首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of network analysis of metabolic systems in bioengineering   总被引:9,自引:0,他引:9  
Basic ideas and recent developments in network analysis of metabolic systems and various applications of this analysis in bioengineering are reviewed. Central concepts are the null-space to the stoichiometry matrix and the elementary flux modes. The applicability of elementary-modes analysis in biotechnology is illustrated by the synthesis of the cyclooctadepsipeptides PF1022 in the fungus Mycelia sterilia. Network analysis is also useful in metabolic flux analysis. In particular, a procedure for finding out which reaction rates can be uniquely calculated in underdetermined reaction networks is outlined. The concept of 'enzyme subsets' is explained and its use for analysing genetic regulation is demonstrated. In particular, the correlation between expression data concerning the diauxic shift in yeast and the enzyme subsets in yeast metabolism is discussed.  相似文献   

2.
We report a novel approach for inversion of large random matrices in massive Multiple-Input Multiple Output (MIMO) systems. It is based on the concept of inverse vectors in which an inverse vector is defined for each column of the principal matrix. Such an inverse vector has to satisfy two constraints. Firstly, it has to be in the null-space of all the remaining columns. We call it the null-space problem. Secondly, it has to form a projection of value equal to one in the direction of selected column. We term it as the normalization problem. The process essentially decomposes the inversion problem and distributes it over columns. Each column can be thought of as a node in the network or a particle in a swarm seeking its own solution, the inverse vector, which lightens the computational load on it. Another benefit of this approach is its applicability to all three cases pertaining to a linear system: the fully-determined, the over-determined, and the under-determined case. It eliminates the need of forming the generalized inverse for the last two cases by providing a new way to solve the least squares problem and the Moore and Penrose''s pseudoinverse problem. The approach makes no assumption regarding the size, structure or sparsity of the matrix. This makes it fully applicable to much in vogue large random matrices arising in massive MIMO systems. Also, the null-space problem opens the door for a plethora of methods available in literature for null-space computation to enter the realm of matrix inversion. There is even a flexibility of finding an exact or approximate inverse depending on the null-space method employed. We employ the Householder''s null-space method for exact solution and present a complete exposition of the new approach. A detailed comparison with well-established matrix inversion methods in literature is also given.  相似文献   

3.
Metabolite balancing has turned out to be a powerful computational tool in metabolic engineering. However, the linear equation systems occurring in this analysis are often underdetermined. If it is difficult or impossible to find the missing constraints, it is nevertheless feasible in some cases to determine the values of a subset of the unknown rates. Here, a procedure for finding out which reaction rates can be uniquely calculated in underdetermined metabolic networks and computing these rates is given. The method is based on the null space to the stoichiometry matrix corresponding to the reactions with unknown rates. It is shown that this method is considerably easier to handle than an algorithm given previously (Van der Heijden et al., 1994a). Furthermore, a useful elementary representation of the null space is presented which is closely related with the elementary flux modes. This unique representation is central to a more general approach to observability/calculability analysis. In particular, it allows one to find, in an easy way, those sets of measurable rates that enable a calculation of a certain unknown rate. Besides, rates which are never calculable by metabolite balancing may be easily detected by this method. The applicability of these methods is illustrated by a model of the central metabolism in purple nonsulfur bacteria. The photoheterotrophic growth of these representatives of anoxygenic photosynthetic bacteria is stoichiometrically analyzed. Interesting metabolic constraints caused by the necessary balancing of NADPH can be detected in a highly underdetermined system. This is, to our knowledge, the first application of stoichiometric analysis to the metabolic network in this bacteria group using metabolite balancing techniques. A new software tool, the FluxAnalyzer, is introduced. It allows quantitative and structural analysis of metabolic networks in a graphical user interface.  相似文献   

