首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high melting cis-[Pt(NH3)2[d(GpG)]]adduct of a decanucleotide duplex   总被引:2,自引:0,他引:2  
The [cis-Pt(NH3)2(d(GCCGGATCGC)-N7(4), N7(5))]-d(GCGATCCGGC) duplex has been prepared with Tm = 49 degrees C (vs 58 degrees C for the unplatinated form). NMR of the ten observable imino protons supports a kinked structure with intact base pairing of the duplex on the 3'-side of the d(GpG).cis-Pt chelate (relative to the platinated strand) The modification of the B-DNA type CD spectrum, due to the platinum chelate, is comparable to that observed for the platination (at a 0.05 Pt:base ratio) of the Micrococcus Lysodeikticus DNA (72% GC).  相似文献   

2.
The complete and unequivocal assignment of the 24 ribose proton signals of m6(2)A(1)-U(2)-m6(2)(3)-U(4) by means of 500 MHz NMR spectroscopy at 17 degrees C is given. this assignment is based on scrupulous decoupling experiments carries out at various temperatures. Analysis of the observed chemical shifts and coupling constants of the tetramer shows that the two fragments -m6(2)A(3)-U(4) comprising the 3'-end occur mainly in the classical right-handed stack conformation, whereas the 5'-end the -U(2)- residue appears bulged out in favour of a less well-defined stacking interaction between the bases m6(2)A(1)-and -m6(2)A(3)-. Conformational populations about each of the torsional degrees of freedom along the backbone are discussed. A modernized version of pseudorotation analysis is used to delineate the conformational behaviour of the four ribose rings.  相似文献   

3.
A duplex Escherichia coli bacteriophage M13 genome was constructed containing a single cis-[Pt(NH3)2(d(GpG]] intrastrand cross-link, the major DNA adduct of the anticancer drug cis-diamminedichloroplatinum(II). The duplex dodecamer d(AGAAGGCCTAGA).d(TCTAGGCCTTCT) was ligated into the HincII site of M13mp18 to produce an insertion mutant containing a unique StuI restriction enzyme cleavage site. A genome with a 12-base gap in the minus strand was created by hybridizing HincII-linearized M13mp18 duplex DNA with the single-stranded circular DNA of the 12-base insertion mutant. The dodecamer d(TCTAGGCCTTCT) was synthesized by the solid-phase phosphotriester method and platinated by reaction with cis-[Pt(NH3)2(H2O)2]2+ (yield 39%). Characterization by pH-dependent 1H NMR spectroscopy established that platinum binds to the N7 positions of the adjacent guanosines. The platinated oligonucleotide was phosphorylated in the presence of [gamma-32P]ATP with bacteriophage T4 polynucleotide kinase and incorporated into the 12-base gap of the heteroduplex, thus situating the adduct specifically within the StuI site in the minus strand of the genome. Approximately 80% of the gapped duplexes incorporated a dodecanucleotide in the ligation reaction. Of these, approximately half did so with the dodecanucleotide covalently joined to the genome at both 5' and 3' termini. The site of incorporation of the dodecamer was mapped to the expected 36-base region delimited by the recognition sites of XbaI and HindIII. The cis-[Pt(NH3)2(d(GpG]] cross-link completely inhibited StuI cleavage, which was fully restored following incubation of the platinated genome with cyanide to remove platinum as [Pt(CN)4]2-. Gradient denaturing gel electrophoresis of a 289-base-pair fragment encompassing the site of adduction revealed that the presence of the cis-[Pt(NH3)2(d(GpG]] cross-link induces localized weakening of the DNA double helix. In addition, double- and single-stranded genomes, in which the cis-[Pt(NH3)2(d(GpG]] cross-link resides specifically in the plus strand, were constructed. Comparative studies revealed no difference in survival between platinated and unmodified double-stranded genomes. In contrast, survival of the single-stranded platinated genome was only 10-12% that of the corresponding unmodified single-stranded genome, indicating that the solitary cis-[Pt(NH3)2(d(GpG]] cross-link is lethal to the single-stranded bacteriophage.  相似文献   

4.
The 30 ribose proton resonances of the pentaribonucleoside tetraphosphate m6(2)AUm6(2)AUm6(2)A have been assigned unequivocally by means of spin-echo-correlated spectroscopy, 2D J-resolved spectroscopy and Nuclear Overhauser difference spectroscopy, carried out at 500 MHz. A detailed comparison of the conformational properties of the title compound with its constituent fragments m6(2)AUm6(2)AU, m6(2)AUm6(2)A, m6(2)AU and the relevant monomers is given. Chemical shift data indicate the existence of a doubly "bulged out" conformer, in which the two interior U-fragments are not involved in regular nearest neighbour stacking interactions. The coupling constants of the ribose-ring are interpreted in terms of the N/S equilibrium, and population distributions along the backbone angles beta and gamma are presented. The combined data suggest a strong similarity between the 5'-terminal triplets in m6(2)AUm6(2)AUm6(2)A, m6(2)AUm6(2)AU and m6(2)AUm6(2)A2.  相似文献   

