首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The DNA sequence d(GGGGTTTTGGGG) consists of 1.5 units of the repeat in telomeres of Oxytricha nova. It has been shown by NMR and x-ray crystallographic analysis that it is capable to form a dimeric quadruplex structure and that a variety of cations, namely K(+), Na(+), and NH(4)(+), are able to interact with this complex with different affinity, leading to complexes characterized by different local conformations. Thus, in order to improve the knowledge of this kind of molecule, and in particular to provide further insight into the role of monovalent cations in the G-quadruplex folding and conformation, we have investigated by (1)H-NMR the effect of the addition of Rb(+) and Cs(+) to the quadruplex formed by the oligonucleotide d(GGGGTTTTGGGG).  相似文献   

2.
Quantitative NMR study has shown a significant difference in affinity of (15)NH(4)(+) ions for cation binding sites within G-quadruplexes adopted by d[G3T4G4]2 and d[G4(T4G4)3].  相似文献   

3.
HPLC and ESI-MS analysis have been used to investigate the effect of acrolein exposure on d(TITAGGG)4 human telomeric repeat. Preliminary results disclosed a novel relationship between the structure assumed by oligodeoxynucleotides (ODNs) and the capability of their nucleobase residues to react with acrolein.  相似文献   

4.
The structure of the deoxyaligonucleotide d(GGGGCCCC) has been monitored by 1H and 31 P NMR, and by gel electrophoresis. In low-salt solution, this oligonucleotide forms a stable duplex structure. Upon titration with KCl, an equilibrium is established between duplex and quadruplex forms. The quadruplex form is the dominant one at physiological KCl concentrations, despite the fact that fewer hydrogen bonds are formed per strand in the quadruplex than in the duplex. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Kaushik M  Bansal A  Saxena S  Kukreti S 《Biochemistry》2007,46(24):7119-7131
Under physiological concentrations of Na+ and K+, human telomeric DNA can self-associate into G-quadruplexes. On the basis of circular dichroism, gel electrophoresis, gel filtration, and UV-melting experiments, we report here that the double repeat of human telomere (d-TTAGGGTTAGGG; HUM2) forms parallel as well as antiparallel quadruplexes in the presence of K+, whereas Na+ facilitates only the antiparallel form. Here, the gel techniques and CD studies have proved to be complementary in detecting the molecularity and pattern of strand orientation. By correlating the gel and CD experiments, the antiparallel G-quadruplex was identified as a tetrameric species, whereas the parallel G-quadruplex was found to be dimeric. Both structural species were separated through gel filtration, which when run on native polyacrylamide gel electrphoresis (PAGE), confirmed their molecularity. UV-melting profiles also confirm the presence of two biphasic and one monophasic structural species in the presence of K+ and Na+, respectively. Though our observation is consistent with the recent NMR report (Phan, A. T., and Patel, D. J. (2003) J. Am. Chem. Soc. 125, 15021-15027), it seems to differ in terms of the molecularity of the antiparallel quadruplex. A model is proposed for an antiparallel tetrameric quadruplex, showing the possibility of Watson-Crick hydrogen bonds between intervening bases on antiparallel strands. This article expands the known structural motifs of DNA quadruplexes. To the best of our knowledge, four-stranded antiparallel quadruplexes have not been characterized to date. On the basis of the model, we hypothesize a possible mechanism for telomere-telomere association involving their G-overhangs, during certain stages of the cell cycle. The knowledge of peculiar geometries of the G-quadruplexes may also have implications for its specific recognition by ligands.  相似文献   

6.
Snoussi K  Halle B 《Biochemistry》2008,47(46):12219-12229
The structural stability of guanine quadruplexes depends critically on an unusual configuration of dehydrated Na (+) or K (+) ions, closely spaced along the central axis of the quadruplex. Crystallography and NMR spectroscopy indicate that these internal ions can be located between the G-quartet planes as well as in the thymine loops, but the precise ion coordination has been firmly established in only a few cases. Here, we examine the bimolecular diagonal-looped foldback quadruplexes [d(G 3T 4G 3)] 2 (Q3) and [d(G 4T 4G 4)] 2 (Q4) by (2)H, (17)O, and (23)Na magnetic relaxation dispersion (MRD). The MRD data indicate that both quadruplexes contain Na (+) ions between the T 4 loops and the terminal G-quartets and that these ions have one water ligand. These ions exchange with external ions on a time scale of 10-60 mus at 27 degrees C, while their highly ordered water ligands have residence times in the range 10 (-8)-10 (-6) s. The MRD data indicate that Q4 contains three Na (+) ions in the stem sites, in agreement with previous solid-state (23)Na NMR findings but contrary to the only crystal structure of this quadruplex. For Q3, the MRD data suggest a less symmetric coordination of the two stem ions. In both quadruplexes, the stem ions have residence times of 0.6-1.0 ms at 27 degrees C. The equilibrium constant for Na (+) --> K (+) exchange is approximately 4 for both loop and stem sites in Q3, in agreement with previous (1)H NMR findings.  相似文献   