4.
Metabolic control analysis (MCA) allows one to formalize important aspects of information processing in living cells. For example, information processing via multi-level enzyme cascades can be quantified in terms of the response coefficient of a cellular target to a signal. In many situations, control and response coefficients cannot be determined exactly for all enzymes involved, owing to difficulties in 'observing' all enzymes experimentally. Here, we review a number of qualitative approaches that were developed to cope with such situations. The usefulness of the concept of null-space of the stoichiometry matrix for analysing the structure of intracellular signaling networks is discussed. It is shown that signal transduction operates very efficiently when the network structure is such that the null-space matrix can be block-diagonalized (which may or may not imply that the network consists of several disconnected parts) and some enzymes have low elasticities to their substrates.  相似文献   

5.
Modular decomposition of metabolic systems via null-space analysis   总被引:1,自引:0,他引:1  
We describe a method by which the reactions in a metabolic system may be grouped hierarchically into sets of modules to form a metabolic reaction tree. In contrast to previous approaches, the method described here takes into account the fact that, in a viable network, reactions must be capable of sustaining a steady-state flux. In order to achieve this decomposition we introduce a new concept--the reaction correlation coefficient, phi, and show that this is a logical extension of the concept of enzyme (or reaction) subsets. In addition to their application to modular decomposition, reaction correlation coefficients have a number of other interesting properties, including a convenient means for identifying disconnected subnetworks in a system and potential applications to metabolic engineering. The method computes reaction correlation coefficients from an orthonormal basis of the null-space of the stoichiometry matrix. We show that reaction correlation coefficients are uniquely defined, even though the basis of the null-space is not. Once a complete set of reaction correlation coefficients is calculated, a metabolic reaction tree can be determined through the application of standard programming techniques. Computation of the reaction correlation coefficients, and the subsequent construction of the metabolic reaction tree is readily achievable for genome-scale models using a commodity desk-top PC.  相似文献   

6.
One of the ultimate goals of systems biology research is to obtain a comprehensive understanding of the control mechanisms of complex cellular metabolisms. Metabolic Flux Analysis (MFA) is a important method for the quantitative estimation of intracellular metabolic flows through metabolic pathways and the elucidation of cellular physiology. The primary challenge in the use of MFA is that many biological networks are underdetermined systems; it is therefore difficult to narrow down the solution space from the stoichiometric constraints alone. In this tutorial, we present an overview of Flux Balance Analysis (FBA) and (13)C-Metabolic Flux Analysis ((13)C-MFA), both of which are frequently used to solve such underdetermined systems, and we demonstrate FBA and (13)C-MFA using the genome-scale model and the central carbon metabolism model, respectively. Furthermore, because such comprehensive study of intracellular fluxes is inherently complex, we subsequently introduce various pathway mapping and visualization tools to facilitate understanding of these data in the context of the pathways. Specific visualization of MFA results using the BioCyc Omics Viewer and Pathway Projector are shown as illustrative examples.  相似文献   

7.
8.
Theoretical estimates are given to check the possibility that flagellar rotation of bacteria is driven by viscous forces exerted from a streaming cytomembrane matrix to the basal structure of the flagellum.For different regimes of cytomembrane streaming, i.e. for circular, shearing and uniform linear motion of the membrane matrix past the basal ring of the flagellum, the velocity of streaming is computed that will yield the necessary mechanical torque for rotation of a helical flagellum in a watery medium.It is shown that in the range of surface viscosities determined for phospholipid monolayers the required velocities of cytomembrane streaming may be expected in the range of 3 μm/s to 60 μm/s. Since streaming velocities of the latter order of magnitude have been observed in protozoan membrane, efforts appear warranted to demonstrate experimentally the existence of cytomembrane streaming in bacteria and to characterize the surface viscosity of their cytomembrane.  相似文献   

9.
Sparse representation classification (SRC) is one of the most promising classification methods for supervised learning. This method can effectively exploit discriminating information by introducing a regularization terms to the data. With the desirable property of sparisty, SRC is robust to both noise and outliers. In this study, we propose a weighted meta-sample based non-parametric sparse representation classification method for the accurate identification of tumor subtype. The proposed method includes three steps. First, we extract the weighted meta-samples for each sub class from raw data, and the rationality of the weighting strategy is proven mathematically. Second, sparse representation coefficients can be obtained by regularization of underdetermined linear equations. Thus, data dependent sparsity can be adaptively tuned. A simple characteristic function is eventually utilized to achieve classification. Asymptotic time complexity analysis is applied to our method. Compared with some state-of-the-art classifiers, the proposed method has lower time complexity and more flexibility. Experiments on eight samples of publicly available gene expression profile data show the effectiveness of the proposed method.  相似文献   

