首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Saccharomyces cerevisiae shows great potential for development of bioreactor systems geared toward the production of high-value lipids such as polyunsaturated omega-3 fatty acids, the yields of which are largely dependent on the activity of ectopically expressed enzymes. Here, we show that the addition of an N-terminal epitope tag sequence (either Myc or hemagglutinin) to oleate desaturase (FAD2) or omega-3 linoleate desaturase (FAD3) enzymes from plants, which catalyze consecutive reactions in the production of long chain omega-3 fatty acids, significantly increases their activity up to fourfold when expressed in yeast cells. Quantitative protein blotting using an antibody specific for native FAD2 revealed that the steady-state amount of the epitope-tagged FAD2 protein was also approximately fourfold higher than that of its untagged counterpart, demonstrating a direct relationship between the epitope tag-induced increase in enzyme amount and fatty acid product formation. Protein half-life and RNA blotting experiments indicated that the half-lives and mRNA content of the tagged and untagged FAD2 proteins were essentially the same, suggesting that the epitope tags increased protein abundance by improving translational efficiency. Taken together, these results indicate that the addition of an epitope tag sequence to a plant fatty acid desaturase (FAD) not only provides a useful means for protein immunodetection using highly specific, commercially available antibodies, but that it also significantly increases FAD activity and the production of polyunsaturated fatty acids in yeast cells.  相似文献   

2.
3.
We have cloned a Caenorhabditis elegans cDNA encoding a Delta12 fatty acid desaturase and demonstrated its activity by heterologous expression in Saccharomyces cerevisiae. The predicted protein is highly homologous both to the cloned plant genes with similar function and to the published sequence of the C. elegans omega-3 fatty acid desaturase. In addition, it conforms to the structural constraints expected of a membrane-bound fatty acid desaturase including the canonical histidine-rich regions. This is the first report of a cloned animal Delta(12) desaturase gene. Expression of this cDNA in yeast resulted in the accumulation of 16:2 and 18:2 (linoleic) acids. The increase of membrane fluidity brought about by this change in unsaturation was measured. The production of polyunsaturated fatty acids in yeast cells and the concomitant increase in membrane fluidity was correlated with a modest increase in growth rate at low temperature and with increased resistance to ethanol and oxidative stress.  相似文献   

4.
5.
The metabolism of the linolenic acid family (n-3) of fatty acids, e.g., linolenic, eicosapentaenoic, and docosahexaenoic acids, in cultured smooth muscle cells from rabbit aorta was compared to the metabolism of linoleic and arachidonic acids. There was a time-dependent uptake of these fatty acids into cells for 16 hr (arachidonic greater than docosahexaenoic, linoleic, eicosapentaenoic greater than linolenic), and the acids were incorporated mainly into phospholipids and triglycerides. Eicosapentaenoic and arachidonic acids were incorporated more into phosphatidylethanolamine and phosphatidylinositol plus phosphatidylserine and less into phosphatidylcholine than linolenic and linoleic acids. Docosahexaenoic acid was incorporated into phosphatidylethanolamine more than linolenic and linoleic acids and into phosphatidylinositol plus phosphatidylserine less than eicosapentaenoic and arachidonic acids. Added linolenic acid accumulated mainly in phosphatidylcholine and did not decrease the arachidonic acid content of any phospholipid subfraction. Elongation-desaturation metabolites of linoleic acid did not accumulate. Cells treated with eicosapentaenoic acid accumulated both eicosapentaenoic and docosapentaenoic acids mainly in phosphatidylethanolamine and the arachidonic acid content was decreased. Added docosahexaenoic acid accumulated mainly in phosphatidylethanolamine and decreased the content of both arachidonic and oleic acids. The following conclusions are drawn from these results. The three n-3 fatty acids are utilized differently in phospholipids. The arachidonic acid content of phospholipids is reduced by eicosapentaenoic and docosahexaenoic acids, but not by linolenic acid. Smooth muscle cells have little or no desaturase activity, but have significant elongation activity for polyunsaturated fatty acids.  相似文献   