7.
Here we report the crystal structure of the DNA heptanucleotide sequence d(GCATGCT) determined to a resolution of 1.1 Å. The sequence folds into a complementary loop structure generating several unusual base pairings and is stabilised through cobalt hexammine and highly defined water sites. The single stranded loop is bound together through the G(N2)–C(O2) intra-strand H-bonds for the available G/C residues, which form further Watson–Crick pairings to a complementary sequence, through 2-fold symmetry, generating a pair of non-planar quadruplexes at the heart of the structure. Further, four adenine residues stack in pairs at one end, H-bonding through their N7–N6 positions, and are additionally stabilised through two highly conserved water positions at the structural terminus. This conformation is achieved through the rotation of the central thymine base at the pinnacle of the loop structure, where it stacks with an adjacent thymine residue within the lattice. The crystal packing yields two halved biological units, each related across a 2-fold symmetry axis spanning a cobalt hexammine residue between them, which stabilises the quadruplex structure through H-bonds to the phosphate oxygens and localised hydration.  相似文献   

8.
We have recently communicated that DNA oligonucleotide d(G(3)T(4)G(4)) forms a dimeric G-quadruplex in the presence of K(+) ions [J. Am. Chem. Soc.2003, 125, 7866-7871]. The high-resolution NMR structure of d(G(3)T(4)G(4))(2) G-quadruplex exhibits G-quadruplex core consisting of three stacked G-quartets. The two overhanging G3 and G11 residues are located at the opposite sides of the end G-quartets and are not involved in G-quartet formation. d(G(3)T(4)G(4))(2) G-quadruplex represents the first bimolecular G-quadruplex where end G-quartets are spanned by diagonal (T4-T7) as well as edge-type loops (T15-T18). Three of the G-rich strands are parallel while one is anti-parallel. The G12-G22 strand demonstrates a sharp reversal in strand direction between residues G19 and G20 that is accommodated with the leap over the middle G-quartet. The reversal in strand direction is achieved without any extra intervening residues. Here we furthermore examined the influence of different monovalent cations on the folding of d(G(3)T(4)G(4)). The resolved imino and aromatic proton resonances as well as (sequential) NOE connectivity patterns showed only minor differences in key intra- and interquartet NOE intensities in the presence of K(+), Na(+) and NH(4)(+) ions, which were consistent with subtle structural differences while retaining the same folding topology of d(G(3)T(4)G(4))(2) G-quadruplex.  相似文献   

9.
The NMR structure of the parallel-stranded DNA quadruplex d(TTAGGGT)(4), containing the human telomeric repeat, has been determined in solution in complex with a fluorinated pentacyclic quino[4,3,2-kl]acridinium cation (RHPS4). RHPS4 has been identified as a potent inhibitor of telomerase at submicromolar levels (IC(50) value of 0.33(+/-0.13)microM), exhibiting a wide differential between telomerase inhibition and acute cellular toxicity. All of the data point to RHPS4 exerting its chemotherapeutic potency through interaction with, and stabilisation of, four-stranded G-quadruplex structures. RHPS4 forms a dynamic interaction with d(TTAGGGT)(4), as evident from 1H and 19F linewidths, with fast exchange between binding sites induced at 318 K. Perturbations to DNA chemical shifts and 24 intermolecular nuclear Overhauser effects (NOEs) identify the 5'-ApG and 5'-GpT steps as the principle intercalation sites; a structural model has been refined using NOE-restrained molecular dynamics. The central G-tetrad core remains intact, with drug molecules stacking at the ends of the G-quadruplex. The partial positive charge on position 13-N of the acridine ring appears to act as a "pseudo" potassium ion and is positioned above the centre of the G-tetrad in the region of high negative charge density. In both ApG and GpT intercalation sites, the drug is seen to converge to the same orientation in which the pi-system of the drug overlaps primarily with two bases of each G-tetrad. The drug is held in place by stacking interactions with the G-tetrads; however, there is some evidence for a more dynamic, weakly stabilised A-tetrad that stacks partially on top of the drug at the 5'-end of the sequence. Together, the interactions of RHPS4 increase the t(m) of the quadruplex by approximately 20 degrees C. There is no evidence for drug intercalation within the G-quadruplex; however, the structural model strongly supports end-stacking interactions with the terminal G-tetrads.  相似文献   