5.
N-Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2) is an endogenous brain peptide with multiple effects on animal behavior. However, there have been no studies on the conformation of this tetrapeptide. In this report, we studied the conformation of N-Tyr-MIF-1 in aqueous solution by conventional one-dimensional and two-dimensional (COSY and NOESY) 1H nuclear magnetic resonance spectroscopy at 300 MHz. A complete set of assignments for the resolved resonances and approximate assignments for the overlapping resonances were made. The results demonstrate that N-Tyr-MIF-1 is in slow exchange between two conformers, most likely determined by the cis and trans states of the proline residue. The minor conformation represents 30 +/- 3% of the population over the temperature range from 3 degrees to 73 degrees. In the major conformation, the tyrosine aromatic ring appears to be close enough to interact directly with the proline pyrrolidine ring, as indicated by a strong temperature dependence of the proline C beta H, C delta H and C delta H' chemical shifts. In contrast, this interaction of the tyrosine and proline rings is not present in the minor conformation.  相似文献   

6.
Proton NMR studies at 500 MHz in aqueous solution were carried out on the G-G chelated deoxytrinucleosidediphosphate platinum complex cis-Pt(NH3)2[d(GpCpG], on the uncoordinated trinucleotide d(GpCpG) and on the constituent monomers cis-Pt(NH3)2[d(Gp)]2, cis-Pt(NH3)2[d(pG)]2, d(Gp), d(pCp) and d(pG). Complete NMR spectral assignments are given and chemical shifts and coupling constants are analysed to obtain an impression of the detailed structure of d(GpCpG) and the distortion of the structure due to chelation with [cis-Pt(NH3)2]2+. Platination of the guanosine monophosphates affects the sugar conformational equilibrium to favour the N conformation of the deoxyribose ring. This feature is also apparent in ribose mononucleotides and is possibly caused by an increased anomeric effect. In cis-Pt(NH3)2[d(pG)]2 the phase angle of pseudorotation of the S-type sugar ring is 20 degrees higher than in 'free' d(pG) which might be an indication for an ionic interaction between the positive platinum and the negatively charged phosphate. It appears that d(GpCpG) reverts from a predominantly random coil to a normal right-handed B-DNA-like single-helical structure at lower temperatures, whereas the conformational features of cis-Pt(NH3)2[d(GpCpG)] are largely temperature-independent. In the latter compound much conformational freedom along the backbone angles is seen. The cytosine protons and deoxyribose protons exhibit almost no shielding effect as should normally be exerted by the guanine bases in stacking positions. This is interpreted in terms of a 'turning away' of the cytosine residue from both chelating guanines. Conformational features of cis-Pt(NH3)2[d(GpCpG)[ are compared with the 'bulge-out' of the ribose-trinucleotide m6(2)ApUpm6(2)A.  相似文献   

7.
The reaction of the antitumor active agent cis-[Pt(NH3)2(4-mepy)Cl]Cl (4-mepy stands for 4-methylpyridine) with d(GpG) has been investigated by 1H magnetic resonance spectroscopy. Initially, two mononuclear complexes cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(1)] 1 and cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(2)] 2 are formed in an unexpected ratio 65:35, as determined by 1H NMR and enzymatic digestion techniques. Both products react further with a second equivalent of cis-[Pt(NH3)2(4-mepy)Cl]Cl forming the dinuclear platinum complex [cis-Pt(NH3)2(4-mepy)]2[mu-d(GpG)- N7(1),N7(2)] 3. With [Pt(dien)Cl]Cl and [Pt(NH3)3Cl]Cl similar complexes are formed. No evidence was found for the formation of chelates cis-Pt(NH3)(4-mepy) [d(GpG)-N7(1),N7(2)], which would be formed upon ammonia release from the mononuclear complexes 1 and 2. Even addition of strong nucleophiles, like sodium diethyldithiocarbamate, thiourea, cysteine, or methionine, before or after reaction, do not induce the formation of a chelate. Under all conditions the N-donor ligands remain coordinated to Pt in 1,2 and 3. In addition, the results of bacterial survival and mutagenesis experiments with E. coli strains show that the in vivo formation of bifunctional adducts in DNA, comparable to those induced by cis-Pt(NH3)2Cl2, by treatment of cells with cis-[Pt(NH3)2(4-mepy)Cl]Cl is unlikely. Also, a mechanism of binding and intercalation is not supported by experimental data. All experiments suggest that the mechanism of action of this new class of antitumor agents must be different from that of cis-Pt(NH3)2Cl2.  相似文献   

