首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Basal bodies nucleate, anchor, and organize cilia. As the anchor for motile cilia, basal bodies must be resistant to the forces directed toward the cell as a consequence of ciliary beating. The molecules and generalized mechanisms that contribute to the maintenance of basal bodies remain to be discovered. Bld10/Cep135 is a basal body outer cartwheel domain protein that has established roles in the assembly of nascent basal bodies. We find that Bld10 protein first incorporates stably at basal bodies early during new assembly. Bld10 protein continues to accumulate at basal bodies after assembly, and we hypothesize that the full complement of Bld10 is required to stabilize basal bodies. We identify a novel mechanism for Bld10/Cep135 in basal body maintenance so that basal bodies can withstand the forces produced by motile cilia. Bld10 stabilizes basal bodies by promoting the stability of the A- and C-tubules of the basal body triplet microtubules and by properly positioning the triplet microtubule blades. The forces generated by ciliary beating promote basal body disassembly in bld10Δ cells. Thus Bld10/Cep135 acts to maintain the structural integrity of basal bodies against the forces of ciliary beating in addition to its separable role in basal body assembly.  相似文献   

2.
The pattern of proliferation of new basal bodies in ciliary rows (somatic proliferation) in Tetrahymena was observed. Starved and refed cells were used, because proliferation in these cells is more pronounced than that under other circumstances. The formation of new basal bodies is locally determined by the position of "old" pre-existing basal body (short range determination). However, the probability of proliferation associated with any given "old" basal body differs very much. This probability is determined by the spatial coordinates of the particular region of the cell (long range determination); however some randomness in this process was also observed. Two different gradients of proliferation were found. The first gradient is circumferential with a maximum number of new basal bodies added in ciliary rows n, 1, 2 and 3 and the minimum number added in ciliary rows 7, 8 and 9. The second is an antero-posterior gradient with the highest number of new basal bodies added in the midbody region. Moreover, at least in some cases, new oral primordia first appear, as a random proliferation of new basal bodies adjacent to a few old cilia of ciliary row No. 1, resembling somatic proliferation. Then 2,3 or even more clumps of basal bodies appear, each having one old cilium posteriorly. These clumps, however, are not linear groups within the ciliary row but instead they form small fields of basal bodies. These findings suggest, that the same two-gradient system for new basal body addition operates during somatic proliferation and also determines the position of the new oral primordium as the site of the highest gradient value at the intersection of two gradients.  相似文献   

3.
In eukaryotic cells, basal bodies and their structural equivalents, centrioles, play essential roles. They are needed for the assembly of flagella or cilia as well as for cell division. Chlamydomonas reinhardtii provides an excellent model organism for the study of the basal body and centrioles. Genes for two new members of the tubulin superfamily are needed for basal body/centriole duplication. In addition, other genes that play roles in the duplication and segregation of basal bodies are discussed.  相似文献   

4.
We report here the ultrastructural localization of S-100b protein-like immunoreactivity in the centriole, cilia, and basal body. Duodenum and trachea of guinea pigs and rats were fixed and immunostained by the protein A-gold method. All centrioles, cilia, and basal bodies observed showed clear S-100b protein-like immunoreactivity. Specific colloidal gold particles were located over the microtubules in these cell organelles. However, other microtubules scattered throughout the cytoplasm were devoid of immunoreactivity. Although the functional significance of S-100b protein-like immunoreactivity in the centriole, cilia, and basal bodies remains to be elucidated, the present results introduce new perspectives into the investigation of localization and function of S-100 proteins.  相似文献   

5.
Primary cilia are nonmotile microtubule structures that assemble from basal bodies by a process called intraflagellar transport (IFT) and are associated with several human diseases. Here, we show that the centrosome protein pericentrin (Pcnt) colocalizes with IFT proteins to the base of primary and motile cilia. Immunogold electron microscopy demonstrates that Pcnt is on or near basal bodies at the base of cilia. Pcnt depletion by RNA interference disrupts basal body localization of IFT proteins and the cation channel polycystin-2 (PC2), and inhibits primary cilia assembly in human epithelial cells. Conversely, silencing of IFT20 mislocalizes Pcnt from basal bodies and inhibits primary cilia assembly. Pcnt is found in spermatocyte IFT fractions, and IFT proteins are found in isolated centrosome fractions. Pcnt antibodies coimmunoprecipitate IFT proteins and PC2 from several cell lines and tissues. We conclude that Pcnt, IFTs, and PC2 form a complex in vertebrate cells that is required for assembly of primary cilia and possibly motile cilia and flagella.  相似文献   