10.
Wave propagation along the microtubules is one of the issues of major concern in various microtubule cellular functions. In this study, the general wave propagation behavior in protein microtubules is investigated based on a first-order shear deformation shell theory for orthotropic materials, with particular emphasis on the role of strongly anisotropic elastic properties of microtubules. According to experimental observation, the first-order shear deformation theory is used for the modeling of microtubule walls. A general displacement representation is introduced and a type of coupled polynomial eigenvalue problem is developed. Numerical examples describe the effects of shear deformation and rotary inertia on wave velocities in orthotropic microtubules. Finally, the influences of the microtubule shear modulus, axial external force, effective thickness and material temperature dependency on wave velocities along the microtubule protofilaments, helical pathway and radial directions are elucidated. Most results presented in the present investigation have been absent from the literature for the wave propagation in microtubules.  相似文献   

11.
12.
13.

Background  

A reverse engineering of gene regulatory network with large number of genes and limited number of experimental data points is a computationally challenging task. In particular, reverse engineering using linear systems is an underdetermined and ill conditioned problem, i.e. the amount of microarray data is limited and the solution is very sensitive to noise in the data. Therefore, the reverse engineering of gene regulatory networks with large number of genes and limited number of data points requires rigorous optimization algorithm.  相似文献   

14.
This work introduces the use of an interval representation of fluxes. This representation can be useful in two common situations: (a) when fluxes are uncertain due to the lack of accurate measurements and (b) when the flux distribution is partially unknown. In addition, the interval representation can be used for other purposes such as dealing with inconsistency or representing a range of behaviour. Two main problems are addressed. On the one hand, the translation of a metabolic flux distribution into an elementary modes or extreme pathways activity pattern is analysed. In general, there is not a unique solution for this problem but a range of solutions. To represent the whole solution region in an easy way, it is possible to compute the alpha-spectrum (i.e., the range of possible values for each elementary mode or extreme pathway activity). Herein, a method is proposed which, based on the interval representation of fluxes, makes it possible to compute the alpha-spectrum from an uncertain or even partially unknown flux distribution. On the other hand, the concept of the flux-spectrum is introduced as a variant of the metabolic flux analysis methodology that presents some advantages: applicable when measurements are insufficient (underdetermined case), integration of uncertain measurements, inclusion of irreversibility constraints and an alternative procedure to deal with inconsistency. Frequently, when applying metabolic flux analysis the available measurements are insufficient and/or uncertain and the complete flux distribution cannot be uniquely calculated. The method proposed here allows the determination of the ranges of possible values for each non-calculable flux, resulting in a flux region called flux-spectrum. In order to illustrate the proposed methods, the example of the metabolic network of CHO cells cultivated in stirred flasks is used.  相似文献   

15.
A stochastic Markov chain model for metastatic progression is developed for primary lung cancer based on a network construction of metastatic sites with dynamics modeled as an ensemble of random walkers on the network. We calculate a transition matrix, with entries (transition probabilities) interpreted as random variables, and use it to construct a circular bi-directional network of primary and metastatic locations based on postmortem tissue analysis of 3827 autopsies on untreated patients documenting all primary tumor locations and metastatic sites from this population. The resulting 50 potential metastatic sites are connected by directed edges with distributed weightings, where the site connections and weightings are obtained by calculating the entries of an ensemble of transition matrices so that the steady-state distribution obtained from the long-time limit of the Markov chain dynamical system corresponds to the ensemble metastatic distribution obtained from the autopsy data set. We condition our search for a transition matrix on an initial distribution of metastatic tumors obtained from the data set. Through an iterative numerical search procedure, we adjust the entries of a sequence of approximations until a transition matrix with the correct steady-state is found (up to a numerical threshold). Since this constrained linear optimization problem is underdetermined, we characterize the statistical variance of the ensemble of transition matrices calculated using the means and variances of their singular value distributions as a diagnostic tool. We interpret the ensemble averaged transition probabilities as (approximately) normally distributed random variables. The model allows us to simulate and quantify disease progression pathways and timescales of progression from the lung position to other sites and we highlight several key findings based on the model.  相似文献   

