首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The molecular structure of poly (I).poly (A).poly (I) has been determined and refined using the continuous intensity data on layer lines in the x-ray diffraction pattern obtained from an oriented fiber of this polymorphic RNA complex. The polymer forms a 12-fold right-handed triple-helix of pitch 39.7A and each base-triplet is stabilized by quasi Crick-Watson-Hoogsteen hydrogen bonds. The ribose rings in all the three strands have C3'-endo conformations. The final R-value for this best structure is 0.24 and the x-ray fit is significantly superior to all the alternative structures where the different chains might have different furanose conformations. This all-purine triple-helix, counter-intuitively, has a diameter roughly 3A shorter than that of DNA and RNA triple-helices containing a homopurine and two complementary homopyrimidine strands. Its compact, grooveless cylindrical shape is consistent with the lack of lateral organization.  相似文献   

2.
The crystal structure of d(G-G-G-G-C-C-C-C). A model for poly(dG).poly(dC)   总被引:25,自引:0,他引:25  
The structure of the DNA oligomer d(G-G-G-G-C-C-C-C) has been determined at a resolution of 2.5 A by single-crystal X-ray methods. There are two strands in the asymmetric unit, and these coil about each other to form a right-handed double-helix of the A-type with Watson-Crick hydrogen bonds between base-pairs. The helix has a shallow minor groove and a deep, water-filled major groove; almost all exposed functional groups on the DNA are hydrated, and 106 ordered solvent molecules have been found. The two d(G-G-G-G).d(C-C-C-C) segments in the octamer exhibit similar and uniform structures, but there is a slight discontinuity at the GpC step between them. A recurring feature of the structure is the overlap of adjacent guanine bases in each GpG step, with the five-membered ring of one guanine stacking on the six-membered ring of its neighbour. There is little or no overlap between adjacent cytosine rings. Conformational parameters for these GpG steps are compared with those from other single-crystal X-ray analyses. In general, GpG steps exhibit high slide, low roll and variable twist. Models for poly(dG).poly(dC) were generated by applying a simple rotation and translation to each of the unmodified d(G-G-G-G).d(C-C-C-C) units. Detailed features of these models are shown to be compatible with various assays of poly(dG).poly(dC) in solution, and are useful in understanding the polymorphic behaviour of this sequence under a variety of experimental conditions.  相似文献   

3.
The molecular structure of poly (dT).poly (dA).poly (dT) has been determined and refined using the continuous x-ray intensity data on layer lines in the diffraction pattern obtained from an oriented fiber of the DNA. The final R-value for the preferred structure is 0.29 significantly lower than that for plausible alternatives. The molecule forms a 12-fold right-handed triple-helix of pitch 38.4 A and each base triplet is stabilized by a set of four Crick-Watson-Hoogsteen hydrogen bonds. The deoxyribose rings in all the three strands have C2'-endo conformations. The grooveless cylindrical shape of the triple-helix is consistent with the lack of lateral organization in the fiber.  相似文献   

4.
The molecular structure of poly (U).poly (A).poly (U) has been determined and refined using the continuous x-ray intensity data on layer lines in the diffraction pattern obtained from an oriented fiber of the RNA. The final R-value for the preferred structure is 0.24, far lower than that for the plausible alternatives. The polymer forms an 11-fold right-handed triple-helix of pitch 33.5A and each base triplet is stabilized by Crick-Watson-Hoogsteen hydrogen bonds. The ribose rings in the three strands have C3'-endo, C2'-endo and C2'-endo conformations, respectively. The helix derives additional stability through systematic interchain hydrogen bonds involving ribose hydroxyls and uracil bases. The relatively grooveless cylindrical shape of the triple-helix is consistent with the lack of lateral organization.  相似文献   

5.
Circular dichroism and UV absorption data showed that poly[d(A-C).d(G-T)] (at 0.01M Na+ (phosphate), 20 degrees C) underwent two reversible conformational transitions upon lowering of the pH. The first transition was complete at about pH 3.9 and resulted in an acid form of the polymer that was most likely a modified, protonated duplex. The second transition occurred between pH 3.9 and 3.4 and consisted of the denaturation of this protonated duplex to the single strands. UV absorption and CD data also showed that the separated poly[d(A-C)] strand formed two acid-induced self-complexes with pKa values of 6.1 and 4.7 (at 0.01M Na+). However, neither one of these poly[d(A-C)] self-complexes was part of the acid-induced rearrangements of the duplex poly[d(A-C).d(G-T)]. Acid titration of the separated poly[d(G-T)] strand, under similar conditions, did not show the formation of any protonated poly[d(G-T)] self-complexes. In contrast to poly[d(A-C).d(G-T)], poly[d(A-T).d(A-T)] underwent only one acid-induced transition, which consisted of the denaturation of the duplex to the single strands, as the pH was lowered from 7 to 3.  相似文献   

