首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(Rp)-Adenosine 3',5'-monophosphorothioate ((Rp)-cAMPS) is a highly specific antagonist of the cAMP-dependent protein kinase from eukaryotic cells and is a very poor substrate for phosphodiesterases. It is therefore a useful tool for investigating the role of cAMP as a second messenger in a variety of biological systems. Taking advantage of stereospecific inversion of configuration around the alpha-phosphate during the adenylate cyclase reaction, we have developed a method for the preparative enzymatic synthesis of the Rp diastereomer of adenosine 3',5'-monophosphorothioate ((Rp)-cAMPS) from the Sp diastereomer of adenosine 5'-O-(1-thiotriphosphate) ((Sp)-ATP alpha S). The adenylate cyclase from Bordetella pertussis, partially purified by calmodulin affinity chromatography, cyclizes (Sp)-ATP alpha S approximately 40-fold more slowly than ATP, but binds (Sp)-ATP alpha S with about 10-fold higher affinity than ATP. The triethylammonium salt of the reaction product can be purified by elution from a gravity flow reversed-phase C18 column with a linear gradient of increasing concentrations of methanol. Yields of the pure (Rp)-cAMPS product of a synthesis with 2 mg of substrate are about 75%.  相似文献   

2.
Cyclic adenosine 5'-monophosphate (cAMP) is an ancient signaling molecule, and in vertebrates, a primary target for cAMP is cAMP-dependent protein kinase (PKA). (R(p))-adenosine 3',5'-cyclic monophosphothioate ((R(p))-cAMPS) and its analogues are the only known competitive inhibitors and antagonists for cAMP activation of PKA, while (S(p))-adenosine 3',5'-cyclic monophosphothioate ((S(p))-cAMPS) functions as an agonist. The crystal structures of a Delta(1-91) deletion mutant of the RIalpha regulatory subunit of PKA bound to (R(p))-cAMPS and (S(p))-cAMPS were determined at 2.4 and 2.3 A resolution, respectively. While the structures are similar to each other and to the crystal structure of RIalpha bound to cAMP, differences in the dynamical properties of the protein when (R(p))-cAMPS is bound are apparent. The structures highlight the critical importance of the exocyclic oxygen's interaction with the invariant arginine in the phosphate binding cassette (PBC) and the importance of this interaction for the dynamical properties of the interactions that radiate out from the PBC. The conformations of the phosphate binding cassettes containing two invariant arginine residues (Arg209 on domain A, and Arg333 on domain B) are somewhat different due to the sulfur interacting with this arginine. Furthermore, the B-site ligand together with the entire domain B show significant differences in their overall dynamic properties in the crystal structure of Delta(1-91) RIalpha complexed with (R(p))-cAMPS phosphothioate analogue ((R(p))-RIalpha) compared to the cAMP- and (S(p))-cAMPS-bound type I and II regulatory subunits, based on the temperature factors. In all structures, two structural solvent molecules exist within the A-site ligand binding pocket; both mediate water-bridged interactions between the ligand and the protein. No structured waters are in the B-site pocket. Owing to the higher resolution data, the N-terminal segment (109-117) of the RIalpha subunit can also be traced. This strand forms an intermolecular antiparallel beta-sheet with the same strand in an adjacent molecule and implies that the RIalpha subunit can form a weak homodimer even in the absence of its dimerization domain.  相似文献   