10.
F Seela  C Wei    A Melenewski 《Nucleic acids research》1996,24(24):4940-4945
The self-aggregation of the oligonucleotide d(T4isoG4T4) (1) is investigated. Based on ion exchange HPLC experiments and CD spectroscopy, a tetrameric structure is identified. This structure was formed in the presence of sodium ions and shows almost the same chromatographic mobility on ion exchange HPLC as d(T4G4T4) (2). The ratio of aggregate versus monomer is temperature dependent and the tetraplex of [d(T4isoG4T4)]4 is more stable than that of [d(T4G4T4)]4. A mixture of d(T4isoG4T4) and d(T4G4T4) forms mixed tetraplexes containing strands of d(T4isoG4T4) and d(T4G4T4).  相似文献   

11.
The structure of d(GGAGGAGGAGGA) containing four tandem repeats of a GGA triplet sequence has been determined under physiological K(+) conditions. d(GGAGGAGGAGGA) folds into an intramolecular quadruplex composed of a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad. Four G-G segments of d(GGAGGAGGAGGA) are aligned parallel with each other due to six successive turns of the main chain at each of the GGA and GAGG segments. Two quadruplexes form a dimer stabilized through a stacking interaction between the heptads of the two quadruplexes. Comparison of the structure of d(GGAGGAGGAGGA) with the reported structure of d(GGAGGAN) (N=G or T) containing two tandem repeats of the GGA triplet revealed that although the two structures resemble each other to some extent, the extension of the repeats of the GGA triplet leads to distinct structural differences: intramolecular quadruplex for 12-mer versus intermolecular quadruplex for 7-mer; heptad versus hexad in the quadruplex; and three sheared G:A base-pairs versus two sheared G:A base-pairs plus one A:A base-pair per quadruplex. It was also suggested that d(GGAGGAGGAGGA) forms a similar quadruplex under low salt concentration conditions. This is in contrast to the case of d(GGAGGAN) (N=G or T), which forms a duplex under low salt concentration conditions. On the basis of these results, the structure of naturally occurring GGA triplet repeat DNA is discussed.  相似文献   

12.
The three oligodeoxyribonucleotides (ODNs) a-c, having the telomeric repeat d(TTAGGG)(4) sequence and incorporating gamma-hydroxypropano deoxyguanosine at different positions, were synthesized. Gel electrophoresis and CD analyses indicated that the ODNs assume monomolecular quadruplex structures in Na+ and in K+ buffers. The T(m) values, obtained by CD melting experiments, showed that the presence of the acrolein-dG adduct into the ODN b decreases the thermal stability of the monomolecular quadruplex structure in Na+ solution, whereas for a and c no significant effect could be detected in the same experimental conditions. On the contrary, all ODNs a-d show the same behaviour in K+ buffer. These findings are briefly discussed.  相似文献   

13.
Two-dimensional 1H NMR studies on the dimeric hairpin quadruplex formed by d(G3T4G3) in the presence of either NaCl or KCl are presented. In the presence of either salt, the quadruplex structure is characterized by half the guanine nucleosides in the syn conformation about the glycosidic bond, the other half in the anti conformation, as reported for other similar sequences. However, 1H NOESY and 1H-31P heteronuclear correlation experiments demonstrate that the deoxyguanosines do not strictly alternate between syn and anti along individual strands. Thus we find the following sequences with regard to glycosidic bond conformation: 5'-G1SG2SG3AT4AT5A-T6AT7AG8SG9AG10A-3' and 5'-G11SG12AG13AT14AT1 5AT16AT17AG18SG19SG20A-3', where S and A denote syn and anti, respectively. This represents the first experimental evidence for a nucleic acid structure containing two sequential nucleosides in the syn conformation. The stacking interactions of the resulting quadruplex quartets and their component bases have been evaluated using unrestrained molecular dynamics calculations and energy component analysis. These calculations suggest that the sequential syn-syn/anti-anti and syn-anti quartet stacks are almost equal in energy, whereas the anti-syn stack, which is not present in our structure, is energetically less favorable by about 4 kcal/mol. Possible reasons for this energy difference and its implications for the stability of quadruplex structures are discussed.  相似文献   