6.
The temperature dependence of the Raman spectrum of poly(dA).poly(dT) (dA: deoxyadenosine; dT: thymidine), a model for DNA containing consecutive adenine.thymine (A.T) pairs, has been analyzed using a spectrometer of high spectral precision and sensitivity. Three temperature intervals are distinguished: (a) premelting (10 < t < 70 degrees C), in which the native double helix is structurally altered but not dissociated into single strands; (b) melting (70 < t < 80 degrees C), in which the duplex is dissociated into single strands; and (c) postmelting (80 < t degrees C), in which no significant structural change can be detected. The distinctive Raman difference signatures observed between 10 and 70 degrees C and between 70 and 80 degrees C are interpreted in terms of the structural changes specific to premelting and melting transitions, respectively. Premelting alters the low-temperature conformation of the deoxyribose-phosphate backbone and eliminates base hydrogen bonding that is distinct from canonical Watson-Crick hydrogen bonding; these premelting perturbations occur without disruption of base stacking. Conversely, melting eliminates canonical Watson-Crick pairing and base stacking. The results are compared with those reported previously on poly(dA-dT).poly(dA-dT), the DNA structure consisting of alternating A.T and T.A pairs (L. Movileanu, J. M. Benevides, and G. J. Thomas, Jr. Journal of Raman Spectroscopy, 1999, Vol. 30, pp. 637-649). Poly(dA).poly(dT) and poly(dA-dT).poly(dA-dT) exhibit strikingly dissimilar temperature-dependent Raman profiles prior to the onset of melting. However, the two duplexes exhibit very similar melting transitions, including the same Raman indicators of ruptured Watson-Crick pairing, base unstacking and collapse of backbone order. A detailed analysis of the data provides a comprehensive Raman assignment scheme for adenosine and thymidine residues of B-DNA, delineates Raman markers diagnostic of consecutive A.T and alternating A.T/T.A tracts of DNA, and identifies the distinct Raman difference signatures for premelting and melting transitions in the two types of sequences.  相似文献   

7.
Poly(dA).poly(dT), but not B-form DNA, is specifically recognized by experimentally induced anti-kinetoplast or anti-poly(dA).poly(dT) immunoglobulins. Antibody binding is completely competed by poly(dA).poly(dT) and poly(dA).poly(dU) but not by other single- or double-stranded DNA sequences in a right-handed B-form. Antibody interaction with poly(dA).poly(dT) depends on immunoglobulin concentration, incubation time and temperature, and is sensitive to elevated ionic strengths. Similar conformations, for example, (dA)4-6 X (dT)4-6, in the kinetoplast DNA of the parasite Leishmania tarentolae are also immunogenic and induce specific anti-poly(dA).poly(dT) antibodies. These antibody probes specifically recognize nuclear and kinetoplast DNA in fixed flagellated kinetoplastid cells as evidenced by immunofluorescence microscopy. Anti-poly(dA).poly(dT) immunofluorescence is DNase-sensitive and competed by poly(dA).poly(dT), but not other classical double-stranded B-DNAs. Thus, these unique cellular B'-DNA helices are immunogenic and structurally similar to synthetic poly(dA).poly(dT) helices in solution.  相似文献   

8.
H H Klump  E Schmid    M Wosgien 《Nucleic acids research》1993,21(10):2343-2348
The conformational change for the alternating purine-pyrimidine polydeoxyribonucleotides i.e. poly d(A-T), poly d(G-C), and poly d(A-C) poly d(G-T) from a right-handed conformation at room temperature to the left-handed Z-DNA like double helix at elevated temperatures has been studied by UV spectroscopy, Raman spectroscopy, and by adiabatic differential scanning microcalorimetry (DSC) in the presence of Na+ and Mg2+ or Ni2+ respectively as counterions. The differential UV spectra reveal through a hyperchromic shift at around 280nm and a hypochromic shift at 260nm that a conformational change to the left-handed conformation occurs. The Raman spectra clearly show characteristic changes, a drastic decrease of the band at 680cm-1 and the appearance of a new band at 628cm-1, due to the change of the purine bases to the syn conformation upon inversion of the helix-handedness. The course of the transition as function of temperature can be followed quantitatively by plotting the change in the excess heat capacity vs. temperature. The transition enthalpy delta H for the B- to Z-DNA transition per mole base pairs (mbp) amounts to 2.0 +/- 0.2kcal for poly d(G-C), to 4.0 +/- 0.4kcal for poly d(A-T), and to 3.1 +/- 0.3kcal for poly d(A-C) poly d(G-T). The enthalpy change due to the Z-DNA to coil transitions (per mole base pairs) amounts to 11kcal for poly d(G-C), 10.5kcal for poly d(A-T) and 11.3kcal for poly d(A-C) poly d(G-T).  相似文献   