8.
9.
The conformation of d (CG)n oligomers with n = 2,3 has been studied in aqueous solution in the presence of high salt concentration. A minimum n value of three is necessary to obtain a left-handed Z-helix. When d (CG)3 is flanked by three non Z-helicogenic alternating AT sequences the left-handed helix is unstable and a B-type conformation is obtained also at high salt concentration.  相似文献   

10.
The 1H-n.m.r. spectra of solutions in [2H6]dimethyl sulphoxide of the sodium salts of tetra-, hexa- and octa-saccharides prepared from hyaluronate by testicular-hyaluronidase digestion were examined at 300 and 500 MHz. The signals from hydroxy groups at positions 2 and 3 in the glucuronic acid moiety were assigned. Their chemical shifts and associated temperature-dependencies, as well as their coupling constants, depended on whether or not the uronic acid was at the non-reducing end. Deviations from the 'normal' pattern of hydroxy-group proton n.m.r. behaviour were attributable to participation in hydrogen bonds, either to the acetamido carbonyl oxygen atom or the pyranose ring oxygen atom of neighbouring N-acetylhexosamine moieties. A secondary structure, containing four different hydrogen bonds per trisaccharide unit of glucuronsyl-hexosaminyl-glucuronic acid, was demonstrated. This is the first complete and detailed secondary structure to be established for hyaluronate in any solvent. Hyaluronate is compared with chondroitin sulphate, dermatan sulphate, heparan sulphate and keratan sulphate in their potential to form secondary structures with features in common. The significance of the details of the structure to its overall stability, and the probability of their persistence into aqueous environments, are discussed. The presence of all or most of the secondary structure in glycosaminoglycuronans is correlated with a space-filling function in the tissue, and with a high carbohydrate content in the parent proteoglycan in the case of the chondroitin sulphates.  相似文献   

11.
Circular dichroism (CD) and nuclear magnetic resonance (NMR) techniques have been used to characterize the structural properties of the two self-complementary DNA octamers d(TGACGTCA) (I) and d(ACTGCAGT) (II). These display as distinctive features reverse sequences and central steps CpG and GpC, respectively. CD experiments lead to B-form DNA spectra characterized by larger magnitude signals in the case of octamer (I). NMR COSY spectra indicate that in the two octamers all the residues are predominantly south, S, (2'-endo) sugar conformation. NMR NOESY spectra show most of the glycosidic angles confined in the range predicted for B-form DNA although important heterogeneity is noticed along the chains, more pronounced in the case of octamer (I). Both the increase of north, N, (3'-endo) sugar conformation and P (pseudorotation phase angle) deviation from its standard B-form DNA value (162 degrees) express local sequence dependent structure distortions, remarkably visible in CpG step of octamer (I) and agreeing with NOESY cross-peaks intensities. Results interpreted according to Calladine's rules indicate higher cross-chain strains in octamer (I) than in octamer (II). All together, we find evidence to support for octamer (I) in solution local structures with A-DNA properties likely dictated by the central CpG step. Such structures could be involved in the DNA recognition by proteins and anticancerous drugs.  相似文献   