6.
7.
Basal bodies comprise nine symmetric triplet microtubules that anchor forces produced by the asymmetric beat pattern of motile cilia. The ciliopathy protein Poc1 stabilizes basal bodies through an unknown mechanism. In poc1∆ cells, electron tomography reveals subtle defects in the organization of intertriplet linkers (A-C linkers) that connect adjacent triplet microtubules. Complete triplet microtubules are lost preferentially near the posterior face of the basal body. Basal bodies that are missing triplets likely remain competent to assemble new basal bodies with nine triplet microtubules, suggesting that the mother basal body microtubule structure does not template the daughter. Our data indicate that Poc1 stabilizes basal body triplet microtubules through linkers between neighboring triplets. Without this stabilization, specific triplet microtubules within the basal body are more susceptible to loss, probably due to force distribution within the basal body during ciliary beating. This work provides insights into how the ciliopathy protein Poc1 maintains basal body integrity.  相似文献   

8.
Actin microfilaments were localized in quail oviduct ciliated cells using decoration with myosin subfragment S1 and immunogold labeling. These polarized epithelial cells show a well developed cytoskeleton due to the presence of numerous cilia and microvilli at their apical pole. Most S1-decorated microfilaments extend from the microvilli downward towards the upper part of the ciliary striated rootlets with which they are connected. From the microvillous roots, a few microfilaments connect the proximal part of the basal body or the basal foot associated with the basal body. Microfilament polarity is shown by S1 arrowheads pointing away from the microvillous tip to the cell body. Furthermore, short microfilaments are attached to the plasma membrane at the anchoring sites of basal bodies and run along the basal body. The polarity of these short microfilaments is directed from the basal body anchoring fibers downward to the cytoplasm. At the cell periphery, microfilaments from microvillous roots and ciliary apparatus are connected with those of the circumferential actin belt which is associated with the apical zonula adhaerens. Together with the other cytoskeletal elements, the microfilaments increase ciliary anchorage and could be involved in the coordination of ciliary beating. Moreover, microvilli surrounding the cilia probably modify ciliary beating by offering resistance to cilium bending. The presence of microvilli could explain the fact that mainly the upper part of the cilia appanars to be involved in the axonemal bending in metazoan ciliated cells.  相似文献   

9.
The ultrastructural features of the biflagellate motile cells of six different species of the Chlorophyceae, namely Dunaliella lateralis (Polyblepharidaceae, Chlamydomonadales), Chlorococcum hypnosporum, Spongiochloris spongiosa, Protosiphon botryoides (Chlorococcaceae, Chlorococcales), Tetracystis aeria and Pseudotetracystis terrestris (Tetracystidaceae, Chlorococcales), were examined with an emphasis on the flagellar apparatus (FA). They have different vegetative characteristics, such as, being motile or nonmotile, variations in chloroplast morphology, possession of one or more nuclei, and reproductive features such as formation of tetrahedral tetrads, and naked or walled zoospores. Ultrastructural differences amongst reproductive cells of the six species include variations in cell surface structure, basal body to basal body angle, beamlike extensions of the distal fiber, extensive connections of the proximal sheath between basal bodies, two-membered rootlets, striated microtubule-associated components, two-membered rootlet-nucleus and/or mitochondria connections, X-membered rootlets, connections of rootlets and basal bodies, rhizoplasts and accessory basal bodies. All six species possess pyrenoids penetrated by thylakoid membranes, and the FA typical of the Chlorophyceae (sensu Mattox and Stewart, 1984). These six species should be divided into two groups. The first includes D. lateralis, C. hypnosporum, and T. aeria, in which accessory basal bodies are present, the basal body to basal body angle is relatively fixed, and a cell wall or surface coat is present. The second group includes Ps. terrestris, S. spongiosa, and Pr. botryoides, in which accessory basal bodies are absent, the basal body to basal body angle is variable and the zoospores are naked.  相似文献   