3.
4.
The diastereomeric forms of adenosine cyclic 3',5'-phosphorothioate, Rp cAMPS and Sp cAMPS, were studied in isolated hepatocytes from fed rats for their ability to interact with the intracellular cAMP-dependent protein kinase and to affect the phosphorylase kinase-phosphorylase glycogenolytic cascade. Incubation of the cells with increasing concentrations of Sp cAMPS produced a concentration-dependent activation of cAMP-dependent protein kinase with a concomitant increase in the glycogenolytic rate. Half-maximal and maximal velocities of glycogenolysis were reached at 8 X 10(-7) and 1 X 10(-5) M Sp cAMPS, respectively. Incubation of the cells with 10(-9) to 10(-4) M Rp cAMPS had no effect on basal glucose production or on cAMP-dependent protein kinase activity. Incubation of the cells simultaneously with 3 X 10(-6) M Sp cAMPS and increasing concentrations of Rp cAMPS produced half-maximal inhibition of glycogenolysis at 1 X 10(-5) M Rp cAMPS and maximal inhibition at 1 X 10(-4) M. The concentrations of Sp cAMPS required for half-maximal and maximal activation of glycogenolysis were increased 10-fold when 1 X 10(-5) M Rp cAMPS was present. These data imply that Sp cAMPS is a cAMP-agonist while Rp cAMPS is a cAMP-antagonist.  相似文献   

5.
The stereoselectivity of the adenosine cyclic 3',5'-phosphate (cAMP) binding sites on the regulatory subunit of the type II bovine cardiac muscle cAMP-dependent protein kinase was investigated by examining the interactions of (Rp)- and (Sp)-adenosine cyclic 3',5'-phosphorothioates (cAMPS) with these sites. While activation of the holoenzyme and binding to the regulatory subunit of the type II kinase were observed for both of these diastereomers, there were significant differences between the interactions of the cAMPS isomers with the enzyme. In particular, the Sp isomer is more potent than the Rp species not only in the activation of reconstituted, as well as directly isolated, holoenzyme but also in the inhibition of [3H]cAMP binding to the regulatory subunit. A marked preference for the binding of the Sp isomer to site 2 in the regulatory subunit exists. Hydrogen bonding of a functional group on the regulatory subunit with preferential orientation toward the exocyclic oxygen rather than the sulfur of the thiophosphoryl residue may be involved in the observed selectivity of cAMPS binding and activation. In addition to our findings on the stereoselectivity of the binding of cAMPS to cAMP-dependent protein kinase, we have established a method for the reconstitution of holoenzyme from the purified subunits without subjecting the regulatory protein to denaturing conditions.  相似文献   

6.
The ability of the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate (Rp cAMPS) to inhibit glucagon-induced glycogenolysis was studied in hepatocytes isolated from fed rats. Preincubation of the cells for 20 min with progressively higher concentrations of Rp cAMPS followed by a 1 X 10(-9) M glucagon challenge resulted in a 50% inhibition of glucose production over a 30-min period at 2-3 X 10(-6) M Rp cAMPS. A maximal inhibition of 50-74% was achieved, the actual value depending upon the length of preincubation with Rp cAMPS. The inhibitory effect did not increase when the concentration of Rp cAMPS was increased from 3 X 10(-6) to 3 X 10(-4) M. Addition of 1 X 10(-5) M Rp cAMPS to the cells followed by 10(-11) to 10(-6) M glucagon shifted the glucagon concentration required for half-maximal glucose production measured at 10 min to 6-fold higher glucagon concentrations and the concentration of glucagon required for apparent maximal glucose production measured at 10 min to greater than 10-fold higher glucagon concentrations. The cAMP-dependent protein kinase activation curve was similarly shifted to higher concentrations of glucagon. These data show that Rp cAMPS acts as a cAMP antagonist capable of opposing the glucagon-induced activation of cAMP-dependent protein kinase and the concomitant activation of the glycogenolytic cascade.  相似文献   