12.
J Feigon  W Leupin  W A Denny  D R Kearns 《Biochemistry》1983,22(25):5943-5951
In this study two-dimensional NMR techniques (COSY and NOESY) have been used in conjunction with one-dimensional NMR results to complete the assignment of the proton NMR spectrum of the double-stranded DNA decamer, d(ATATCGATAT)2, and to obtain qualitative information about numerous interproton distances in this molecule and some limited information about conformational dynamics. COSY and NOESY measurements have been combined to systematically assign many of the resonances from the H1' and H2',2" sugar protons to specific nucleotides in the double helix. This method relies on the fact that sugar protons within a specific nucleotide are scalar coupled and that base protons (AH8, GH8, TH6, and CH6) in right-handed helices can interact simultaneously with their own H2',2" sugar protons and those of the adjacent (5'-3') nucleotide attached to its 5' side (i.e., XpA not ApX). A COSY experiment is used to identify sugar resonances within a residue whereas the NOESY experiment allows the neighboring sugar to be connected (linked). The CH5 and CH6 resonances in the spectrum can immediately be identified by the COSY experiment. The methyl protons of thymine residues exhibit strong through-space interbase interactions both with their own TH6 proton and with AH8 proton on the adjacent (5'-3') adenine residue. These interactions are used both to make assignments of the spectra and to establish that the thymine methyl groups are in close proximity to the AH8 protons of adjacent adenine residues [Feigon, J., Wright, J. M., Leupin, W., Denny, W. A., & Kearns, D. R. (1982) J. Am. Chem. Soc. 104, 5540].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The B and the Z forms of the DNA hexamers d(m5C-G)3 and d(br5C-G)3 were investigated by means of NMR spectroscopy. It is demonstrated that the low-salt form of d(m5C-G)3 is a B DNA structure. The form, which becomes increasingly predominant when increasing amounts of MgCl2 and/or methanol are added to the solution, has Z DNA characteristics. It is shown that the major geometrical features of the Z form of d(m5C-G)3 in the crystal structure are maintained in solution, with the dC residues S sugar conformation, gamma + and the base in the anti orientation and the dG residues N (except the 3'-terminal residue), gamma t and syn. Neither the Z form of the methylated nor that of the brominated compound resembles the Z' form, in which the deoxy guanosine sugar rings adopt a C1'-exo conformation. Substitution of m5C by br5C causes no perceptible conformational changes in either the B or in the Z forms.  相似文献   

14.
J L Czeisler  D P Hollis 《Biochemistry》1975,14(12):2781-2785
A Model system for NAD+ has been investigated using a paramagnetic transition metal ion as a probe. The well-known complexation of Mn2+ by adenine nucleotides was utilized to "label" adenosine 5'-diphosphate. A broadening effect on the 100-MHz proton nuclear magnetic resonance spectrum of N1-methylnicotinamide due to the adenine-metal ion complex was observed. It was found that the nicotinamide species showed no evidence for interaction with Mn2+ in the absence of the adenine nucleotide. These observations have led to the proposal that N1-methylnicotinamide associates with the adenine moiety of the adenine nucleotide-metal complex. This suggests a tendency of adenine and nicotinamide rings to interact in aqueous solution implying some tendency of the coenzyme NAD+ to occur in a folded or stacked conformation.  相似文献   

15.
J Feigon  W A Denny  W Leupin  D R Kearns 《Biochemistry》1983,22(25):5930-5942
A variety of one-dimensional proton NMR methods have been used to investigate the properties of two synthetic DNA decamers, d(ATATCGATAT) and d(ATATGCATAT). These results, in conjunction with the results of two-dimensional NMR experiments, permit complete assignment of the base proton resonances. Low-field resonances were assigned by sequential "melting" of the A . T base pairs and by comparison of the spectra of the two decamers. Below 20 degree C spin-lattice relaxation is dominated by through-space dipolar interactions. A substantial isotope effect on the G imino proton relaxation is observed in 75% D2O, confirming the importance of the exchangeable amino protons in the relaxation process. A somewhat smaller isotope effect is observed on the T imino proton relaxation. At elevated temperatures spin-lattice relaxation of the imino protons is due to proton exchange with solvent. Apparent activation energies for exchange vary from 36 kcal/base pair for base pairs (3,8) to 64 kcal/mol for the most interior base pairs (5,6), indicating that disruption of part, or all, of the double helix contributes significantly to the exchange of the imino protons in these decamers. By contrast, single base pair opening events are the major low-temperature pathways for exchange from A X T and G X C base pairs in the more stable higher molecular weight DNA examined in other studies. The temperature dependence of the chemical shifts and line widths of certain aromatic resonances indicates that the interconversion between the helix and coil states is not in fast exchange below the melting temperature, Tm. Within experimental error, no differential melting of base pairs was found in either molecule, and both exhibited melting points Tm = 50-52 degrees C. Spin-spin and spin-lattice relaxation rates of the nonexchangeable protons (TH6, AH8, and AH2) are consistent with values calculated by using an isotropic rotor model with a rotational correlation time of 6 ns and interproton distances appropriate for B-family DNA. The faster decay of AH8 compared with GH8 is attributed to an interaction between the thymine methyl protons and the AH8 protons in adjacent adenines (5'ApT3'). The base protons (AH8, GH8, and TH6) appear to be located close (1.9-2.3 A) to sugar H2',2" protons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The structure of ClO4 and NO3 adducts of cobalt(II) substituted bovine carbonic anhydrase have been investigated through 1D NOE and 2D 1H nuclear magnetic resonance (NMR) spectroscopy. For the first time two-dimensional NMR techniques are applied to paramagnetic metalloproteins other than iron-containing proteins. Several active site signals have been assigned to specific protons on the grounds of their scalar and dipolar connectivities and T1 values. The experimental dipolar shifts for the protons belonging to noncoordinated residues have allowed the identification of a plausible orientation of the magnetic susceptibility tensor around the cobalt ion as well as of the magnitude and the anisotropy of the principal susceptibility values. In turn, a few more signals have been tentatively assigned on the grounds of their predicted dipolar shifts. The two inhibitor derivatives have a very similar orientation but a different magnitude of the chi tensor, and the protein structure around the active site is highly maintained. The results encourage a more extensive use of the two-dimensional techniques for obtaining selective structural information on the active site of metalloenzymes. With this information at hand, comparisons within homologous series of adducts with various inhibitors and/or mutants of the same enzyme of known structure should be possible using limited sets of NMR data.  相似文献   