14.
Miyoshi D  Nakao A  Toda T  Sugimoto N 《FEBS letters》2001,496(2-3):128-133
The thermodynamic parameters of an antiparallel G-quartet formation of d(G4T4G4) with 1 mM divalent cation (Mg(2+), Ca(2+), Mn(2+), Co(2+), and Zn(2+)) were obtained. The thermodynamic parameters showed that the divalent cation destabilizes the antiparallel G-quartet of d(G4T4G4) in the following order: Zn(2+)>Co(2+)>Mn(2+)>Mg(2+)>Ca(2+). In addition, a higher concentration of a divalent cation induced a transition from an antiparallel to a parallel G-quartet structure. These results indicate that these divalent cations are a good tool for regulating the G-quartet structures.  相似文献   

15.
Nanosecond scale molecular dynamics simulations have been performed on antiparallel Greek key type d(G7) quadruplex structures with different coordinated ions, namely Na+ and K+ ion, water and Na+ counter ions, using the AMBER force field and Particle Mesh Ewald technique for electrostatic interactions. Antiparallel structures are stable during the simulation, with root mean square deviation values of approximately 1.5 A from the initial structures. Hydrogen bonding patterns within the G-tetrads depend on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate different cations. However, alternating syn-anti arrangement of bases along a chain as well as in a quartet is maintained through out the MD simulation. Coordinated Na+ ions, within the quadruplex cavity are quite mobile within the central channel and can even enter or exit from the quadruplex core, whereas coordinated K+ ions are quite immobile. MD studies at 400K indicate that K+ ion cannot come out from the quadruplex core without breaking the terminal G-tetrads. Smaller grooves in antiparallel structures are better binding sites for hydrated counter ions, while a string of hydrogen bonded water molecules are observed within both the small and large grooves. The hydration free energy for the K+ ion coordinated structure is more favourable than that for the Na+ ion coordinated antiparallel quadruplex structure.  相似文献   

16.
Guanine quadruplex (G-quadruplex) structures are formed by guanine-rich oligonucleotides. Because of their in vivo and in vitro importance, numerous studies have been demonstrated that the structure and stability of the G-quadruplex are dependent on the sequence of oligonucleotide and environmental conditions such as existing cations. Previously, we quantitatively investigated the divalent cation effects on the antiparallel G-quadruplex of d(G4T4G4), and found that Ca2+ induces a structural transition from the antiparallel to parallel G-quadruplex, and finally G-wire formation. In the present study, we report in detail the kinetic and thermodynamic analyses of the structural transition induced by Ca2+ using stopped-flow apparatus, circular dichroism, size-exclusion chromatography (SEC) and atomic force microscopy. The quantitative parameters showed that at least two Ca2+ ions were required for the transition. The kinetic parameters also indicated that d(G4T4G4) underwent the transition through multiple steps involving the Ca2+ binding, isomerization and oligomerization of d(G4T4G4). The parallel-stranded G-wire structure of d(G4T4G4), which is a well controlled alignment of numerous DNA strands with G-quartets, as the final product induced by Ca2+, was observed using SEC and atomic force microscopy. These results provide insight into the mechanism of the structural transition and G-wire formation and are useful for constructing a nanomaterial regulated by Ca2+.  相似文献   

17.
We have stabilized the d(A)10.2d(T)10 and d(C+LT4C+3).d(G3A4G3).d(C3T4C3) triple helices with either NaCl or MgCl2 at pH 5.5. UV mixing curves demonstrate a 1:2 stoichiometry of purine to pyrimidine strands under the appropriate conditions of pH and ionic strength. Circular dichroic titrations suggest a possible sequence-independent spectral signature for triplex formation. Thermal denaturation profiles indicate the initial loss of the third strand followed by dissociation of the underlying duplex with increasing temperature. Depending on the base sequence and ionic conditions, the binding affinity of the third strand for the duplex at 25 degrees C is two to five orders of magnitude lower than that of the two strands forming the duplex. Thermodynamic parameters for triplex formation were determined for both sequences in the presence of 50 mM MgCl2 and/or 2.0 M NaCl. Hoogsteen base pairs are 0.22-0.64 kcal/mole less stable than Watson-Crick base pairs, depending on ionic conditions and base composition. C+.G and T.A Hoogsteen base pairs appear to have similar stability in the presence of Mg2+ ions at low pH.  相似文献   