6.
Barramundi is a commercially farmed fish in Australia. To examine the potential for barramundi to metabolise dietary α-linolenic acid (ALA, 18:3 n-3), the existence of barramundi desaturase enzymes was examined. A putative fatty acid Δ6 desaturase was cloned from barramundi liver and expressed in yeast. Functional expression revealed Δ6 desaturase activity with both the 18 carbon (C(18)) and C(24) n-3 fatty acids, ALA and 24:5 n-3 as well as the C(18) n-6 fatty, linoleic acid (LA, 18:2 n-6). Metabolism of ALA was favoured over LA. The enzyme also had Δ8 desaturase activity which raises the potential for synthesis in barramundi of omega-3 (n-3) long chain polyunsaturated fatty acids from ALA via a pathway that bypasses the initial Δ6 desaturase step. Our findings not only provide molecular evidence for the fatty acid desaturation pathway in the barramundi but also highlight the importance of taking extracellular fatty acid levels into account when assessing enzyme activity expressed in Saccharomyces cerevisiae.  相似文献   

7.
To make dihomo-gamma-linolenic acid (DGLA) (20:3n-6) in Saccharomyces cerevisiae, we introduced Kluyveromyces lactis Delta12 fatty acid desaturase, rat Delta6 fatty acid desaturase, and rat elongase genes. Because Fad2p is able to convert the endogenous oleic acid to linoleic acid, this allowed DGLA biosynthesis without the need to supply exogenous fatty acids on the media. Medium composition, cultivation temperature, and incubation time were examined to improve the yield of DGLA. Fatty acid content was increased by changing the medium from a standard synthetic dropout medium to a nitrogen-limited minimal medium (NSD). Production of DGLA was higher in the cells grown at 15 degrees C than in those grown at 20 degrees C, and no DGLA production was observed in the cells grown at 30 degrees C. In NSD at 15 degrees C, fatty acid content increased up until day 7 and decreased after day 10. When the cells were grown in NSD for 7 days at 15 degrees C, the yield of DGLA reached 2.19 microg/mg of cells (dry weight) and the composition of DGLA to total fatty acids was 2.74%. To our knowledge, this is the first report describing the production of polyunsaturated fatty acids in S. cerevisiae without supplying the exogenous fatty acids.  相似文献   

8.
9.
Seed-specific expression in Arabidopsis thaliana of oleate hydroxylase enzymes from castor bean and Lesquerella fendleri resulted in the accumulation of hydroxy fatty acids in the seed oil. By using various Arabidopsis mutant lines it was shown that the endoplasmic reticulum (ER) n-3 desaturase (FAD3) and the FAE1 condensing enzyme are involved in the synthesis of polyunsaturated and very-long-chain hydroxy fatty acids, respectively. In Arabidopsis plants with an active ER Delta12-oleate desaturase the presence of hydroxy fatty acids corresponded to an increase in the levels of 18:1 and a decrease in 18:2 levels. Expression in yeast indicates that the castor hydroxylase also has a low level of desaturase activity.  相似文献   

10.
The marine parasitic protozoon Perkinus marinus synthesizes the polyunsaturated fatty acid arachidonic acid via the unusual alternative Delta8 pathway in which elongation of C18 fatty acids generates substrate for two sequential desaturations. Here we have shown that genes encoding the three P. marinus activities responsible for arachidonic acid biosynthesis (C18 Delta9-elongating activity, C20 Delta8 desaturase, C20 Delta5 desaturase) are genomically clustered and co-transcribed as an operon. The acyl elongation reaction, which underpins this pathway, is catalyzed by a FAE1 (fatty acid elongation 1)-like 3-ketoacyl-CoA synthase class of condensing enzyme previously only reported in higher plants and algae. This is the first example of an elongating activity involved in the biosynthesis of a polyunsaturated fatty acid that is not a member of the ELO/SUR4 family. The P. marinus FAE1-like elongating activity is sensitive to the herbicide flufenacet, similar to some higher plant 3-ketoacyl-CoA synthases, but unable to rescue the yeast elo2Delta/elo3Delta mutant consistent with a role in the elongation of polyunsaturated fatty acids. P. marinus represents a key organism in the taxonomic separation of the single-celled eukaryotes collectively known as the alveolates, and our data imply a lineage in which ancestral acquisition of plant-like genes, such as FAE1-like 3-ketoacyl-CoA synthases, occurred via endosymbiosis. The P. marinus FAE1-like elongating activity is also indicative of the independent evolution of the alternative Delta8 pathway, distinct from ELO/SUR4-dependent examples.  相似文献   