16.
A visualization method for inter-fragment interaction energies (IFIEs) of biopolymers is presented on the basis of the fragment molecular orbital (FMO) method. The IFIEs appropriately illustrate the information about the interaction energies between the fragments consisting of amino acids, nucleotides and other molecules. The IFIEs are usually analyzed in a matrix form called an IFIE matrix. Analyzing the IFIE matrix, we detect important fragments for the function of biomolecular systems and quantify the strength of interaction energies based on quantum chemistry, including the effects of charge transfer, electronic polarization and dispersion force. In this study, by analyzing a protein-DNA complex, we report a visual representation of the IFIE matrix, a so-called IFIE map. We comprehensively examine what information the IFIE map contains concerning structures and stabilities of the protein-DNA complex.  相似文献   

17.
A graphical representation of the intramolecular hydrogen bonding in a protein is described, which provides a direct and easily interpretable display of its secondary and tertiary structural elements. The representation is constructed by scanning the coordinate list for all potential proton donor (PD)--proton acceptor (PA) pairs, and any pair which satisfies certain preset distance and angle criteria is classified as being H-bonded. The resulting list of H-bonds is mapped onto an N x N matrix, where N is the number of residues in the protein, by assigning an element ij of the matrix to all the PA-PD pairs between atoms of residues i and j. Subsequently graphical objects are generated for all elements which are labeled as representing one or more H-bonds, and which can then be plotted or displayed in a way analogous to the graphical representation of the distance matrix (DM). In contrast to the DM, the hydrogen bonding matrix (HBM) is sparse, which allows the patterns representing secondary and tertiary structural motifs to be quickly and clearly recognized. In addition, changes in structure are easily identifiable from changes in the H-bonding patterns. The analysis and interpretation of the HBM is discussed using aspartate amino-transferase and calmodulin as examples.  相似文献   

18.
The evidence for tonotopic representation in the auditory cortex, when a signal of the form δ?.δt= a constant is used, implies that frequency definition is in terms of octaves, and that “octavetopic” representation upon the auditory cortex should, and does, take place. A theoretical approximation of the evoked potential can be obtained from Laplace's equation in electromagnetic theory, which approaches an “octavetopic” representation. Thus, the empirical evidence already obtained for octave representation upon the auditory cortex is given a theoretical context.  相似文献   

19.
Using chaos game representation we introduce a novel and straightforward method for identifying similarities/dissimilarities between DNA sequences of the same type, from different organisms. A matrix is associated to each CGR pattern and the similarities result from the comparison between the matrices of the sequences of interest. Three different methods of analysis of the resulting difference matrix are considered: a 3-dimensional representation giving both local and global information, a numerical characterization by defining an n-letter word similarity measure and a statistical evaluation. The method is illustrated by implementation to the study of albumin nucleotides sequences from eight mammal species taking as reference the human albumin.  相似文献   

20.
Analysis of the trajectories of small particles at high spatial and temporal resolution using video enhanced contrast microscopy provides a powerful approach to characterizing the mechanisms of particle motion in living cells and in other systems. We present here the theoretical basis for the analysis of these trajectories for particles undergoing random diffusion and/or systematic transport at uniform velocity in two-dimensional systems. The single particle tracking method, based on observations of the trajectories of individual particles, is compared with methods that characterize the motions of a large collection of particles such as fluorescence photobleaching recovery. Determination of diffusion coefficients or transport velocities either from correlation of positions or of velocities of the particles is discussed. A result of practical importance is an analysis of the dependence of the expected statistical uncertainty of these determinations on the number of position measurements. This provides a way of judging the accuracy of the diffusion coefficients and transport velocities obtained using this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号