首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Abstract. The objective of the present work was to study the effect of nitrogen deficiency on drought sensitivity of tall fescue plants. The authors compared photosynthetic and stomatal behaviour of plants grown at either high (8 mol m−3) or low (0.5 mol m−3) nitrogen levels during a drought cycle followed by rehydration. Other processes investigated were stomatal and non-stomatal inhibition of leaf photosynthesis, water use efficiency and leaf rolling. Plants were grown in pots in controlled conditions on expanded clay. A Wescor in situ hygrometer placed on the leaf base outside the assimilation chamber permitted, simultaneously to leaf gas exchange measurements, monitoring of leaf water potential. Drought was imposed by withholding water from the pot. CO2 uptake and stomatal conductance decreased and leaves started to roll at a lower leaf water potential in the high-N than in the low-N grown plants. Stomatal inhibition of leaf photosynthesis seemed larger in the low-N than in the high-N plants. Water-use efficiency increased more in the high-N than in the low-N grown plants during the drought. The decrease of photosynthesis was largely reversible after rehydration in low-N but not in high-N leaves. The authors suggest that low-N plants avoid water deficit rather than tolerate it.  相似文献   

2.
Early signals potentially regulating leaf growth and stomatal aperture in field-grown maize (Zea mays L.) subjected to drought were investigated. Plants grown in a field lysimeter on two soil types were subjected to progressive drought during vegetative growth. Leaf ABA content, water status, extension rate, conductance, photosynthesis, nitrogen content, and xylem sap composition were measured daily. Maize responded similarly to progressive drought on both soil types. Effects on loam were less pronounced than on sand. Relative to fully-watered controls, xylem pH increased by about 0.2 units one day after withholding irrigation (DAWI) and conductivity decreased by about 0.25 mS cm(-1) 1-3 DAWI. Xylem nitrate, ammonium, and phosphate concentrations decreased by about 50% at 1-5 DAWI and potassium concentration decreased by about 50% at 7-8 DAWI. Xylem ABA concentration consistently increased by 45-70 pmol ml(-1) at 7 DAWI. Leaf extension rate decreased 5 DAWI, after the changes in xylem chemical composition had occurred. Leaf nitrogen significantly decreased 8-16 DAWI in droughted plants. Midday leaf water potential and photosynthesis were significantly decreased in droughted plants late in the drying period. Xylem nitrate concentration was the only ionic xylem sap component significantly correlated to increasing soil moisture deficit and decreasing leaf nitrogen concentration. Predawn leaf ABA content in droughted plants increased by 100-200 ng g(-1) dry weight at 7 DAWI coinciding with a decrease in stomatal conductance before any significant decrease in midday leaf water potential was observed. Based on the observed sequence, a chain of signal events is suggested eventually leading to stomatal closure and leaf surface reduction through interactive effects of reduced nitrogen supply and plant growth regulators under drought.  相似文献   

3.
The effects of short-term waterlogging on net photosynthesis, stomatal conductance and shoot water status of 2 year old seedlings ofLarix kaempferi (Lamb.) Carr. were studied under controlled environmental conditions. Waterlogging for 8 days induced significant stomatal closure and reduced net photosynthesis. After 3 days of waterlogging, stomatal conductance was reduced to 35% of that of non-waterlogged plants, and net photosynthesis was reduced to 25% of the pre-waterlogged level. At the beginning of waterlogging, slight shoot dehydration was observed. However during the latter stage of the waterlogging shoot dehydration disappeared and stomatal conductance and net photosynthesis increased. No adaptive morphological changes to waterlogging were observed in the stems and roots. Recovery of stomatal conductance and net photosynthesis after drainage was not observed within 11 days.  相似文献   

4.
In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought‐induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re‐watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re‐watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re‐watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non‐hydraulic factors influenced stomatal behaviour post drought.  相似文献   