7.
A single sulfur substitution for either the axial or the equatorial exocyclic oxygen of adenosine cyclic 3', 5'-phosphate (cAMP) results in diastereometric phosphorothioate analogs of cAMP with agonist versus antagonist properties towards activation of cAMP-dependent protein kinase. Sulfur substitutions for both of the exocyclic oxygens of cAMP results in a dithioate analog of cAMP, adenosine cyclic 3', 5'-phosphorodithioate (cAMPS2), which has antagonist properties. cAMPS2 displaced [3H]cAMP from the binding sites on bovine heart Type II cAMP-dependent protein kinase as demonstrated by equilibrium dialysis experiments with an apparent Kd of 6.3 microM. The addition of 10, 30, or 100 microM cAMPS2 when measuring cAMP-induced activation of pure porcine heart Type II cAMP-dependent protein kinase resulted in a concentration-dependent increase in the amount of cAMP required to produce half-maximal activation (EC50). A plot of the EC50 values as a function of the cAMPS2 concentration resulted in a straight line from which a KI value of 4 microM was derived. cAMPS2 had no significant effect on the degree of cooperativity (n) of cAMP activation of the holoenzyme. These data suggest that the most important structural requirement for the dissociation of the holoenzyme is an equatorial exocyclic oxygen.  相似文献   

8.
9.
Maximal doses of glucagon increase the phosphorylation state of 12 cytosolic proteins in isolated hepatocytes from fasted rats (Garrison, J. C., and Wagner, J. D. (1982) J. Biol. Chem. 257, 13135-13143). Incubation of hepatocytes with lower concentrations of glucagon indicates that a hierarchy of substrates exists with the concentration of glucagon required for half-maximal increases in phosphorylation varying 5-15-fold. The proteins whose phosphorylation state is most sensitive to low concentrations of glucagon are pyruvate kinase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, both of which play key roles in the regulation of gluconeogenesis. Treatment of hepatocytes with (Sp)-cAMPS, the stimulatory diastereomer of adenosine cyclic 3',5'-phosphorothioate, mimics the response seen with glucagon. When hepatocytes are pretreated with the cAMP antagonist, (Rp)-cAMPS, the phosphorylation response is abolished at low concentrations of glucagon, and the dose of glucagon required for half-maximal stimulation of phosphorylation is increased 5-10-fold. The (Sp)-cAMPS-stimulated increases in phosphorylation state are also blunted by (Rp)-cAMPS. These results provide direct pharmacological evidence for the activation of the cAMP-dependent protein kinase in response to glucagon in the intact cell. Although low doses of glucagon appear to stimulate protein phosphorylation via the cAMP-dependent protein kinase, high doses of glucagon also cause a small increase in the concentration of free intracellular Ca2+ in hepatocytes. The glucagon-stimulated increases in the level of Ca2+ can be mimicked by (Sp)-cAMPS and inhibited by pretreatment with (Rp)-cAMPS. These results suggest that glucagon can elevate intracellular Ca2+ via cAMP and the cAMP-dependent protein kinase.  相似文献   

10.
The activation of the cGMP-dependent protein kinase and cAMP-dependent protein kinase by the diastereomers of guanosine 3',5'-monophosphorothioate, (Sp)-cGMPS and (Rp)-cGMPS, and 8-chloroguanosine 3',5'-monophosphorothioate, (Sp)-8-Cl-cGMPS and (Rp)-8-Cl-cGMPS, was investigated using the peptide Kemptide as substrate. The (Sp)-diastereomers, which have an axial exocyclic sulfur atom, bound to the cGMP-dependent protein kinase and stimulated its phosphotransferase activity. In contrast, the (Rp)-isomers, which have an equatorial exocyclic sulfur atom, bound to the enzyme without stimulation of its activity. (Rp)-cGMPS and (Rp)-8-Cl-cGMPS antagonized the activation of the cGMP-dependent protein kinase with a Ki of 20 microM and 1.5 microM, respectively. (Rp)-cGMPS also antagonized the activation of cAMP-dependent protein kinase with a Ki of 20 microM. In contrast, (Rp)-8-cGMPS ws a weak inhibitor of the cAMP-dependent protein kinase with a Ki of 100 microM. (Rp)-8-Cl-cGMPS appears to be a rather selective inhibitor of the cGMP-dependent protein kinase and may be a useful tool for studying the role of cGMP in broken and intact cell systems.  相似文献   