11.
Abstract: The biochemical and morphological effects of polyunsaturated fatty acids on fetal brain cells grown in a chemically defined medium were studied. Fetal brain cells were dissociated from mouse cerebral hemispheres taken on the 16th day of gestation. After cells had grown in chemically defined medium for 8 days, the proportion of polyunsaturated fatty acids of cultured cells was only one-half of that observed at day 0 and about 1.5 times less than that of cells grown in serum-supplemented medium. Fatty acid 20:3(n-9) was present in cultured cells grown in either chemically defined or serum-supple-mented medium. demonstrating the deficiency of essential fatty acids. The reduced amount of polyunsaturated fatty acids in cells grown in the chemically defined medium was balanced by an increase in monounsaturated fatty acids. The saturated fatty acids were not affected. When added at the seeding time, linoleic, linolenic, arachidonic, or docosahexaenoic acid stimulated the proliferation of small dense cells. Besides, we demonstrate that each of the four fatty acids studied was incorporated into phospholipids. Adding fatty acids of the n-6 series increased the content of n-6 fatty acids in the cells, but also provoked an increase in the n-3 fatty acids. Among several combinations of fatty acids, only 20:4 and 22:6, when added to the culture in a ratio of 2:1, restored a fatty acid profile similar to controls (i.e. in vivo tissue taken at post- natal dav 5).  相似文献   

12.
We isolated a putative desaturase gene from a marine alga, Pinguiochrysis pyriformis MBIC 10872, which is capable of accumulating eicosapentaenoic acid (C20:5(Δ5,8,11,14,17)). The gene possessed an open reading frame of 1,314 bp encoding a putative 437 amino acid residues showing high sequence identity (37-48%) with fungal and nematode Δ12-fatty acid desaturases. Yeast cells transformed with the gene converted endogenous oleic acid (C18:1(Δ9)) to linoleic acid (C18:2(Δ9,12)). However, no double bonds were introduced into other endogenous fatty acids or exogenously added fatty acids. Flag-tagged enzyme was recovered in the micosome fraction when expressed in yeast cells. To express the gene in thraustochytrids, a construct driven by the thraustochytrid-derived ubiquitin promoter was used. Interestingly, exogenously added oleic acid was converted to linoleic acid in the gene transformants but not mock transformants of Aurantiochytrium limacinum mh0186. These results clearly indicate that the gene encodes a microsomal Δ12-fatty acid desaturase and was expressed functionally in not only yeasts but also thraustochytrids. This is the first report describing the heterozygous expression of a fatty acid desaturase in thraustochytrids, and could facilitate a genetic approach towards fatty acid synthesis in thraustochytrids which are expected to be an alternative source of polyunsaturated fatty acids.  相似文献   

13.
The liverwort Marchantia polymorpha L. synthesizes various long-chain polyunsaturated fatty acids including arachidonic acid and eicosapentaenoic acid, neither of which is produced by higher plants. Here we report the effects of temperature on long-chain polyunsaturated fatty acid accumulation in the liverwort. The accumulation of ω-3 polyunsaturated fatty acids increased significantly as the growth temperature decreased. Specifically, the relative content of eicosapentaenoic acid to total fatty acids at 5 °C was approximately 3-fold higher than at 25 °C. On the other hand, the accumulation of ω-6 polyunsaturated fatty acids decreased at low temperatures. An analysis of gene expression indicated that the mRNA of the MpFAD3 gene for ER ω-3 desaturase increased significantly at 5 °C. These results indicate that in the liverwort the n-3 pathway was enhanced at low temperature, mainly via expression of the cold-induced ω-3 desaturase gene, leading to increased accumulation of eicosapentaenoic acid.  相似文献   