9.
The alpha-form of poly[d(A)].poly[d(T)], observed in fibers at high (greater than 80%) relative humidity, is a 10-fold double-helical structure of pitch 3.2 nm. This new X-ray analysis shows that the two strands of the double helix are of the same kind conformationally and both B-like in containing C-2'-endo-puckered deoxyribose rings. Nevertheless, the two strands are different enough for the overall morphology of the duplex to resemble that of the heteromerous model for the drier (beta) form of poly[d(A)].poly[d(T)] in which one strand has C-2'-endo rings and the other C-3'-endo. Since the orientations of the bases in poly[d(A)].poly[d(T)] are persistently different from those of classical B-DNA it is likely that there will be local bending (about 10 degrees) at the junctions between general sequence tracts and the oligo[d(A)].oligo[d(T)] tracts that occur in some native DNAs. The conclusions about the structure of alpha-poly[d(A)].poly[d(T)] are reinforced by independent analyses of similar X-ray diffraction patterns from poly[d(A)].poly[d(U)] and poly[d(A-I)].poly[d(C-T)].  相似文献   

10.
Structure of the beta-form of poly d(A).poly d(U)   总被引:1,自引:0,他引:1  
The crystalline beta-form of the sodium salt of poly d(A).poly d(U) trapped in oriented fibers forms a Watson-Crick base-paired, 10(1) double-helix of pitch 3.2 nm. Two molecules are present in a monoclinic unit cell apparently isomorphous with beta-poly d(A).poly d(T). The two chains in each molecule both carry C2'-endo puckered furanose rings but are conformationally not identical. The orientations of the A:U base-pairs relative to the helix-axis are distinctly different from those in classical B-DNA and the overall morphology of the duplex in which they reside resembles that of the alpha-forms of poly (purine).poly (pyrimidine) DNA duplexes previously reported.  相似文献   

11.
The propeller DNA conformation of poly(dA).poly(dT).   总被引:7,自引:6,他引:1       下载免费PDF全文
Physical properties of the DNA duplex, poly(dA).poly(dT) differ considerably from the alternating copolymer poly(dAT). A number of molecular models have been used to describe these structures obtained from fiber X-ray diffraction data. The recent solutions of single crystal DNA dodecamer structures with segments of oligo-A.oligo-T have revealed the presence of a high propeller twist in the AT regions which is stabilized by the formation of bifurcated (three-center) hydrogen bonds on the floor of the major groove, involving the N6 amino group of adenine hydrogen bonding to two O4 atoms of adjacent thymine residues on the opposite strand. Here we show that it is possible to incorporate the features of the single crystal analysis, specifically high propeller twist, bifurcated hydrogen bonds, and a narrow minor groove, as well as the close interstrand NMR signal between adenine HC2 and ribose HC1' of the opposite strand, into a model that is fully compatible with the diffraction data obtained from poly(dA).poly(dT).  相似文献   

12.
Using Raman spectroscopy, we examined the ribose-phosphate backbone conformation, the hydrogen bonding interactions, and the stacking of the bases of the poly(U).poly(A).poly(U) triple helix. We compared the Raman spectra of poly(U).poly(A).poly(U) in H2O and D2O with those obtained for single-stranded poly(A) and poly(U) and for double-stranded poly(A).poly(U). The presence of a Raman band at 863 cm-1 indicated that the backbone conformations of the two poly(U) chains are different in the triple helix. The sugar conformation of the poly(U) chain held to the poly(A) by Watson-Crick base pairing is C3' endo; that of the second poly(U) chain may be C2' endo. Raman hypochromism of the bands associated with base vibrations demonstrated that uracil residues stack to the same extent in double helical poly(A).poly(U) and in the triple-stranded structure. An increase in the Raman hypochromism of the bands associated with adenine bases indicated that the stacking of adenine residues is greater in the triple helix than in the double helical form. Our data further suggest that the environment of the carbonyls of the uracil residues is different for the different strands.  相似文献   