5.
Experiments were conducted on 1-year-old Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and 2- to 3-month-old alder [Alnus rubra (Bong)] seedlings growing in drying soils to determine the relative influence of root and leaf water status on stomatal conductance (gc). The water status of shoots was manipulated independently of that of the roots using a pressure chamber that enclosed the root system. Pressurizing the chamber increases the turgor of cells in the shoot but not in the roots. Seedling shoots were enclosed in a whole-plant cuvette and transpiration and net photosynthesis rates measured continuously. In both species, stomatal closure in response to soil drying was progressively reversed with increasing pressurization. Responses occurred within minutes of pressurization and measurements almost immediately returned to pre-pressurization levels when the pressure was released. Even in wet soils there was a significant increase in gc with pressurization. In Douglas fir, the stomatal response to pressurization was the same for seedlings grown in dry soils for up to 120 d as for those subjected to drought stress over 40 to 60 d. The stomatal conductance of both Douglas fir and alder seedlings was less sensitive to root chamber pressure at higher vapour pressure deficits (D), and stomatal closure in response to increasing D from 1.04 to 2.06 kPa was only partially reversed by pressurization. Our results are in contrast to those of other studies on herbaceous species, even though we followed the same experimental approach. They suggest that it is not always appropriate to invoke a ‘feedforward’ model of short-term stomatal response to soil drying, whereby chemical messengers from the roots bring about stomatal closure.  相似文献   

6.
Abstract Water use, drought response and growth were examined under controlled conditions in four interbreeding willow species from different geographical origins (two clones of Salix viminalis L., one clone of S. viminalis × S. schwerenii E. Wolf and one clone of S. purpurea L.). The levels of soil water depletion that plants could sustain without wilting varied markedly between the clones. The level of drought resistance expressed this way was positively related to resistance to xylem cavitation, negatively related to the maximum stomatal conductance, and positively related to early stomatal closure. The rate of stomatal closure, however, was negatively related to the resistance to xylem cavitation. Prior to drought, there were no significant differences between leaf-specific hydraulic conductances of the clones when whole plants were considered. However, there were differences if the roots and shoots were considered separately. Drought resistance was negatively related to maximum growth yields. This is probably because resources were diverted away from leaf production to the production of denser wood (wood density was positively related to cavitation resistance), and, for one clone, to the growth of a larger root system. In addition, because the level of drought resistance was negatively related to the maximum stomatal conductance, growth may have been adversely affected as a result of reduced photosynthesis. Given its high water extraction ability, one of the clones started to wilt sooner than expected, although only lateral shoots were affected. This appeared to indicate a strategy of sacrificing expendable shoots.  相似文献   

7.
《Acta Oecologica》2004,25(1-2):17-22
Both waterlogging and water deficiency are major environmental factors affecting plant growth and functioning in many wetland and floodplain ecosystems across North America. Wetland plants possess various characteristics that enable them to survive and function in the intermittently flooded wetland environments, while their sensitivity to drought has received less attention. The present study quantified the photosynthetic and growth responses of cattail (Typha latifolia), an important species of freshwater wetlands, to a wide range of soil moisture regimes. In addition, changes in the efficiency of photosynthetic apparatus following initiation of the treatments were investigated. Under greenhouse conditions, seedlings were subjected to four soil moisture regimes: (1) drained (control), (2) continuous flooding, (3) periodic flooding, and (4) periodic drought. Results indicated that dark fluorescence yield was increased in response to periodic drought, while it showed decreases under continuous flooding. Net photosynthesis and stomatal conductance were enhanced by continuous flooding and periodic flooding. In contrast, these parameters exhibited reduction under periodic drought. In addition, leaf chlorophyll content was adversely affected by periodic drought. Recovery of net photosynthesis was noted, along with enhanced height growth, in both continuously and periodically flooded plants. Meanwhile, continuous flooding enhanced biomass production while periodic drought led to biomass reduction. Periodic drought also contributed to substantial reduction in root growth compared with shoot growth. Therefore, the combined photosynthetic performance and growth responses of cattail are likely to contribute to the ability of this species to thrive in flooded condition but be susceptive to periodic drought.  相似文献   