14.
The methylotrophic yeast Pichia pastoris GS115, a widely used strain in production of various heterologous proteins, especially membrane-bound enzymes, can also produce linoleic and linolenic acids, which indicates the existence of membrane-bound Delta12 and Delta15-fatty acid desaturases. This paper describes the cloning and functional characterization of a novel Delta12-fatty acid desaturase gene from this methylotrophic yeast. The open reading frame of the gene (named Pp-FAD12) is 1263 bp in size and encodes a 420-amino-acid peptide. The deduced Pp-FAD12 protein shows high identity (50-67%) with Delta12-fatty acid desaturases from other fungi. It also shows a high identity (57%) with Delta15-fatty acid desaturase (named Sk-FAD15) from Saccharomyces kluyveri. Expression of Pp-FAD12 in polyunsaturated fatty acids non-producing yeast Saccharomyces cerevisiae demonstrated that its product converted oleic acid (18 : 1) to linoleic acid (18 : 2). This result suggests that Pp-FAD12 encodes a novel Delta12-fatty acid desaturase in P. pastoris GS115. This is the first report about the cloning and functional characterization of Delta12-fatty acid desaturase gene in methylotrophic yeast.  相似文献   

15.
The temperature of C. japonica cultivation influences the lipid content and composition of acyl chains, especially the content of such polyunsaturated acids as linoleic and linolenic. Thermal adaptation is accompanied by the modulation of fatty acid isomeric composition and acyl chain length and, at low temperatures, promotes the appearance of fatty acids uncommon to the fungus, in particular, arachidonic acid. The changes occur on a background of significant alterations in the fungus metabolism (in glucose uptake, ATP content, economic coefficient value, etc.). In experiments on the inhibition of translation with cycloheximide, abrupt temperature change (supraoptimal to cold) did not lead to desaturase de novo synthesis, but rather stimulated the activity of the named enzymes, except for palmitoleoyl-CoA desaturase. In the process of temperature adaptation, polar lipid microviscosity modulating compounds influenced fatty acid acyl chain composition. Microviscosity differences between polar and neutral lipids and correlation to the degree of fatty acid unsaturation during temperature fluctuation were established.  相似文献   

16.
Although oxygen is essential for aerobic organisms, it also forms potentially harmful reactive oxygen species. For its simplicity, easy manipulation, and cultivation conditions, yeast is used as an attractive model in oxidative stress research. However, lack of polyunsaturated fatty acids in yeast membranes makes yeast unsuitable for research in the field of lipid peroxidation. Therefore, we have constructed a yeast strain expressing a Delta12 desaturase gene from the tropical rubber tree, Hevea brasiliensis. This yeast strain expresses the heterologous desaturase in an active form and, consequently, produces Delta9/Delta12 polyunsaturated fatty acids under inducing conditions. The functional expression of the heterologous desaturase did not affect cellular morphology or growth, indicating no general adverse effect on cellular physiology. However, the presence of polyunsaturated fatty acids changed the yeast's sensitivity to oxidative stress induced by addition of paraquat, tert-butylhydroperoxide, and hydrogen peroxide. This difference in sensitivity to the latter was followed by the formation of 4-hydroxy-2-nonenal, one of the end products of linoleic fatty acid peroxidation, which is known to play a role in cell growth control and signaling. Here we show that this yeast strain conditionally expressing the Delta12 desaturase gene provides a novel and well-defined eukaryotic model in lipid peroxidation research. Its potential to investigate the molecular basis of responses to oxidative stress, in particular the involvement of reactive aldehydes derived from fatty acid peroxidation, especially 4-hydroxy-2-nonenal, will be addressed.  相似文献   

