首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several transgenic mouse lines with altered alpha-synuclein expression have been developed that show a variety of Parkinson's disease-like symptoms without specific loss of dopaminergic neurons. Targeted over-expression of human alpha-synuclein using viral-vector mediated gene delivery into the substantia nigra of rats and non-human primates leads to dopaminergic cell loss and the formation of alpha-synuclein aggregates reminiscent of Lewy bodies. In the context of these recent findings, we used adeno-associated virus (AAV) to over-express wild type human alpha-synuclein in the substantia nigra of mice. We hypothesized that this over-expression would recapitulate pathological hallmarks of Parkinson's disease, creating a mouse model to further characterize the disease pathogenesis. Recombinant AAV expressing alpha-synuclein was stereotaxically injected into the substantia nigra of mice, leading to a 25% reduction of dopaminergic neurons after 24 weeks of transduction. Furthermore, examination of mRNA levels of stress-related proteins using laser capture microdissection and quantitative PCR revealed a positive correlation of Hsp27 expression with the extent of viral transduction at 4 weeks and a positive correlation of Hsp40, Hsp70 and caspase 9 with the extent of viral transduction at 24 weeks. Taken together, our findings suggest that targeted over-expression of alpha-synuclein can induce pathology at the gross anatomical and molecular level in the substantia nigra, providing a mouse model in which upstream changes in Parkinson's disease pathogenesis can be further elucidated.  相似文献   

2.
alpha-Synuclein aggregation and toxicity play a major role in Parkinson's disease and dementia with Lewy bodies. Hsp70 is a multipurpose stress response chaperone protein that mediates both refolding and degradation of misfolded proteins. We have shown that Hsp70 is able to block both alpha-synuclein toxicity and aggregation. Here we introduce a mutation into the ATPase domain of Hsp70 (K71S) and demonstrate that this abolishes Hsp70 refolding activity. Nonetheless, Hsp70K71S continues to mediate alpha-synuclein degradation and blocks aggregate formation. In contrast to wild type Hsp70, the ATPase domain mutant mediates alpha-synuclein degradation through a non-proteasome inhibitor sensitive pathway. Although Hsp70K71S can diminish levels of alpha-synuclein to an even greater extent than Hsp70, HSP70K71S does not protect against alpha-synuclein toxicity. The Hsp70K71S mutant appears to dissociate the formation of aggregates, which it blocks, and toxicity, which it does not block. These data suggest that the ability of Hsp70 to prevent toxicity is distinct from degradation of alpha-synuclein and is dependent on its ATPase domain.  相似文献   

3.
Mutations in the alpha-synuclein gene are linked to a rare dominant form of familial Parkinson's disease, and alpha-synuclein is aggregated in Lewy bodies of both sporadic and dominant Parkinson's disease. It has been proposed that mutated alpha-synuclein causes dopaminergic neuron loss by enhancing the vulnerability of these neurons to a variety of insults, including oxidative stress, apoptotic stimuli, and selective dopaminergic neurotoxins, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). To test this hypothesis in vivo, we overexpressed human alpha-synuclein(A53T) in the substantia nigra of normal and MPTP-treated mice by rAAV-mediated gene transfer. Determination of dopaminergic neuron survival, striatal tyrosine hydroxylase fiber density, and striatal content of dopamine and its metabolites in rAAV-injected and uninjected hemispheres demonstrated that alpha-synuclein(A53T) does not increase the susceptibility of dopaminergic neurons to MPTP. Our findings argue against a direct detrimental role for (mutant) alpha-synuclein in oxidative stress and/or apoptotic pathways triggered by MPTP, but do not rule out the possibility that alpha-synuclein aggregation in neurons exposed to oxidative stress for long periods of time may be neurotoxic.  相似文献   

