首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an attempt to study the importance of starch synthesis inleaves with respect to sink-source interactions, we investigateddaily turnover of carbohydrates in leaves of transgenic potatoplants inhibited for ADP-glucose pyrophosphorylase (AGPase).Down-regulation of AGPase has been performed using two differentpromoters: the near-constitutive CaMV 35S promoter, and theSTLSI promoter which is active in photosynthetic cells only.Residual AGPase activity in leaves was between 6 and 30% inindividual transformants as compared to wild-type potato plants.We found that: (i) photosynthesis is not significantly alteredrelative to wild-type plants; (ii) levels of starch are markedlyreduced in leaves of transgenic plants; (iii) levels of solublesugars and malate are largely unaffected by the inhibition ofAGPase; (iv) the reduction of starch synthesis leads to a higherportion of assimilated carbon being transported from leavesto sink tissues during the light period; (v) altered leaf exportcharacteristics do not change tuber yield under greenhouse conditions.Collectively, these data demonstrate a striking flexibilityof the potato plant with respect to day/night rhythms of carbonexport from leaves and utilization by the major storage sinks,i.e. developing tubers. (Received November 1, 1994; Accepted March 2, 1995)  相似文献   

2.
Transgenic potato plants were created in which the expression of ADP-glucose pyrophosphorylase (AGPase) was inhibited by introducing a chimeric gene containing the coding region of one of the subunits of the AGPase linked in an antisense orientation to the CaMV 35S promoter. Partial inhibition of the AGPase enzyme was achieved in leaves and almost complete inhibition in tubers. This resulted in the abolition of starch formation in tubers, thus proving that AGPase has a unique role in starch biosynthesis in plants. Instead up to 30% of the dry weight of the transgenic potato tubers was represented by sucrose and up to 8% by glucose. The process of tuber formation also changed, resulting in significantly more tubers both per plant and per stolon. The accumulation of soluble sugars in tubers of antisense plants resulted in a significant increase of the total tuber fresh weight, but a decrease in dry weight of tubers. There was no significant change in the RNA levels of several other starch biosynthetic enzymes, but there was a great increase in the RNA level of the major sucrose synthesizing enzyme sucrose phosphate synthase. In addition, the inhibition of starch biosynthesis was accompanied by a massive reduction in the expression of the major storage protein species of potato tubers, supporting the idea that the expression of storage protein genes is in some way connected to carbohydrate formation in sink storage tissues.  相似文献   

3.
Transgenic plants of Arabidopsis thaliana Heynh., transformed with a bacterial beta-glucuronidase (GUS) gene under the control of the promoter of the small subunit (ApS) of ADP-glucose pyrophosphorylase (AGPase), exhibited GUS staining in leaves (including stomata), stems, roots and flowers. Cross-sections of stems revealed GUS staining in protoxylem parenchyma, primary phloem and cortex. In young roots, the staining was found in the root tips, including the root cap, and in vascular tissue, while the older root-hypocotyl axis showed prominent staining in the secondary phloem and paratracheary parenchyma of secondary xylem. The GUS staining co-localized with ApS protein, as found by tissue printing using antibodies against ApS. Starch was found only in cell and tissue types exhibiting GUS staining and ApS labelling, but not in all of them. For example, starch was lacking in the xylem parenchyma and secondary phloem of the root-hypocotyl axis. Sucrose potently activated ApS gene expression in leaves of wild-type (wt) plants, and in transgenic seedlings grown on sucrose medium where GUS activity was quantified with 4-methylumbelliferyl-beta-glucuronide as substrate. Okadaic acid, an inhibitor of protein phosphatases 1 and 2A, completely blocked expression of ApS in mature leaves of wt plants and prevented GUS staining in root tips and flowers of the transgenic plants, suggesting a similar signal transduction mechanism for ApS expression in various tissues. The data support the key role of AGPase in starch synthesis, but they also underlie the ubiquitous importance of the ApS gene for AGPase function in all organs/tissues of Arabidopsis.  相似文献   