11.
Effects of ethanol on gastric mucosal adenosine 3', 5' monophosphate (cAMP)   总被引:1,自引:0,他引:1  
L L Tague  L L Shanbour 《Life sciences》1974,14(6):1065-1073
The effects of ethanol on the gastric mucosal adenosine 3′, 5′-monophosphate (cAMP) system were evaluated. The activity of adenylate cyclase (AC), phosphodiesterase (PDE), and tissue content of cAMP were determined in the presence of ethanol. NaF stimulated AC in rat gastric mucosa was inhibited in vitro and in vivo by 20% ethanol. Basal AC activity was so low (0.05 ± 0.10 pmoles cAMP formed/min/mg protein) that consistent results without NaF could not be obtained. The PDE activity (172 ± 11 pmoles cAMP consumed/min/mg protein) was approximately 350 fold greater than the basal AC activity. All levels of ethanol tested (2.0–20.0%) significantly inhibited (p<0.05) PDE in vitro. Gastric mucosal levels of cAMP are not measurably altered by ethanol in vivo (5–20%).  相似文献   

12.
13.
14.
Synthetic branched RNA fragments were prepared to examine the stereochemical requirements for hydrolysis of RNA lariats by the yeast debranching enzyme (yDBR). Specifically, two branched trinucleoside diphosphates and a tetranucleoside triphosphate containing a 2',5'-linked phosphorothioate linkage of defined stereochemistry, namely Rp-A(2'ps5'G)pC, Sp-A(2'ps5'G)pC and Sp-ApA(2'ps5'G)pC, were prepared via solution-phase methods. Unlike the all-phosphodiester control, A(2'p5'G)pC, the Rp-thioated trimer was not cleaved by yDBR, demonstrating that changing the pro-Rp oxygen at the 2',5' phosphodiester bond averts hydrolysis by the enzyme. In contrast, the Sp branched compounds (trimer and tetramer) were cleaved yDBR, albeit with reduced efficiency relative to the corresponding all-phosphodiester branched compounds. Furthermore, the small branched RNAs (5 nt) were not cleaved as efficiently as a 18-nt bRNA, suggesting that the enzyme appears to have a stronger preference for larger bRNA substrates. The non-hydrolyzable branched RNA fragments prepared during these studies may be promising candidates for the future co-crystallization and X-ray analyses of DBR:bRNA complexes.  相似文献   

15.
16.
We have previously reported that rabbit skeletal muscle phosphorylase kinase is phosphorylated by glycogen synthase (casein) kinase-1 (CK-1) primarily on the beta subunit (beta = 1 mol of PO4; alpha = 0.2 mol of PO4) when the reaction was carried out in beta-glycerophosphate. The resultant enzyme activation was 16-fold (Singh, T. J., Akatsuka, A., and Huang, K.-P. (1982) J. Biol. Chem. 257, 13379-13384). In the present study we found that in Tris-Cl buffer CK-1 catalyzes the incorporation of greater than 2 mol of PO4/monomer into each of the alpha and beta subunits. Phosphorylase kinase activation resulting from the higher level of phosphorylation remained 16-fold. 32P-Labeled tryptic peptides from the alpha and beta subunits were analyzed by isoelectric focusing. Cyclic AMP-dependent protein kinase (A-kinase) phosphorylates a single major site in each of the alpha and beta subunits at 1.5 mM Mg2+. In addition to these two sites, A-kinase phosphorylates at least three other sites in the alpha subunit at 10 mM Mg2+. CK-1 also catalyzes the phosphorylation of multiple sites in both the alpha and beta subunits. Of the two major sites phosphorylated by CK-1 in the beta subunit, one of these sites is also recognized by A-kinase. At least three sites are phosphorylated by CK-1 in the alpha subunit. One of these sites is recognized by CK-1 only after a prior phosphorylation of phosphorylase kinase by A-kinase at a single site in each of the alpha and beta subunits at 1.5 mM Mg2+. The roles of the different phosphorylation sites in phosphorylase kinase activation are discussed.  相似文献   