4.
Protein misfolding and aggregation are pathological aspects of numerous neurodegenerative diseases. Aggregates of alpha-synuclein are major components of the Lewy bodies and Lewy neurites associated with Parkinson's Disease (PD). A natively unfolded protein, alpha-synuclein can adopt different aggregated morphologies, including oligomers, protofibrils and fibrils. The small oligomeric aggregates have been shown to be particularly toxic. Antibodies that neutralize the neurotoxic aggregates without interfering with beneficial functions of monomeric alpha-synuclein can be useful therapeutics. We were able to isolate single chain antibody fragments (scFvs) from a phage displayed antibody library against the target antigen morphology using a novel biopanning technique that utilizes atomic force microscopy (AFM) to image and immobilize specific morphologies of alpha-synuclein. The scFv described here binds only to an oligomeric form of alpha-synuclein and inhibits both aggregation and toxicity of alpha-synuclein in vitro. This scFv can have potential therapeutic value in controlling misfolding and aggregation of alpha-synuclein in vivo when expressed intracellularly in dopaminergic neurons as an intrabody.  相似文献   

5.
Parkinson's disease (PD) is a neurodegenerative disorder affecting an estimated 4 million people worldwide. Intracellular proteinaceous inclusions called Lewy bodies are the histological hallmarks of PD and are primarily composed of aggregated alpha-synuclein (alphaSyn). Although the detailed mechanisms remain unclear, mounting evidence suggests that the misfolding of alphaSyn into prefibrillar and fibrillar species is the driving force responsible for cellular toxicity. We show here that the molecular chaperone heat shock protein (Hsp) 70 strongly inhibits alphaSyn fibril formation via preferential binding to prefibrillar species. Moreover, our studies reveal that Hsp70 alters the characteristics of toxic alphaSyn aggregates and indicate that cellular toxicity arises from the prefibrillar forms of alphaSyn. This work therefore elucidates a specific role of Hsp70 in the pathogenesis of PD and supports the general concept that chaperone action is a crucial aspect in protecting against the otherwise damaging consequences of protein misfolding.  相似文献   

6.
alpha-Synuclein is a pre-synaptic protein, the function of which is not completely understood, but its pathological form is involved in neurodegenerative diseases. In vitro, alpha-synuclein spontaneously forms amyloid fibrils. Here, we report that alphaB-crystallin, a molecular chaperone found in Lewy bodies that are characteristic of Parkinson's disease (PD), is a potent in vitro inhibitor of alpha-synuclein fibrillization, both of wild-type and the two mutant forms (A30P and A53T) that cause familial, early onset PD. In doing so, large irregular aggregates of alpha-synuclein and alphaB-crystallin are formed implying that alphaB-crystallin redirects alpha-synuclein from a fibril-formation pathway towards an amorphous aggregation pathway, thus reducing the amount of physiologically stable amyloid deposits in favor of easily degradable amorphous aggregates. alpha-Synuclein acts as a molecular chaperone to prevent the stress-induced, amorphous aggregation of target proteins. Compared to wild-type alpha-synuclein, both mutant forms have decreased chaperone activity in vitro against the aggregation of reduced insulin at 37 degrees C and the thermally induced aggregation of betaL-crystallin at 60 degrees C. Wild-type alpha-synuclein abrogates the chaperone activity of alphaB-crystallin to prevent the precipitation of reduced insulin. Interaction between these two chaperones and formation of a complex are also indicated by NMR spectroscopy, size-exclusion chromatography and mass spectrometry. In summary, alpha-synuclein and alphaB-crystallin interact readily with each other and affect each other's properties, in particular alpha-synuclein fibril formation and alphaB-crystallin chaperone action.  相似文献   

7.
Alpha-Synuclein is degraded by both autophagy and the proteasome   总被引:19,自引:0,他引:19  
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and the formation of aggregates (Lewy bodies) in neurons. alpha-Synuclein is the major protein in Lewy bodies and rare mutations in alpha-synuclein cause early-onset PD. Consequently, alpha-synuclein is implicated in the pathogenesis of PD. Here, we have investigated the degradation pathways of alpha-synuclein, using a stable inducible PC12 cell model, where the expression of exogenous human wild-type, A30P, or A53T alpha-synuclein can be switched on and off. We have used a panel of inhibitors/stimulators of autophagy and proteasome function and followed alpha-synuclein degradation in these cells. We found that not only is alpha-synuclein degraded by the proteasome, but it is also degraded by autophagy. A role for autophagy was further supported by the presence of alpha-synuclein in organelles with the ultrastructural features of autophagic vesicles. Since rapamycin, a stimulator of autophagy, increased clearance of alpha-synuclein, it merits consideration as a potential therapeutic for Parkinsons disease, as it is designed for chronic use in humans.  相似文献   