10.
Basal Body Assembly in Ciliates: The Power of Numbers   总被引:1,自引:0,他引:1  
Centrioles perform the dual functions of organizing both centrosomes and cilia. The biogenesis of nascent centrioles is an essential cellular event that is tightly coupled to the cell cycle so that each cell contains only two or four centrioles at any given point in the cell cycle. The assembly of centrioles and their analogs, basal bodies, is well characterized at the ultrastructural level whereby structural modules are built into a functional organelle. Genetic studies in model organisms combined with proteomic, bioinformatic and identifying ciliary disease gene orthologs have revealed a wealth of molecules requiring further analysis to determine their roles in centriole duplication, assembly and function. Nonetheless, at this stage, our understanding of how molecular components interact to build new centrioles and basal bodies is limited. The ciliates, Tetrahymena and Paramecium , historically have been the subject of cytological and genetic study of basal bodies. Recent advances in the ciliate genetic and molecular toolkit have placed these model organisms in a favorable position to study the molecular mechanisms of centriole and basal body assembly.  相似文献   

11.
M C Holley 《Tissue & cell》1984,16(2):287-310
The basal apparatuses which anchor the gill cilia in Branchiostoma lanceolatum (Pallas) and the actinopharynx cilia in Calliactis parasitica (Couch) are similar in structure. In C. parasitica the pharynx epithelium and the basal apparatuses are flexible. The basal apparatuses, however, bend in only one direction. This mechanism may permit epithelial flexibility whilst maintaining a similar basal orientation between cilia. In B. lanceolatum the ciliated gill epithelia are mechanically stable but the epithelial surfaces are curved. The basal apparatuses may correct for this curvature, with short rootlets between the distal centrioles (basal bodies) and the cell membranes, so that their cilia also share a common orientation. A common basal orientation between cilia is important for their coordination. The degree of coordination depends upon the function of the cilia; water-propelling cilia are more precisely coordinated than mucus-propelling cilia. Much of the structural diversity of ciliary basal apparatuses in Metazoa may be due to variation in the demands of anchoring functionally different cilia to epithelia which have different structural and mechanical properties.  相似文献   

12.
Centrioles and basal bodies are fascinating and mysterious organelles. They interconvert and seem to be crucial for a wide range of crucial cellular processes. However, intense research over the last years suggested that centrioles/basal bodies are essential mainly for the generation of cilia. Although a neglected organelle over a long time, interest in the primary cilia was recently rekindled by the notion that they are affected in a number of human diseases. Cilia formation is an intricate process that starts with the transformation of centrioles to basal bodies and their docking to the apical plasma membrane. Disturbance of basal body formation thus might cause ciliopathies. This review focuses on the formation of basal bodies in mammalian cells with an emphasis on basal bodies sprouting a primary cilium.  相似文献   

13.
Cilia-lacking respiratory cells in ciliary aplasia   总被引:1,自引:0,他引:1  
This report describes the ultrastructural alterations observed in the nasal and bronchial mucosa of an 11-yr-old male suffering from immotile cilia syndrome (ICS). The morphological features observed in this patient are consistent with a ciliary aplasia. In fact, ciliated cells appeared to be replaced by columnar cells lacking cilia and basal bodies, and bearing on their surface cilium-like projections without any internal axonemal structure. In spite of the absence of basal bodies, centrioles, and kinocilia, these cells unexpectedly showed mature striated roots and centriolar precursor material scattered throughout the apical cytoplasm. These data suggest that control over basal body assembly is distinct from control over striated root formation. The presence of the above-reported structures in cells otherwise presenting many morphological features of normal ciliated cells is discussed on the basis of current knowledge of respiratory cilia biogenesis.  相似文献   