18.
Using CD and NMR, we determined the structure of an RNA oligomer, r(GGAGGUUUUGGAGG) (R14), comprising two GGAGG segments joined by a UUUU segment. A modified quadruplex structure was observed for r(GGAGGUUUUGGAGG) in solution even in the absence of K(+). An unusually stable dimeric RNA quadruplex architecture formed from two strands of r(GGAGGUUUUGGAGG) at low K(+) concentration is reported here. In each strand of r(GGAGGUUUUGGAGG), two sets of successive turns in the GGAGG segments and turns at both ends of the UUUU loops drive four G-G steps to align in a parallel manner, a core with two stacked G-tetrads being formed. Two adenine bases bind to two edges of one G:G:G:G tetrad through the sheared G:A mismatch augmenting the tetrad into a G:G(:A):G:G(:A) hexad. Thus, one molecule of r(GGAGGUUUUGGAGG) folds into a modified quadruplex comprising a G:G:G:G tetrad, a UUUU double-chain reversal loop and a G:G(:A):G:G(:A) hexad. Two such molecules further associate by stacking through the dimeric hexad-hexad interface with a rotational symmetry. The ribose rings of most nucleotides take S (close to C2'-endo) puckering, which is unusual for an RNA. K(+) can increase the stability of this quadruplex structure; the number of bound K(+) was estimated from the results of the titration experiment. Besides G:G and G:A mismatches, a network of hydrogen bonds including O4'-NH(2) and C-H..O hydrogen bonds, and the extensive base stacking contribute to the high thermodynamic stability of R14. Our results could provide the stereochemical and thermodynamic basis for elucidating the biological role of the GGAGG-containing RNA segments abundantly existing in various RNAs. Relevance to quadruplex-mediated mRNA-FMRP binding and HIV-1 genome RNA dimerization is discussed.  相似文献   

19.
The partially self-complementary synthetic DNA oligonucleotide d(CG)5T4(CG)5 has been studied by using 1H and 31P NMR and circular dichroism. Results show that, under low-salt conditions (120 mM NaCl buffer), an intramolecular hairpin loop exists in which the double-helical stem region is B-form and the thymidine loop residues have predominantly southern (C2'-endo) sugar conformations. The thymidine glycosidic torsion angles are intermediate between syn and anti or exist as an equilibrium mixture of residues in the two extremes. NOESY data indicate that the structure of the loop region is very similar to that found for d(CG)2T4(CG)2 [Hare, D. R., & Reid, B. R. (1986) Biochemistry 25, 5341-5350]. Under high-salt conditions (6 M NaClO4 buffer), the dominant form (approximately equal to 85%) is an intramolecular hairpin structure in which the stem region forms a Z-form double helix. As in the B-form, the loop thymidine residues are intermediate between the syn and anti conformations or exist as an equilibrium mixture of the two, but the thymidine sugar conformations differ in that they are biased toward northern (C3'-endo) conformations.  相似文献   

20.
Optical melting transitions of the short DNA hairpins formed from the self-complementary DNA oligomers d[GGATACX4GTATCC] where X = A, T, G, or C measured in 100 mM NaCl are presented. A significant dependence of the melting transitions on loop sequence is observed and transition temperatures, tm, of the hairpins vary from 58.3 degrees C for the T4 loop hairpin to 55.3 degrees C for the A4 loop. A nearest-neighbor sequence-dependent theoretical algorithm for calculating melting curves of DNA hairpins is presented and employed to analyze the experimental melting transitions. Experimental melting curves were fit by adjustment of a single theoretical parameter, Fend(n), the weighting function for a hairpin loop comprised of n single-strand bases. Empirically determined values of Fend(n) provide an evaluation of the free-energy of hairpin loop formation and stability. Effects of heterogeneous nearest-neighbor sequence interactions in the duplex stem on hairpin loop formation were investigated by evaluating Fend(n) in individual fitting procedures using two of the published sets of nearest-neighbor stacking interactions in DNA evaluated in 100 mM NaCl and given by Wartell and Benight, 1985. In all cases, evaluated values of Fend(n) were obtained that provided exact theoretical predictions of the experimental transitions. Results of the evaluations indicate: (1) Evaluated free-energies of hairpin loop formation are only slightly dependent on loop sequences examined. At the transition temperature, Tm, the free-energy of forming a loop of four bases is approximately equal for T4, G4, or C4 loops and varies from 3.9 to 4.8 kcal/mole depending on the set of nearest-neighbor interactions employed in the evaluations. This result suggests, in light of the observed differences in stability between the T4, G4, and C4 loop hairpins, that sequence-dependent interactions between base residues of the loop are most likely not the source of the enhanced stability of a T4 loop.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号