17.
18.
IL-5 is implicated in the pathogenesis of asthma and is predominantly released from T lymphocytes of the Th2 phenotype. In anti-CD3 plus anti-CD28-stimulated PBMC, albuterol, isoproterenol, rolipram, PGE2, forskolin, cholera toxin, and the cAMP analog, 8-bromoadenosine cAMP (8-Br-cAMP) all inhibited the release of IL-5 and lymphocyte proliferation. Although all of the above compounds share the ability to increase intracellular cAMP levels and activate protein kinase (PK) A, the PKA inhibitor H-89 failed to ablate the inhibition of IL-5 production mediated by 8-Br-cAMP, rolipram, forskolin, or PGE2. Similarly, H-89 had no effect on the cAMP-mediated inhibition of lymphocyte proliferation. Significantly, these observations occurred at a concentration of H-89 (3 microM) that inhibited both PKA activity and CREB phosphorylation in intact cells. Additional studies showed that the PKA inhibitors H-8, 8-(4-chlorophenylthio) adenosine-3',5'-cyclic monophosphorothioate Rp isomer, and a myristolated PKA inhibitor peptide also failed to block the 8-Br-cAMP-mediated inhibition of IL-5 release from PBMC. Likewise, a role for PKG was considered unlikely because both activators and inhibitors of this enzyme had no effect on IL-5 release. Western blotting identified Rap1, a downstream target of the cAMP-binding proteins, exchange protein directly activated by cAMP/cAMP-guanine nucleotide exchange factors 1 and 2, in PBMC. However, Rap1 activation assays revealed that this pathway is also unlikely to be involved in the cAMP-mediated inhibition of IL-5. Taken together, these results indicate that cAMP-elevating agents inhibit IL-5 release from PBMC by a novel cAMP-dependent mechanism that does not involve the activation of PKA.  相似文献   

19.
Polystyrene latex particles (PLP) and zymosan particles (ZP), two commonly employed phagocytic stimuli, were noted to bind to purified human peripheral blood lymphocytes. This interaction was not accompained by ingestion but did lead to a marked increase in intracellular cyclic AMP. The cAMP response to PLP was proportional to the particle cell ratio which, in turn, correlated with the number of membrane-associated particles. After the addition of PLP to lymphocytes, the cAMP response occurred within 2 min, peaked between 4 and 15 min, and returned to baseline by 30 to 60 min. The cAMP response to ZP was similar in onset and duration to that seen with PLP but was less marked (2- to 4-fold vs 25- to 50-fold) and more variable in magnitude. This is probably a reflection of the smaller number of cells interacting with ZP. At high PLP to cell ratios almost all of the lymphocytes bound PLP but only 10 to 28% of the mixed lymphocyte population bound ZP. Two lines of evidence established conclusively that the cAMP response was taking place in the lymphocytes themselves rather than in contaminating cells. 1) When lymphocytes were purified additionally by filtration through a nylon wool column (99 to 100% lymphocytes), they were found to undergo a similar cAMP response to PLP. Since the nylon filtration procedure also removes almost all of the B cells, this further indicates that T cells are capable of undergoing the response. 2) Immunofluorescence studies with anti-cAMP antibody revealed an increase in intralymphocytic cAMP which was primarily adjacent to the site of PLP or ZP attachment. The likely explanation of this data is that PLP and ZP perturb the lymphocyte surface leading to regional activation of membrane-bound adenylate cyclase and subsequent cAMP accumulation. Although the physiologic significance of these observations remains to be determined, the results: 1) provide histologic confirmation for the concept of cAMP compartmentablization, 2) clarify conflicting results regarding the localization of cAMP accumulation during the phagocytosis of PLP by mixed leukocyte populations, and 3) suggest that this experimental system may allow an analysis of the mechanism by which perturbations of the lymphocyte surface modulate cAMP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号