8.
Engelender S 《Autophagy》2008,4(3):372-374
alpha-Synuclein is mutated in Parkinson's disease (PD) and is found in cytosolic inclusions, called Lewy bodies, in sporadic forms of the disease. A fraction of alpha-synuclein purified from Lewy bodies is monoubiquitinated, but the role of this monoubiquitination has been obscure. We now review recent data indicating a role of alpha-synuclein monoubiquitination in Lewy body formation and implicating the autophagic pathway in regulating these processes. The E3 ubiquitin-ligase SIAH is present in Lewy bodies and monoubiquitinates alpha-synuclein at the same lysines that are monoubiquitinated in Lewy bodies. Monoubiquitination by SIAH promotes the aggregation of alpha-synuclein into amorphous aggregates and increases the formation of inclusions within dopaminergic cells. Such effect is observed even at low monoubiquitination levels, suggesting that monoubiquitinated alpha-synuclein may work as a seed for aggregation. Accumulation of monoubiquitinated alpha-synuclein and formation of cytosolic inclusions is promoted by autophagy inhibition and to a lesser extent by proteasomal and lysosomal inhibition. Monoubiquitinated alpha-synuclein inclusions are toxic to cells and recruit PD-related proteins, such as synphilin-1 and UCH-L1. Altogether, the new data indicate that monoubiquitination might play an important role in Lewy body formation. Decreasing alpha- synuclein monoubiquitination, by preventing SIAH function or by stimulating autophagy, constitutes a new therapeutic strategy for Parkinson's disease.  相似文献   

9.
In Parkinson disease (PD), alpha-synuclein aggregates called Lewy bodies often involve and sequester Septin4 (Sept4), a polymerizing scaffold protein. However, the pathophysiological significance of this phenomenon is unclear. Here, we show the physiological association of Sept4 with alpha-synuclein, the dopamine transporter, and other presynaptic proteins in dopaminergic neurons; mice lacking Sept4 exhibit diminished dopaminergic neurotransmission due to scarcity of these presynaptic proteins. These data demonstrate an important role for septin scaffolds in the brain. In transgenic mice that express human alpha-synuclein(A53T) (a mutant protein responsible for familial PD), loss of Sept4 significantly enhances neuropathology and locomotor deterioration. In this PD model, insoluble deposits of Ser129-phosphorylated alpha-synuclein(A53T) are negatively correlated with the dosage of Sept4. In vitro, direct association with Sept4 protects alpha-synuclein against self-aggregation and Ser129 phosphorylation. Taken together, these data show that Sept4 may be involved in PD as a dual susceptibility factor, as its insufficiency can diminish dopaminergic neurotransmission and enhance alpha-synuclein neurotoxicity.  相似文献   

10.
Parkinson's disease (PD) is a common neurodegenerative disease of unknown etiology. Evidence suggests a role for protein misfolding in disease pathogenesis. One pathologic feature observed in dopaminergic neurons is the intracytoplasmic eosinophilic inclusions known as Lewy bodies. One component of Lewy bodies, the presynaptic protein, alpha-synuclein forms oligomers and higher order aggregates and is proposed to be involved in dopaminergic neuronal death. In an effort to discriminate between alpha-synuclein conformational forms as well as design potential disruptors of pathogenic misfolding we panned a human phage antibody library for anti-synuclein single chain antibodies (scFvs). We identified six scFvs which recognize different conformers of alpha-synuclein in both an ELISA and Western blot analysis. These scFvs may further our understanding of alpha-synuclein's role in PD.  相似文献   