14.
Cilia are microtubule-based organelles that are present on the surfaces of almost all vertebrate cells. Most cilia function as sensory or molecular transport structures. Malfunctions of cilia have been implicated in several diseases of human development. The assembly of cilia is initiated by the centriole (or basal body), and several centrosomal proteins are involved in this process. The mammalian LIM protein Ajuba is a well-studied centrosomal protein that regulates cell division but its role in ciliogenesis is unknown. In this study, we isolated the medaka homolog of Ajuba and showed that Ajuba localizes to basal bodies of cilia in growth-arrested cells. Knockdown of Ajuba resulted in randomized left-right organ asymmetries and altered expression of early genes responsible for left-right body axis determination. At the cellular level, we found that Ajuba function was essential for ciliogenesis in the cells lining Kupffer’s vesicle; it is these cells that induce the asymmetric fluid flow required for left-right axis determination. Taken together, our findings identify a novel role for Ajuba in the regulation of vertebrate ciliogenesis and left-right axis determination.  相似文献   

15.
Basal bodies organize cilia that are responsible for both mechanical beating and sensation. Nascent basal body assembly follows a series of well characterized morphological events; however, the proteins and their assembly dynamics for new basal body formation and function are not well understood. High-resolution light and electron microscopy studies were performed in Tetrahymena thermophila to determine how proteins assemble into the structure. We identify unique dynamics at basal bodies for each of the four proteins analyzed (α-tubulin, Spag6, centrin, and Sas6a). α-Tubulin incorporates only during new basal body assembly, Spag6 continuously exchanges at basal bodies, and centrin and Sas6a exhibit both of these patterns. Centrin loads and exchanges at the basal body distal end and stably incorporates during new basal body assembly at the nascent site of assembly and the microtubule cylinder. Conversely, both dynamic and stable populations of Sas6a are found only at a single site, the cartwheel. The bimodal dynamics found for centrin and Sas6a reveal unique protein assembly mechanisms at basal bodies that may reflect novel functions for these important basal body and centriolar proteins.  相似文献   

16.
Ultrastructural studies were performed on normal and abnormal cilia and basal bodies associated with the choroidal epithelium of the chick embryo. Tissues were prepared in each of several fixatives including: 1% osmium tetroxide, in both phosphate and veronal acetate buffers; 2% glutaraldehyde, followed by postfixation in osmium tetroxide; 1% potassium permanganate in veronal acetate buffer. Normal cilia display the typical pattern of 9 peripheral doublets and 2 central fibers, as well as a system of 9 secondary fibers. The latter show distinct interconnections between peripheral and central fibers. Supernumerary fibers were found to occur in certain abnormal cilia. The basal body is complex, bearing 9 transitional fibers at the distal end and numerous cross-striated rootlets at the proximal end. The distal end of the basal body is delimited by a basal plate of moderate density. The tubular cylinder consists of 9 triple fibers. The C subfibers end at the basal plate, whereas subfibers A and B continue into the shaft of the cilium. The 9 transitional fibers radiate out from the distal end of the basal body, ending in bulblike terminal enlargements which are closely associated with the cell membrane in the area of the basal cup. One or 2 prominent basal feet project laterally from the basal body. These structures characteristically show several dense cross-bands and, on occasion, are found associated with microtubules.  相似文献   

17.
《The Journal of cell biology》1987,105(6):2855-2859
The ciliated protozoan Oxytricha fallax possesses multiple highly localized clusters of basal bodies and cilia, all of which are broken down and rebuilt during prefission morphogenesis-with one major exception. The adoral zone of membranelles (AZM) of the ciliate oral apparatus contains approximately 1,500-2,000 basal bodies and cilia, and it is the only compound ciliary structure that is passed morphologically intact to one daughter cell at each cell division. By labeling all proteins in cells, and then picking the one daughter cell possessing the original labeled AZM, we could then evaluate whether or not the ciliary proteins of the AZM were diluted (i.e., either by degradation to constituent amino acids or by subunit exchange) during cell division. Autoradiographic analysis demonstrated that the label was highly conserved in the AZM (i.e., we saw no evidence of turnover), and electrophoretic data illustrate that at least one of the proteins of the AZM is tubulin. We, therefore, conclude that for at least some of the ciliary and basal body proteins of Oxytricha fallax, AZM morphological conservation is essentially equivalent to molecular conservation.  相似文献   