8.
This study tests the hypothesis that diffusional limitation of photosynthesis, rather than light, determines the distribution of photosynthetic capacity in olive leaves under drought conditions. The crowns of four olive trees growing in an orchard were divided into two sectors: one sector absorbed most of the radiation early in the morning (MS) while the other absorbed most in the afternoon (AS). When the peak of radiation absorption was higher in MS, air vapour pressure deficit (VPD) was not high enough to provoke stomatal closure. In contrast, peak radiation absorption in AS coincided with the daily peak in VPD. In addition, two soil water treatments were evaluated: irrigated trees (I) and non-irrigated trees (nI). The seasonal evolution of leaf water potential, leaf gas exchange and photosynthetic capacity were measured throughout the tree crowns in spring and summer. Results showed that stomatal conductance was reduced in nI trees in summer as a consequence of soil water stress, which limited their net assimilation rate. Olive leaves displayed isohydric behaviour and no important differences in the diurnal course of leaf water potentials among treatments and sectors were found. Seasonal diffusional limitation of photosynthesis was mainly increased in nI trees, especially as a result of stomatal limitation, although mesophyll conductance (g(m)) was found to decrease in summer in both treatments and sectors. A positive relationship between leaf nitrogen content with both leaf photosynthetic capacity and the daily integrated quantum flux density was found in spring, but not in summer. The relationship between photosynthetic capacity and g(m) was curvilinear. Leaf temperature also affected to g(m) with an optimum temperature at 29 degrees C. AS showed larger biochemical limitation than MS in August in both treatments. All these suggest that both diffusional limitation and the effect of leaf temperature could be involved in the seasonal reduction of photosynthetic capacity of olive leaves. This work highlights the need for models of plant growth and ecosystem function to incorporate new parameters affecting the distribution of photosynthetic capacity in canopies.  相似文献   

9.
Summary Norway spruce, Picea abies (L.) Karst., was exposed to charcoal-filtered air (CF) and non-filtered air + ozone (NF+) and periods of soil moisture deficit from 1985 to 1988 in open-top chambers. Net photosynthesis, stomatal conductance, needle water potential and various shoot properties were measured on 1-year-old shoots during a period of soil moisture deficit. The gas exchange was measured at saturating photosynthetic photon flux density and across a range of CO2 concentrations. The soil moisture deficit induced a mild drought stress in the plants, expressed by a pre-dawn needle water potential of approximately-0.9 MPa and a substantial reduction in net photosynthesis and gas phase conductance. In the CF treatment, intercellular CO2 concentration was reduced, but was unaffected in the NF+ treatment. Furthermore, net photosynthesis declined more in response to the soil moisture deficit in the NF+ treatment than in the CF treatment. This is suggested to be attributed to the carboxylation efficiency at the operating point, which was decreased by 47% and 64% in shoots from the CF and the NF+ treatments, respectively. Stomatal limitation of net photosynthesis was increased by drought by 24–45% in the CF treatment, while it was unaffected in the NF+ treatment. Thus, our results imply that the coupling between the stomatal conductance and the photosynthetic rate was changed and that the marginal cost of water per given amount of carbon gain will increase in trees exposed to ozone, during periods of drought.  相似文献   