11.
To elucidate the role of alpha-synuclein in the pathogenesis of Parkinson's disease, both human alpha-synuclein transgenic mice and targeted overexpression of human alpha-synuclein in rat substantia nigra using viral vector-based methods have been studied, however, little is known about the pathogenetic changes of dopaminergic neuron loss. Therefore, it is necessary to address whether the pathogenetic changes in brains with Parkinson's disease are recapitulated in these models. Here, we used the recombinant adeno-associated viral (rAAV) vector system for human alpha-synuclein gene transfer to rat substantia nigra and observed approximately 50% loss of dopaminergic neurons at 13 weeks after infection, which was comparably slower than the progression of neurodegeneration reported in other studies. In the slower progression of neurodegeneration, we identified several important features in common with the pathogenesis of Parkinson's disease, such as phosphorylation of alpha-synuclein at Ser129 and activation of caspase-9. Both findings were also evident in cortical tissues overexpressing alpha-synuclein via rAAV. Our results indicate that overexpression of alpha-synuclein via rAAV apparently recapitulates several important features of brains with Parkinson's disease and dementia with Lewy bodies, and thus alpha-synucleinopathy described here is likely to be an ideal model for the study of the pathogenesis of Parkinson's disease and dementia with Lewy bodies.  相似文献   

12.
Intracellular proteinaceous aggregates are hallmarks of many common neurodegenerative disorders, and recent studies have shown that alpha-synuclein is a major component of several pathological intracellular inclusions, including Lewy bodies in Parkinson's disease (PD) and glial cell inclusions in multiple system atrophy. However, the molecular mechanisms underlying alpha-synuclein aggregation into filamentous inclusions remain unknown. Since oxidative and nitrative stresses are potential pathogenic mediators of PD and other neurodegenerative diseases, we asked if oxidative and/or nitrative events alter alpha-synuclein and induce it to aggregate. Here we show that exposure of human recombinant alpha-synuclein to nitrating agents (peroxynitrite/CO(2) or myeloperoxidase/H(2)O(2)/nitrite) induces formation of nitrated alpha-synuclein oligomers that are highly stabilized due to covalent cross-linking via the oxidation of tyrosine to form o,o'-dityrosine. We also demonstrate that oxidation and nitration of pre-assembled alpha-synuclein filaments stabilize these filaments to withstand denaturing conditions and enhance formation of SDS-insoluble, heat-stable high molecular mass aggregates. Thus, these data suggest that oxidative and nitrative stresses are involved in mechanisms underlying the pathogenesis of Lewy bodies and glial cell inclusions in PD and multiple system atrophy, respectively, as well as alpha-synuclein pathologies in other synucleinopathies.  相似文献   

13.
Geldanamycin (GA) is a naturally occurring benzoquinone ansamycin that induces heat shock protein 70 (Hsp70). GA has been shown to reduce alpha-synuclein induced neurotoxicity in a fly model of Parkinson's disease. We have previously shown that heat shock proteins can prevent alpha-synuclein aggregation and protect against alpha-synuclein induced toxicity in human H4 neuroglioma cells. Here, we hypothesize that GA treatment will reduce alpha-synuclein aggregation and prevent alpha-synuclein induced toxicity and we show that GA can induce Hsp70 in a time- and concentration-dependent manner in H4 cells. Pretreatment with 200nM GA 24h prior to transfection prevented alpha-synuclein aggregation and protected against toxicity. Treatment of cells with pre-existing inclusions with GA did not result in a reduction in the number of cells containing inclusions, suggesting that upregulation of Hsp70 is not sufficient to remove established inclusions. Similarly, Western blot analysis demonstrated that GA treatment could dramatically reduce both total alpha-synuclein and high molecular weight alpha-synuclein aggregates. Taken together, these data suggest that GA is effective in preventing alpha-synuclein aggregation and may represent a pharmacological intervention to therapeutically increase expression of molecular chaperone proteins to treat neurodegenerative diseases where aggregation is central to the pathogenesis.  相似文献   