4.
The aim of this work was to investigate the extent to which starch synthesis in potato (Solanum tuberosum L.) tubers is controlled by the activity of ADPglucose pyrophosphorylase (EC 2.7.7.27; AGPase). In order to do this, fluxes of carbohydrate metabolism were measured in tubers that had reduced AGPase activity as a result of the expression of a cDNA encoding the B subunit in the antisense orientation. Reduction in AGPase activity led to a reduction in starch accumulation, and an increase in sucrose accumulation. The control coefficient of AGPase on starch accumulation in intact plants was estimated to be around 0.3. The fluxes of carbohydrate metabolism were measured in tuber discs from wild-type and transgenic plants by investigating the metabolism of [U-14C]glucose. In tuber discs, the control coefficient of AGPase over starch synthesis was estimated as 0.55, while the control coefficient of the enzyme over sucrose synthesis was −0.47. The values obtained suggest that AGPase activity exerts appreciable control over tuber metabolism in potato. Received: 24 February 1999 / Accepted: 8 April 1999  相似文献   

5.
6.
7.
Transgenic plants were constructed expressing a novel cytosolic inorganic pyrophosphatase in order to reduce the cytosolic pyrophosphate content. To this end the Escherichia coli gene ppa encoding inorganic pyrophosphatase was cloned between the 35S CaMV promoter and the poly(A) site of the octopine synthase gene and transferred into tobacco and potato plants by Agrobacterium-mediated gene transfer. Regenerated plants were tested for the expression of the ppa gene by Northern blots and activity gels. Plants expressing active inorganic pyrophosphatase showed a dramatic change in photoassimilate partitioning. In both transgenic tobacco and potato plants the ratio between soluble sugars and starch was increased by about 3-4-fold in source leaves as compared with the wild-type. However, whereas source leaves of transgenic tobacco plants accumulated much higher levels of glucose (up to 68-fold), fructose (up to 24-fold), sucrose (up to 12-fold) and starch (up to 8-fold) this was not observed in potato plants where the change in assimilate partitioning in source leaves was due to an increase of about 2-fold in sucrose and a reduction in starch content. Expression of the cytosolic inorganic pyrophosphatase in tobacco results in stunted growth of vegetatively growing plants due to a reduced internode distance. Upon flowering the transgenic plants increase their growth rate, reaching almost the same height as control plants at the end of the growth period. Old source leaves accumulate up to 100-fold more soluble sugars than control leaves. This increase in soluble sugars is accompanied by a reduction in chlorophyll content (up to 85%). Transgenic potato plants showed a less dramatic change in their growth behaviour. Plants were slightly reduced in size, with stems more highly branched. Tuber number increased 2-3-fold, but tuber weight was lower resulting in no net increase in fresh weight.  相似文献   

8.
Transgenic potato tubers that overexpressed either a cytosolic or an apoplastic invertase in the wild type or AGPase antisense background were used to analyse the effect of invertase activity on cell expansion, starch granule formation and turgor pressure during tuber development. Although the transgenic plants did not develop a visible phenotype in aerial regions the size and number of tubers were significantly modified in the various lines. Transmission electron and light microscopy were performed to monitor starch grain size and number, cell size and cell wall thickness. Water potential, osmotic pressure, and indirectly, turgor pressure were determined during the final stages of tuber development. Glucose levels were high in transgenic tubers that overexpressed a yeast-derived invertase. The number of starch grains per cell was almost identical in all transgenic lines. However, the amount of starch was modified in the transgenics as compared to the wild type. As expected, the size of starch grains was reduced in all lines that expressed an AGPase antisense mRNA. These results indicate that invertase activity and glucose levels do not affect initiation of starch grain formation during the early stages of tuber development, but growth of starch corns in the later stages of tuber maturation.  相似文献   

9.
Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) has been shown to play an essential role in regulating saccharide metabolism and starch biosynthesis of plant. The regulatory role of StSnRK1 from potato in regulating carbohydrate metabolism and starch accumulation has not been investigated. In this work, a cDNA encoding the SnRK1 protein, named StSnRK1, was isolated from potato. The open reading frame contained 1545 nucleotides encoding 514 amino acids. Subcellular localization analysis in onion epidermal cells indicated that StSnRK1 protein was localized to the nucleus. The coding region of StSnRK1 was cloned into a binary vector under the control of 35S promoter and then transformed into tobacco to obtain transgenic plants. Transgenic tobacco plants expressing StSnRK1 were shown to have a significant increased accumulation of starch content, as well as sucrose, glucose and fructose content. Real-time quantitative PCR analysis indicated that overexpression of StSnRK1 up-regulated the expression of sucrose synthase (NtSUS), ADP-glucose pyrophosphorylase (NtAGPase) and soluble starch synthase (NtSSS III) genes involved in starch biosynthesis in the transgenic plants. In contrast, the expression of sucrose phosphate synthase (NtSPS) gene was decreased in the transgenic plants. Meanwhile, enzymatic analyses indicated that the activities of major enzymes (SUS, AGPase and SSS) involved in the starch biosynthesis were enhanced, whereas SPS activity was decreased in the transgenic plants compared to the wild-type. These results suggest that the manipulation of StSnRK1 expression might be used for improving quality of plants in the future.  相似文献   