10.
Photosynthesis, transpiration, stomatal conductance and chlorophyll fluorescence characteristics were examined in kidney bean plants, with developing gradually water stress for several days after watering and then permitted to recover by re-watering. The photosynthetic rate, transpiration rate, and stomatal conductance decreased rapidly by withholding water for 2 days. The Fv/Fm of chlorophyll fluorescence characteristics slightly decreased when the water was withheld for 7 days. After re-watering the rate of recovery of photosynthesis, transpiration, and stomatal conductance decreased gradually as the days without watering became longer. The differences existed in rates of recovery of photosynthesis, transpiration, and stomatal conductance following drought stress. Among the fractional recoveries the highest was photosynthesis, and the lowest was stomatal conductance. Photosynthesis rate following drought stress was rapidly recovered until 2 days after re-watering, then recovered slowly. The critical time for the recovery of photosynthesis was recognized. The results show clearly a close correlation between the leaf water potential and the recovery level and speed of photosynthesis, transpiration, and stomatal conductance.  相似文献   

11.
The dynamic responses of stomatal conductance (g s) net photosynthesis (A) and leaf water potential (Ψleaf) to a progressive drought were examined in nine poplar clones (Populus spp.) with contrasting drought tolerance from the Canadian Prairies, a region prone to frequent droughts. Plants were grown in a greenhouse and either well-watered or drought preconditioned (5–6 cycles of drought) for 8 weeks. At the end of the last cycle, plants were watered to saturation then progressively dried-down (−1.25 MPa Ψsoil) during which A, g s and Ψleaf were measured. Drought tolerant Okanese reached the lowest combined Ψleaf while sensitive clones (Assiniboine and Imperial) had the highest (−1.6 vs. −1.1 MPa). Steady state g s (measured under well watered conditions) was lower in tolerant (Okanese and Tristis SBC#1) than in sensitive clones. Preconditioning reduced steady state g s in all clones, lowered the threshold Ψleaf for stomatal closure and the minimum Ψleaf in most clones but did not affect the steady state A. Tolerant and some moderately tolerant clones maintained higher A at lower Ψleaf than the other clones. Stomatal closure was gradual in tolerant clones and in moderately tolerant Northwest but rapid in the other clones. Stomata in the sensitive clones closed at the highest Ψleaf, Okanese closed at the lowest. The substantial range in gas exchange and Ψleaf responses observed here represented both drought tolerance and taxonomic (Aegiros or Tacamahaca sections) traits which could play a role in the survival and productivity in environments with limited water or during periods of drought.  相似文献   

12.
Responses of CO2 assimilation and stomatal conductance to decreasing leaf water potential, and to environmental factors, were analysed in a mixed natural stand of sessile oak (Quercus petraea ssp. medwediewii) and beech (Fagus svlvatica L.) in Greece during the exceptionally dry summer of 1998. Seasonal courses of leaf water potential were similar for both species, whereas mean net photosynthesis and stomatal conductance were always higher in sessile oak than in beech. The relationship between net photosynthesis and stomatal conductance was strong for both species. Sessile oak had high rates of photosynthesis even under very low leaf water potentials and high air temperatures, whereas the photosynthetic rate of beech decreased at low water potentials. Diurnal patterns were similar in both species but sessile oak had higher rates of CO2 assimilation than beech. Our results indicate that sessile oak is more tolerant of drought than beech, due, in part, to its maintenance of photosynthesis at low water potential.  相似文献   

13.
A long-term free air ozone fumigation experiment was conducted to study changes in physiological ozone responses during tree ontogeny and exposure time in ozone sensitive and tolerant clones of European white birch (Betula pendula Roth), originated from south and central Finland. The trees were grown in soil in natural microclimatic conditions under ambient ozone (control) and 1.4-1.7 x ambient (elevated) ozone from May 1996 to October 2001, and were measured for stem and foliage growth, net photosynthesis, stomatal conductance, stomatal density, visible injuries, foliar starch content and bud formation. After 6 years of exposure, the magnitude of ozone-induced growth reductions in the sensitive clone was 12-48% (significant difference), levels similar or greater than those reported earlier for 2- and 3-year-old saplings undergoing shorter exposures. In the tolerant clone, growth of these larger trees was reduced by 1-38% (significant difference in stem volume), although the saplings had previously been unaffected. In both clones, ozone stress led to significantly reduced leaf-level net photosynthesis but significantly increased stomatal conductance rates during the late summer, resulting in a lower carbon gain for bud formation and the onset of visible foliar injuries. Increasing ozone sensitivity with duration of exposure was explained by a change in growth form (relatively reduced foliage mass), a lower photosynthesis to stomatal conductance ratio during the late summer, and deleterious carry-over effects arising from the reduced number of over-wintering buds.  相似文献   