14.
Hsp70 Reduces alpha-Synuclein Aggregation and Toxicity   总被引:5,自引:0,他引:5  
Aggregation and cytotoxicity of misfolded alpha-synuclein is postulated to be crucial in the disease process of neurodegenerative disorders such as Parkinson's disease and DLB (dementia with Lewy bodies). In this study, we detected misfolded and aggregated alpha-synuclein in a Triton X-100 insoluble fraction as well as a high molecular weight product by gel electrophoresis of temporal neocortex from DLB patients but not from controls. We also found similar Triton X-100 insoluble forms of alpha-synuclein in an alpha-synuclein transgenic mouse model and in an in vitro model of alpha-synuclein aggregation. Introducing the molecular chaperone Hsp70 into the in vivo model by breeding alpha-synuclein transgenic mice with Hsp70-overexpressing mice led to a significant reduction in both the high molecular weight and detergent-insoluble alpha-synuclein species. Concomitantly, we found that Hsp70 overexpression in vitro similarly reduced detergent-insoluble alpha-synuclein species and protected cells from alpha-synuclein-induced cellular toxicity. Taken together, these data demonstrate that the molecular chaperone Hsp70 can reduce the amount of misfolded, aggregated alpha-synuclein species in vivo and in vitro and protect it from alpha-synuclein-dependent toxicity.  相似文献   

15.
Oxidative stress is implicated in a number of neuro-degenerative diseases and is associated with the selective loss of dopaminergic neurons of the substantia nigra in Parkinson's disease. The role of alpha-synuclein as a potential target of intracellular oxidants has been demonstrated by the identification of posttranslational modifications of synuclein within intracellular aggregates that accumulate in Parkinson's disease brains, as well as the ability of a number of oxidative insults to induce synuclein oligomerization. The relationship between these relatively small soluble oligomers, potentially neurotoxic synuclein protofibrils, and synuclein filaments remains unclear. We have found that metal-catalyzed oxidation of alpha-synuclein inhibited formation of synuclein filaments with a concomitant accumulation of beta sheet-rich oligomers that may represent synuclein protofibrils. Similar results with a number of oxidative and enzymatic treatments suggest that the covalent association of synuclein into higher molecular mass oligomers/protofibrils represents an alternate pathway from filament formation and renders synuclein less prone to proteasomal degradation.  相似文献   

16.
Parkinson's disease involves the aggregation of alpha-synuclein to form fibrils, which are the major constituent of intracellular protein inclusions (Lewy bodies and Lewy neurites) in dopaminergic neurons of the substantia nigra. Occupational exposure to specific metals, especially manganese, copper, lead, iron, mercury, zinc, aluminum, appears to be a risk factor for Parkinson's disease based on epidemiological studies. Elevated levels of several of these metals have also been reported in the substantia nigra of Parkinson's disease subjects. We examined the effect of various metals on the kinetics of fibrillation of recombinant alpha-synuclein and in inducing conformational changes, as monitored by biophysical techniques. Several di- and trivalent metal ions caused significant accelerations in the rate of alpha-synuclein fibril formation. Aluminum was the most effective, along with copper(II), iron(III), cobalt(III), and manganese(II). The effectiveness correlated with increasing ion charge density. A correlation was noted between efficiency in stimulating fibrillation and inducing a conformational change, ascribed to formation of a partially folded intermediate. The potential for ligand bridging by polyvalent metal ions is proposed to be an important factor in the metal-induced conformational changes of alpha-synuclein. The results indicate that low concentrations of some metals can directly induce alpha-synuclein fibril formation.  相似文献   

17.
alpha-synuclein gene mutations are major underlying genetic defects known in familial juvenile onset Parkinson's disease (PD), and alpha-synuclein is a major constituent of Lewy Bodies, the pathological hallmark of PD. The normal cellular function of alpha-synuclein has been elusive, and its exact etiological mechanism in causing dopaminergic neuronal death in PD is also not clearly understood. Very recent reports now indicate that mutant or simply over-expressed alpha- synuclein could cause damage by interfering with particular steps of neuronal membrane traffic. alpha-synuclein selectively blocks endoplamic reticulum-to-Golgi transport, thus causing ER stress. A screen in a yeast revealed that alpha- synuclein toxicity could be suppressed by over-expression of the small GTPase Ypt1/Rab1, and that over-expression of the latter rescues neuron loss in invertebrate and mammalian models of alpha-synuclein-induced neurodegeneration. alpha-synuclein may also serve a chaperone function for the proper folding of synaptic SNAREs that are important for neurotransmitter release. We discuss these recent results and the emerging pathophysiological interaction of alpha-synuclein with components of neuronal membrane traffic.  相似文献   