13.
B C Sang  D M Gray 《Biochemistry》1987,26(23):7210-7214
Circular dichroism (CD) data indicated that fd gene 5 protein (G5P) formed complexes with double-stranded poly(dA.dT) and poly[d(A-T).d(A-T)]. CD spectra of both polymers at wavelengths above 255 nm were altered upon protein binding. These spectral changes differed from those caused by strand separation. In addition, the tyrosyl 228-nm CD band of G5P decreased more than 65% upon binding of the protein to these double-stranded polymers. This reduction was significantly greater than that observed for binding to single-stranded poly(dA), poly(dT), and poly[d(A-T)] but was similar to that observed for binding of the protein to double-stranded RNA [Gray, C.W., Page, G.A., & Gray, D.M. (1984) J. Mol. Biol. 175, 553-559]. The decrease in melting temperature caused by the protein was twice as great for poly[d(A-T).d(A-T)] as for poly(dA.dT) in 5 mM tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), pH 7. Upon heat denaturation of the poly(dA.dT)-G5P complex, CD spectra showed that single-stranded poly(dA) and poly(dT) formed complexes with the protein. The binding of gene 5 protein lowered the melting temperature of poly(dA.dT) by 10 degrees C in 5 mM Tris-HCl, pH 7, but after reducing the binding to the double-stranded form of the polymer by the addition of 0.1 M Na+, the melting temperature was lowered by approximately 30 degrees C. Since increasing the salt concentration decreases the affinity of G5P for the poly(dA) and poly(dT) single strands and increases the stability of the double-stranded polymer, the ability of the gene 5 protein to destabilize poly(dA.dT) appeared to be significantly affected by its binding to the double-stranded form of the polymer.  相似文献   

14.
The binding of propidium to poly(dA).poly(dT) [poly(dA.dT)] and to poly[d(A-T)].poly[d(A-T)] [poly[d(A-T)2]] has been compared under a variety of solution conditions by viscometric titrations, binding studies, and kinetic experiments. The binding of propidium to poly[d(A-T)2] is quite similar to its binding to calf thymus deoxyribonucleic acid (DNA). The interaction with poly(dA.dT), however, is quite unusual. The viscosity of a poly(dA.dT) solution first decreases and then increases in a titration with propidium at 18 degrees C. The viscosity of poly[d(A-T)2] shows no decrease in a similar titration. Scatchard plots for the interaction of propidium with poly(dA.dT) show the classical upward curvature for positive cooperativity. The curvature decreases as the temperature is increased in binding experiments. A van't Hoff plot of the observed binding constants yields an apparent positive enthalpy of approximately +6 kcal/mol for the propidium-poly(dA.dT) interaction. Propidium binding to poly[d(A-T)2] shows no evidence for positive cooperativity, and the enthalpy change for the reaction is approximately -9 kcal/mol. Both the magnitude of the dissociation constants and the effects of ionic strength are quite similar for the dissociation of propidium from poly(dA-T)2] and from poly[d(A-T)2], suggesting that the intercalated states are similar for the two complexes. The observed association reactions, under pseudo-first-order conditions, are quite different. Plots of the observed pseudo-first-order association rate constant vs. polymer concentration have much larger slopes for propidium binding to poly[d(A-T)2] than to poly(dA.dT).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A novel zig-zag (Z) structure is proposed for poly d(GC).poly d(GC). The proposed model closely resembles the crystal structure of d(CG)3.  相似文献   

16.
Sequencing studies have shown that in somatic cells alternating runs of purines and pyrimidines are frequently associated with recombination crossover points. To test whether such sequences actually promote recombination, we have examined the effects of poly[d(pGpT).d(pApC)] and poly[d(pCpG).d(pCpG)] repeats on a homologous recombination event. The parental molecule used in this study, pSVLD, is capable of generating wild-type simian virus 40 DNA via recombination across two 751-base-pair regions of homology and has been described previously (Miller et al., Proc. Natl. Acad. Sci. USA 81:7534-7538, 1984). Single inserts of either a poly[d(pGpT).d(pApC)] repeat or a poly[d(pCpG).d(pCpG)] repeat were positioned adjacent to one region of homology in such a way that the recombination product, wild-type simian virus 40 DNA, could be formed only by recombination within the homologies and not by recombination across the alternating purine-pyrimidine repeats. We have found that upon transfection of test DNAs into simian cells, a poly[d(pCpG).d(pCpG)] repeat enhanced homologous recombination 10- to 15-fold, whereas a poly[d(pGpT).d(pApC)] repeat had less effect. These results are discussed in terms of the features of these repeats that might be responsible for promoting homologous recombination.  相似文献   