14.
 Drought simulation usually involves either soil drying or the use of an osmoticum, such as high molecular weight (>3000) polyethylene glycol (PEG). Although easy to apply, PEG absorption and toxicity remain a concern. This study compared the effects of soil drying and use of an osmoticum (PEG 3350). Osmotic stress and soil drought were applied to 5-month-old seedlings of jack pine (Pinus banksiana Lamb.) and black spruce [Picea mariana (Mill) B.S.P.] , which are both coniferous species from cold, boreal regions of North America, and flooded gum (Eucalyptus grandis W. Hill ex Maiden), a hardwood species growing in warmer, sub-tropical regions of Australia. Results showed that PEG 3350 was absorbed by roots, transported to shoots, and deposited on the leaves of both flooded gum and jack pine (but not black spruce). PEG lowered relative water content and damaged leaf tissues in both species, and also damaged stomata of flooded gum. Although 12 days of PEG-induced osmotic stress produced a decline in water potentials that was similiar to soil drying, it also caused significantly higher membrane injury and reduced net photosynthesis and stomatal conductance in leaves of all three species. Recovery of net photosynthesis and stomatal conductance in PEG-treated jack pine and black spruce was also slower after stress alleviation. Even a short exposure to PEG 3350 adversely affected seedlings compared to soil drought. These results confirmed that drought effects may vary, depending on the species and the method of stress induction. Received: 6 March 1996 / Accepted: 17 September 1996  相似文献   

15.
The stomatal distribution, non-uniform stomatal closure, stomatal conductance, and gas-exchange of several hybrid poplar clones under light stress were studied using scanning electron microscopy (SEM) and gas-exchange. Non-uniform stomatal closure was found under natural light stress by SEM, and there was a linear relationship between the stomatal aperture and stomatal conductance. We suggest a formula for modification of intercellular CO2 concentration, which can restore consideration of stomatal factors leading to midday depression of photosynthesis in some cases. Received: 11 January 1999 / Accepted: 6 April 2000  相似文献   

16.
Arbuscular mycorrhizal fungi alleviate drought stress in their host plants via the direct uptake and transfer of water and nutrients through the fungal hyphae to the host plants. To quantify the contribution of the hyphae to plant water uptake, a new split-root hyphae system was designed and employed on barley grown in loamy soil inoculated with Glomus intraradices under well-watered and drought conditions in a growth chamber with a 14-h light period and a constant temperature (15 degrees C; day/night). Drought conditions were initiated 21 days after sowing, with a total of eight 7-day drying cycles applied. Leaf water relations, net photosynthesis rates, and stomatal conductance were measured at the end of each drying cycle. Plants were harvested 90 days after sowing. Compared to the control treatment, the leaf elongation rate and the dry weight of the shoots and roots were reduced in all plants under drought conditions. However, drought resistance was comparatively increased in the mycorrhizal host plants, which suffered smaller decreases in leaf elongation, net photosynthetic rate, stomatal conductance, and turgor pressure compared to the non-mycorrhizal plants. Quantification of the contribution of the arbuscular mycorrhizal hyphae to root water uptake showed that, compared to the non-mycorrhizal treatment, 4 % of water in the hyphal compartment was transferred to the root compartment through the arbuscular mycorrhizal hyphae under drought conditions. This indicates that there is indeed transport of water by the arbuscular mycorrhizal hyphae under drought conditions. Although only a small amount of water transport from the hyphal compartment was detected, the much higher hyphal density found in the root compartment than in the hyphal compartment suggests that a larger amount of water uptake by the arbuscular mycorrhizal hyphae may occur in the root compartment.  相似文献   