10.
11.
Transgenic plants of a tetraploid potato cultivar were obtained in which the amylose content of tuber starch was reduced via antisense RNA-mediated inhibition of the expression of the gene encoding granule-bound starch synthase (GBSS). GBSS is one of the key enzymes in the biosynthesis of starch and catalyses the formation of amylose. The antisense GBSS genes, based on the full-length GBSS cDNA driven by the 35S CaMV promoter or the potato GBSS promoter, were introduced into the potato genome by Agrobacterium tumefaciens-mediated transformation. Expression of each of these genes resulted in the complete inhibition of GBSS gene expression, and thus in the production of amylose-free tuber starch, in mature field-grown plants originating from rooted in vitro plantlets of 4 out of 66 transgenic clones. Clones in which the GBSS gene expression was incompletely inhibited showed an increase of the extent of inhibition during tuber growth. This is likely to be due to the increase of starch granule size during tuber growth and the specific distribution pattern of starch components in granules of clones with reduced GBSS activity. Expression of the antisense GBSS gene from the GBSS promoter resulted in a higher stability of inhibition in tubers of field-grown plants as compared to expression from the 35S CaMV promoter. Field analysis of the transgenic clones indicated that inhibition of GBSS gene expression could be achieved without significantly affecting the starch and sugar content of transgenic tubers, the expression level of other genes involved in starch and tuber metabolism and agronomic characteristics such as yield and dry matter content.  相似文献   

12.
Transgenic potato (Solanum tuberosum) plants expressing the movement protein (MP) of tobacco mosaic virus (TMV) under the control of the promoters from the class I patatin gene (B33) or the nuclear photosynthesis gene (ST-LS1) were employed to further explore the mode by which this viral protein interacts with cellular metabolism to change carbohydrate allocation. Dye-coupling experiments established that expression of the TMV-MP alters plasmodesmal function in both potato leaves and tubers when expressed in the respective tissues. However, whereas the size-exclusion limit of mesophyll plasmodesmata was increased to a value greater than 9.4 kD, this size limit was smaller for plasmodesmata interconnecting tuber parenchyma cells. Starch and sugars accumulated in potato leaves to significantly lower levels in plants expressing the TMV-MP under the ST-LS1 promoter, and rate of sucrose efflux from petioles of the latter was higher compared to controls. It is interesting that this effect was expressed only in mature plants after tuber initiation. No effect on carbohydrate levels was found in plants expressing this protein under the B33 promoter. These results are discussed in terms of the mode by which the TMV-MP exerts its influence over carbon metabolism and photoassimilate translocation, and the possible role of plasmodesmal function in controlling these processes.  相似文献   

13.
Tomato (Lycopersicon esculentum Mill. cv. Better Boy) plants were transformed with a fused gene containing a 2.2-kb promoter fragment of the tomato prosystemin gene and the coding region of the β-glucuronidase (GUS) reporter gene. The transgenic plants exhibited a low constitutive level of prosystemin-β-glucuronidase gene expression, assayed by histochemical staining and GUS enzyme activity, that was associated in the vascular bundles of leaf main veins, petiolules, petioles and stems. The GUS activity in the vascular bundles in each tissue was increased by wounding and by treatment of the plants with methyl jasmonate, similar to the induction of prosystemin in wild-type plants. The increase in GUS activity in the vascular bundles of leaves in response to wounding correlated with the wound-inducible increase in prosystemin mRNA. Tissue printing, using rabbit anti-serum prepared against prosystemin, confirmed that inducible prosystemin protein was localized in vascular bundles of petiolules, petioles and stems of wild-type tomato plants. The evidence indicates that the 2.2-kb promoter region of the tomato prosystemin gene contains elements conferring its correct temporal and spatial expression in the vascular bundles of transgenic tomato plants. Received: 7 January 1997 / Accepted: 2 April 1997  相似文献   