17.
△6-脂肪酸脱氢酶是一种膜整合蛋白,也是多不饱和脂肪酸合成途径中的限速酶.在前期工作中,通过RT-PCR和RACE技术,从少根根霉NK300037中克隆到一个潜在编码△6-脂肪酸脱氢酶的序列,序列和功能分析结果表明该序列具有一个长度为1377bp、编码由458个氨基酸组成、大小为52kD的新的△6-脂肪酸脱氢酶基因.把少根根霉△6-脂肪酸脱氢酶基因(RAD6)亚克隆到表达载体pPIC3.5K,构建重组表达载体pPICRAD6,并转化到毕赤酵母菌株GS115进行表达.提取酵母细胞总脂肪酸和进行甲酯化,经气相色谱和气相色谱-质谱连用分析表明,目的基因的编码产物能将C16:1、C17:1、C18:1、亚油酸和α-亚麻酸在△6和7位间特异性脱氢而引入一个新的双键,生成更高不饱和的脂肪酸,该催化反应没有链长特异性,只有键位特异性.此外,按Kozak序列特点,改变目的基因转译起始密码子周边序列结构,并把改变后序列导入毕赤酵母GS115中进行功能表达分析,结果表明在毕赤酵母中这种改变同样能提高目的基因的表达水平.综合所有分析结果表明,巴斯德毕赤酵母更适合用来综合分析△6-脂肪酸脱氢酶基因的功能.  相似文献   

18.
In order to define the substrate requirements, regiochemistry and cryptoregiochemistry of the omega-3 fatty acid desaturases involved in polyunsaturated fatty acid formation, the genes Fad3 and fat-1 from Brassica napus and the nematode Caenorhabditis elegans respectively were expressed in baker's yeast (Saccharomyces cerevisiae). Various fatty acids, including deuterium-labelled thia-fatty acids, were supplied to growing cultures of transformed yeast. The results from GC-MS analysis of the desaturated products indicate that both the plant and animal desaturases act on unsaturated substrates of 16-20 carbons with a preference for omega-6-unsaturated fatty acids. The regioselectivities of both enzymes were confirmed to be that of omega-3 desaturases. The primary deuterium kinetic isotope effects at C-15 and C-16 of a C(18) fatty acid analogue were measured via competitive incubation experiments. Whereas k(H)/k(D) at the omega-3 position was shown to be large, essentially no kinetic isotope effect at the omega-2 position was observed for the plant or the nematode enzymes. These results indicate that omega-3 desaturation is initiated by an energetically difficult C-H bond cleavage at the carbon closer to the carboxyl terminus. These results will be discussed in the context of a general model relating the structure and function of membrane-bound fatty acid desaturases featuring different regioselectivities.  相似文献   

19.
To make dihomo-γ-linolenic acid (DGLA) (20:3n-6) in Saccharomyces cerevisiae, we introduced Kluyveromyces lactis Δ12 fatty acid desaturase, rat Δ6 fatty acid desaturase, and rat elongase genes. Because Fad2p is able to convert the endogenous oleic acid to linoleic acid, this allowed DGLA biosynthesis without the need to supply exogenous fatty acids on the media. Medium composition, cultivation temperature, and incubation time were examined to improve the yield of DGLA. Fatty acid content was increased by changing the medium from a standard synthetic dropout medium to a nitrogen-limited minimal medium (NSD). Production of DGLA was higher in the cells grown at 15°C than in those grown at 20°C, and no DGLA production was observed in the cells grown at 30°C. In NSD at 15°C, fatty acid content increased up until day 7 and decreased after day 10. When the cells were grown in NSD for 7 days at 15°C, the yield of DGLA reached 2.19 μg/mg of cells (dry weight) and the composition of DGLA to total fatty acids was 2.74%. To our knowledge, this is the first report describing the production of polyunsaturated fatty acids in S. cerevisiae without supplying the exogenous fatty acids.  相似文献   

20.
The composition of total fatty acid ethyl ester (FAEE) in yeast cells and the liquid phase separated from grape must during alcoholic fermentation at different temperatures was investigated by using the solid-phase extraction method. Thirteen FAEE from butyric to linolenic acids were detected during fermentation. Significant amounts of long-chain unsaturated FAEE, including linoleic and linolenic acids derived from grape material, had already accumulated in the yeast cells by day 3 during fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号