17.
Physiological and chemical responses of 17 birch (Betula pendula Roth) clones to 1.5–1.7 × ambient ozone were studied in an open‐field experiment over two growing seasons. The saplings were studied for growth, foliar visible injuries, net photosynthesis, stomatal conductance, and chlorophyll, carotenoid, Rubisco, total soluble protein, macronutrient and phenolic concentrations in leaves. Elevated ozone resulted in growth enhancement, changes in shoot‐to‐root (s/r) ratio, visible foliar injuries, reduced stomatal conductance, lower late‐season net photosynthesis, foliar nutrient imbalance, changes in phenolic composition, and reductions in pigment, Rubisco and soluble protein contents indicating accelerated leaf senescence. Majority of clones responded to ozone by changing C allocation towards roots, by stomatal closure (reduced ozone uptake), and by investment in low‐cost foliar antioxidants to avoid and tolerate ozone stress. A third of clones, showing increased s/r ratio, relied on inducible efficient high‐cost antioxidants, and enhanced leaf production to compensate ozone‐caused decline in leaf‐level net photosynthesis. However, the best ozone tolerance was found in two s/r ratio‐unaffected clones showing a high constitutive amount of total phenolics, investment in low‐cost antioxidants and N distribution to leaves, and lower stomatal conductance under ozone stress. The results highlight the importance of phenolic compounds in ozone defence mechanisms in the birch population. Depending on the genotype, ozone detoxification was improved by an increase in either efficient high‐cost or less efficient low‐cost antioxidative phenolics, with close connections to whole‐plant physiology.  相似文献   

18.
羊草叶片气体交换参数对温度和土壤水分的响应   总被引:15,自引:4,他引:15       下载免费PDF全文
 采用生长箱控制的方法研究了羊草(Leymus chinensis)幼苗叶片光合参数对5个温度和5个水分梯度的响应和适应。结果表明:轻度、中度土壤干旱并没有限制羊草叶片的生长,对气体交换参数亦无显著影响,反映了羊草幼苗对土壤水分胁迫的较高耐性。叶片生物量以26 ℃时最大,其它依次为23 ℃、20 ℃、29 ℃和32 ℃。温度升高使气孔导度和蒸腾速率增加, 却使光合速率和水分利用效率降低。水分和温度对叶片生物量、光合速率、气孔导度和蒸腾速率存在显著的交互作用,表明高温加强了干旱对叶片生长和气体交换的影响, 降低了羊草对土壤干旱的适应能力。高温和干旱的交互作用将显著减少我国半干旱地区草原的羊草生产力。  相似文献   

19.
The effect of soil flooding on photosynthesis, transpiration and stomatal conductance of Jatropha curcas seedlings were studied under natural environmental variables. Soil flooding reduced photosynthesis (P N), transpiration (E) and stomatal conductance (gs) in response to leaf positions of Jatropha curcas plants. Based on the results, we conclude that decrease in stomatal opening and stomatal limitation of photosynthesis, followed by decrease in individual leaf area are the main causes of reductions in carbon uptake of flooded seedlings. A mathematical relationship was successfully developed to describe photosynthesis, transpiration and stomatal response of Jatropha under soil flooding stress.  相似文献   

20.
Transpiration, net photosynthesis and leaf conductance decreased when leaf water potential dropped below -0.30 MPa. Both transpiration and net photosynthesis rates were considerably reduced before the leaves were visibly wilted at -0.95 MPa. Consequently, visual symptoms are unlikely to provide a useful index for characterizing water deficits in cassava ( Manihot esculenta Crantz cv. Llanera). Decreases in net photosynthesis closely followed decreases in transpiration and this suggests that stomatal closure controls both processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号