18.
This paper describes the fine structure and its relationship to the direction of beat in four types of cilia on the gill of the fresh-water mussel Anodonta cataracta. The cilia contain nine outer, nine secondary, and two central fibers, such as have been described previously in other material. Each outer fiber is a doublet with one subfiber bearing arms. One particular pair of outer fibers (numbers 5 and 6) are joined together by a bridge. The two central fibers are enclosed by a central sheath; also present in this region is a single, small mid-fiber. The different groups of fibers are connected together by radial links that extend from the outer to the secondary fibers, and from the secondary fibers to the central sheath. The basal body consists of a cylinder of nine triplet fibers. Projecting from it on one side is a dense conical structure called the basal foot. The cylinder of outer fibers continues from the basal body into the cilium, passing through a complex transitional region in which five distinct changes of structure occur at different levels. There are two sets of fibers associated with the basal bodies: a pair of striated rootlets that extends from each basal body down into the cell, and a system of fine tubular fibers that runs parallel to the cell surface. The relationship between fine structure and direction of beat is the same in all four types of cilia examined. The plane of beat is perpendicular to the plane of the central fibers, with the effective stroke toward the bridge between outer fibers 5 and 6, and toward the foot on the basal body.  相似文献   

19.
Techniques have been developed for the isolation of basal bodies with cilia attached or for the isolation of only basal bodies from the rabbit oviduct. Oviducts are removed, cut open, and placed in an extraction medium composed of 0.25 M sucrose, 0.001 M EDTA, 0.025 M KCl, 0.02 M Hepes buffer pH 7.5, and 0.05% Triton X-100. After the oviduct is agitated in this medium on a Vortex mixer for ½ h, the lumenal cortex of each ciliated cell, containing 200–300 basal bodies with cilia attached, is released as a unit. The cortices and the intact nuclei, which are also released from the disrupted cells, form a pellet when the extraction medium is centrifuged at 600 g for 10 min. When cortices which contain only basal bodies are to be isolated, the oviduct is subjected to conditions which remove the cilia prior to being processed as above. The cilia are removed when the oviduct is placed in a medium of 0.25 M sucrose, 0.01 M CaCl2, 0.02 M Pipes buffer pH 5.5, and 0.05% Triton X-100 and continuously agitated for 15 min on a Vortex mixer. The low pH and Ca++ solubilize the transition region of the cilium and also prevent the cell from being disrupted. The cortices can be partially purified if the 600-g pellet is resuspended in 2.2 M sucrose pH 6.5 and centrifuged at 40,000 g for 2 h. Under these conditions, 85% of the nuclei form a pellet and the cortices float to the surface of the sucrose. In addition to the basal bodies or basal bodies with cilia, the cortices contain some adherent cytoplasm, a few fibers, and a few vesicles which may be remnants of mitochondria or endoplasmic reticulum. The structure of the cilia and the basal bodies isolated with either procedure is normal.  相似文献   

20.
Cilia on the ventral surface of the hypotrich ciliate Euplotes are clustered into polykinetids or compound ciliary organelles, such as cirri or oral membranelles, used in locomotion and prey capture. A single polykinetid may contain more than 150 individual cilia; these emerge from basal bodies held in a closely spaced array within a scaffold or framework structure that has been referred to as a basal‐body “cage”. Cage structures were isolated free of cilia and basal bodies; the predominant component of such cages was found on polyacrylamide gels to be a 45‐kDa polypeptide. Antisera were raised against this protein band and used for immunolocalizations at the light and electron microscope levels. Indirect immunofluorescence revealed the 45‐kDa polypeptide to be localized exclusively to the bases of the ventral polykinetids. Immunogold staining of thin sections of intact cells further localized this reactivity to filaments of a double‐layered dense lattice that appears to link adjoining basal bodies into ordered arrays within each polykinetid. Scanning electron microscopy of isolated cages reveals the lower or “basal” cage layer to be a fine lacey meshwork supporting the basal bodies at their proximal ends; adjoining basal bodies are held at their characteristic spacing by filaments of an upper or “medial” cage layer. The isolated cage thus resembles a miniature test‐tube rack, able to accommodate varying arrangements of basal‐body rows, depending on the particular type of polykinetid. Because of its clear and specific localization to the basal‐body cages in Euplotes, we have termed this novel 45‐kDa protein “cagein”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号