14.
Adenine nucleotides are of general importance for many aspectsof cell function, but their role in the regulation of biosyntheticprocesses is still unclear. It was previously reported thatdecreased expression of plastidial adenylate kinase, catalysingthe interconversion of ATP and AMP to ADP, leads to increasedadenylate pools and starch content in transgenic potato tubers.However, the underlying mechanisms were not elucidated. Here,it is shown that decreased expression of plastidial adenylatekinase in growing tubers leads to increased rates of respiratoryoxygen consumption and increased carbon fluxes into starch.Increased rates of starch synthesis were accompanied by post-translationalredox-activation of ADP-glucose pyrophosphorylase (AGPase),catalysing the key regulatory step of starch synthesis in theplastid, while there were no substantial changes in metabolicintermediates or sugar levels. A similar increase in post-translationalredox-activation of AGPase was found after supplying adenineto wild-type potato tuber discs to increase adenine nucleotidelevels. Results provide first evidence for a link between redox-activationof AGPase and adenine nucleotide levels in plants. Key words: Adenylate kinase, ADPglucose pyrophosphorylase, plastid, redox-regulation, potato, respiration, starch Received 18 September 2007; Revised 12 November 2007 Accepted 13 November 2007  相似文献   

15.
16.
We studied temporal and spatial expression patterns of the potato proteinase inhibitor II (PI-II) promoter, using transgenic tobacco (Nkotiana tabacum L cv. Xanthi) plants that carried a fusion between the PI-II promoter and the chloramphenicol acetyltransferase (cat) gene. Pl-ll promoter activity was low when plants were young, but increased as plants grew. In 8-week-old plants, old leaves showed higher activity than young leaves. At flowering stage (ca. 15 weeks), the overall promoter activity was reduced to a lower level except in the petals. Compared with stems or petioles at the flowering stage, the roots and floral organs showed minimal activity for the Pl-ll promoter. We used several environmental stimuli to examine the induction of the Pl-ll promoter in different organs. Promoter induction was effected by wounding or methyl jasmonate in stems, petioles, sepals, and leaves. The induction was highest in leaves, as was sucrose-enhanced wound induction. These results suggest that the Pl-ll gene is temporally and spatially regulated. We also established a transient assay system in tobacco BY2 suspension cells to elucidate the upstream regulatory region of the Pl-ll promoter. A field strength of 0.75 kV/cm and 400 μF capacitance were optimal electroporation conditions for our transient assay.  相似文献   

17.
The tobacco mosaic virus movement protein (TMV-MP) has pleiotropic effects when expressed in transgenic tobacco (Nicotiana tabacum) plants. In addition to its ability to increase the plasmodesmal size-exclusion limit, the TMV-MP alters carbohydrate metabolism in source leaves and dry matter partitioning between the various plant organs. In the present study the TMV-MP was expressed under the control of a phloem-specific promoter (rolC), and this system was employed to further explore the potential sites at which the TMV-MP exerts its influence over carbon metabolism and transport in transgenic potato (Solanum tuberosum) plants. Immunohistochemical analyses indicated that the TMV-MP was localized mainly to phloem parenchyma and companion cells. Starch and sucrose accumulated in source leaves of these plants to significantly higher levels compared with control potato lines. In addition, the rate of sucrose efflux from excised petioles was lower compared with control plants. Furthermore, under short-day conditions, carbon partitioning was lower to the roots and higher to tubers in rolC plants compared with controls. These results are discussed in terms of the mode(s) by which the TMV-MP exerts its influence over carbon metabolism and photoassimilate translocation.  相似文献   

18.
19.
20.
Previous experiments have shown that carbohydrate partitioning in leaves of potato (Solanum tuberosum L.) plants can be modified by antisense repression of the triose phosphate translocator (TPT), favoring starch accumulation during the light period, or by leaf-specific antisense repression of ADP-glucose pyrophosphorylase (AGPase), reducing leaf starch content. These experiments showed that starch and sucrose synthesis can partially replace each other. To determine how leaf metabolism acclimates to an inhibition of both pathways, transgenic potato (S. tuberosum L. cv Desiree) plants, with a 30% reduction of the TPT achieved by antisense repression, were transformed with an antisense cDNA of the small subunit of AGPase, driven by the leaf-specific ST-LS1 promoter. These double-transformed plants were analyzed with respect to their carbohydrate metabolism, and starch accumulation was reduced in all lines of these plants. In one line with a 50% reduction of AGPase activity, the rate of CO2 assimilation was unaltered. In these plants the stromal level of triose phosphate was increased, enabling a high rate of triose phosphate export in spite of the reduction of the TPT protein by antisense repression. In a second line with a 95% reduction of AGPase activity, the amount of chlorophyll was significantly reduced as a consequence of the lowered triose phosphate utilization capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号