17.
Sarma et al. (J. Biomol. Str. and Dynam. 2, 1085 (1985) have proposed, on the basis of nuclear magnetic resonance experiments on the complex of netropsin with poly(dA).poly(dT), that the drug molecule lies asymmetrically along the dA side of the minor groove and makes hydrogen bonds only with the dA strand. If the crystal structure analyses of B-DNA (Fratini et al., J. Biol. Chem. 257, 14686 (1982] and of its complex with netropsin (Kopka et al., J. Mol. Biol. 183, 553 (1985] are any guide, this off-center, wide-groove model is stereochemically unlikely. More to the point, the off-center model is unnecessary to explain the observed nmr data. All of the nuclear Overhauser and other observations are fully explained by the structure seen in the x-ray crystal analysis, in which netropsin sits squarely centered within the minor groove, making bifurcated hydrogen bonds with both strands.  相似文献   

18.
A normal-mode and statistical mechanical calculation was carried out to determine the vibrational normal modes, contribution of internal fluctuations to the free energy, and hydrogen bond disruption of DNA triplex poly(dA).2poly(dT). The calculation was performed on both the x-ray fiber diffraction model with a N-type sugar conformation, and a newly proposed model with a S-type sugar conformation. Our calculated normal modes for the S-type structure are in better agreement with observed IR spectra for samples in D2O solution. We also find that the contribution of internal fluctuations to free energy, premelting hydrogen bond disruption probability, and hydrogen bond melting temperatures for the Hoogsteen and Watson-Crick hydrogen bonds all show that the S-type structure is dynamically more stable than the N-type structure in a nominal solution environment. Therefore our calculation supports experimental findings that the triplex d(T)n.d(A)nd(T)n most likely adopts a S-type sugar conformation in solution or at high humidity. Our calculations, however, do not preclude the possibility of an N-type conformation at lower humidities.  相似文献   

19.
On the basis of circular dichroism (CD) data, we have now identified six different conformational states (other than the duplex) of poly[d(A-G).d(C-T)] at pH values between 8 and 2.5 (at 0.01M Na+; 20 degrees C). Three of these structural rearrangements were observed as the pH was lowered from 8 to 2.5, and three additional rearrangements were observed as the pH was raised from 2.5 back to neutral pH. The major components of the six conformational states were defined using appropriate combinations of the CD spectra of the duplex, triplex, and denatured forms of this polymer, as well as the CD spectra of the individual single strands and their respective acid-induced self-complexes. Our results show that the acid-induced rearrangements of poly[d(A-G).d(C-T)] include not only the poly[d(C+-T).d(A-G).d(C-T)] triplex, but also include the poly[d(C-T)] loop-out structure and a self-complexed form of the poly[d(A-G)] strand that is pH-dependent.  相似文献   

20.
A new model structure is proposed for the silk I form of the crystalline domains of Bombyx mori silk fibroin and the corresponding crystal form of poly(L-Ala-Gly). It was deduced from conformational energy computations on stacked sheet structures of poly(L-Ala-Gly). The novel sheet structure contains interstrand hydrogen bonds but is composed of anti-parallel polypeptide chains whose conformation differs from that of the antiparallel beta-sheets that constitute the silk II structure. The strands of the new sheet have a two-residue repeat, in which the Ala residues adopt a right-handed and the Gly residues a left-handed sheet-like conformation. The computed unit cell is orthorhombic, with cell dimensions a = 8.94 A, b = 6.46 A, and c = 11.26 A. The model accounts for most spacings in the observed fiber x-ray diffraction patterns of silk I and of the silk-I-like form of poly(L-Ala-Gly), and it is consistent with nmr and ir spectroscopic data. As a test of the computations, the well-established beta-sheet structure of silk II and the corresponding form of poly(L-Ala-Gly) have been reproduced. The computed energies for the two forms of poly(L-Ala-Gly) indicate that the silk-II-like form is more stable, by about 1.0 kcal/mol per residue. The main difference between the two structures is the orientation of the Ala side chains of neighboring strands in each sheet. In the Pauling-Corey beta-sheet and in the silk II form, referred to as an "in-register" structure, the Ala side chains of every strand point to the same side of a sheet. In the silk I structure, referred to as "out-of-register," the side chains of Ala residues in adjacent strands point to opposite sides of the sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号