18.
Wan OW  Chung KK 《PloS one》2012,7(6):e38545
α-Synuclein (α-syn) is a synaptic protein in which four mutations (A53T, A30P, E46K and gene triplication) have been found to cause an autosomal dominant form of Parkinson's disease (PD). It is also the major component of intraneuronal protein aggregates, designated as Lewy bodies (LBs), a prominent pathological hallmark of PD. How α-syn contributes to LB formation and PD is still not well-understood. It has been proposed that aggregation of α-syn contributes to the formation of LBs, which then leads to neurodegeneration in PD. However, studies have also suggested that aggregates formation is a protective mechanism against more toxic α-syn oligomers. In this study, we have generated α-syn mutants that have increased propensity to form aggregates by attaching a CL1 peptide to the C-terminal of α-syn. Data from our cellular study suggest an inverse correlation between cell viability and the amount of α-syn aggregates formed in the cells. In addition, our animal model of PD indicates that attachment of CL1 to α-syn enhanced its toxicity to dopaminergic neurons in an age-dependent manner and induced the formation of Lewy body-like α-syn aggregates in the substantia nigra. These results provide new insights into how α-syn-induced toxicity is related to its aggregation.  相似文献   

19.
Parkin accumulation in aggresomes due to proteasome impairment   总被引:16,自引:0,他引:16  
Parkinson's disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra and by the presence of ubiquitinated cytoplasmic inclusions known as Lewy bodies. Alpha-synuclein and Parkin are two of the proteins associated with inherited forms of PD and are found in Lewy bodies. Whereas numerous reports indicate the tendency of alpha-synuclein to aggregate both in vitro and in vivo, no information is available about similar physical properties for Parkin. Here we show that overexpression of Parkin in the presence of proteasome inhibitors leads to the formation of aggresome-like perinuclear inclusions. These eosinophilic inclusions share many characteristics with Lewy bodies, including a core and halo organization, immunoreactivity to ubiquitin, alpha-synuclein, synphilin-1, Parkin, molecular chaperones, and proteasome subunit as well as staining of some with thioflavin S. We propose that the process of Lewy body formation may be akin to that of aggresome-like structures. The tendency of wild-type Parkin to aggregate and form inclusions may have implications for the pathogenesis of sporadic PD.  相似文献   

20.
Aggregation of the nerve cell protein alpha-synuclein is a characteristic of the common neurodegenerative alpha-synucleinopathies like Parkinson's disease and Lewy body dementia, and it plays a direct pathogenic role as demonstrated by early onset diseases caused by mis-sense mutations and multiplication of the alpha-synuclein gene. We investigated the existence of alpha-synuclein pro-aggregatory brain proteins whose dysregulation may contribute to disease progression, and we identified the brain-specific p25alpha as a candidate that preferentially binds to alpha-synuclein in its aggregated state. Functionally, purified recombinant human p25alpha strongly stimulates the aggregation of alpha-synuclein in vitro as demonstrated by thioflavin-T fluorescence and quantitative electron microscopy. p25alpha is normally only expressed in oligodendrocytes in contrast to alpha-synuclein, which is normally only expressed in neurons. This expression pattern is changed in alpha-synucleinopathies. In multiple systems atrophy, degenerating oligodendrocytes displayed accumulation of p25alpha and dystopically expressed alpha-synuclein in the glial cytoplasmic inclusions. In Parkinson's disease and Lewy body dementia, p25alpha was detectable in the neuronal Lewy body inclusions along with alpha-synuclein. The localization in alpha-synuclein-containing inclusions was verified biochemically by immunological detection in Lewy body inclusions purified from Lewy body dementia tissue and glial cytoplasmic inclusions purified from tissue from multiple systems atrophy. We suggest that p25alpha plays a pro-aggregatory role in the common neurodegenerative disorders hall-marked by alpha-synuclein aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号