic gamma-herpesvirus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号