17.
There has been much recent interest in the self-association of short deoxyguanosine-rich motifs within single-stranded DNAs to generate monovalent cation modulated four-stranded helical segments called G-quadruplexes stabilized by hydrogen-bonded G-tetrad alignments. We have addressed structural aspects of this novel alignment and report on multinuclear 1H, 31P and 13C nuclear magnetic resonance studies on the d(G2T4CG2) deoxynonanucleotide with Na cation as counterion in aqueous solution at low temperature. This sequence forms stable structures even though it cannot align by Watson-Crick hydrogen bond formation (see the paper on d(G2T5G2) describing optical and calorimetric measurements by Jin, R., Breslauer, K. J., Jones, R. A. & Gaffney, B. L. (1990), Science, 250, 543-546). The four narrow exchangeable protons detected between 11.5 and 12.0 parts per million (p.p.m.), which are common to the d(G2T4CG2) deoxynonanucleotide and the d(G2TCG2) deoxyhexanucleotide sequences, are assigned to deoxyguanosine imino protons hydrogen-bonded to carbonyl acceptor groups. These narrow imino protons are not detected for d(IGN5IG) and d(I2N5G2), where two deoxyguanosine residues are replaced by two deoxyinosine residues in the deoxynonanucleotide sequences. This implies that the 2-amino protons of deoxyguanosine must also participate in hydrogen bond formation and stabilize the structured conformation of d(G2T4CG2) in Na cation-containing solution. We have completely assigned the base and sugar H1', H2',2', H3', and H4' protons of the d(G2T4CG2) oligomer following analysis of two-dimensional nuclear Overhauser enhancement spectroscopy and two-dimensional correlated spectroscopy data sets in 0.1 M-NaCl, 10 mM-sodium phosphate, 2H2O solution at 0 degree C. The relative magnitude of the nuclear Overhauser enhancements (NOEs) between the base H8 and its own sugar H1' protons of individual deoxyguanosine residues establishes that G1 and G8 adopt syn orientations while G2 and G9 adopt anti orientations about the glycosidic bond in the d(G1-G2-T3-T4-T5-T6-C7-G8-G9) sequence in both Na and K cation-containing aqueous solution. Consequently, any structure proposed for the tetramolecular complex of d(G2T4CG2) must exhibit alternating G(syn) and G(anti) glycosidic torsion angles within each strand. The directionality and magnitude of the observed NOEs are consistent with the G(syn)-G(anti) steps adopting right-handed helical conformations in solution. We also note that the H8 protons of G1 and G8 (7.35 to 7.45 p.p.m.) in a syn alignment are shifted significantly upfield from the H8 protons of G2 and G9 (8.0 to 8.3 p.p.m.) in an anti alignment.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The structures of d(GCAATTGC)2 and its complex with berenil in solution were analyzed by two-dimensional 1H NMR spectroscopy. Intra- and internucleotide nuclear Overhauser effect (NOE) connectivities demonstrate that the octanucleotide duplex is primarily in the B conformation. Binding with berenil stabilizes the duplex with respect to thermal denaturation by about 10 degrees C, based on the appearance of the imino proton signals. The berenil-d(GCAATTGC)2 system is in fast exchange on the NMR time scale. The two-dimensional NMR data reveal that berenil binds in the minor groove of d(GCAATTGC)2. The aromatic drug protons are placed within 5 A of the H2 proton of both adenines, the H1', H5', and H5" of both thymidines, and the H4', H5', and H5" of the internal guanosine. The amidine protons on berenil are also close to the H2 proton of both adenines. The duplex retains an overall B conformation in the complex with berenil. At 18 degrees C, NOE contacts at longer mixing times indicate the presence of end-to-end association both in the duplex alone and also in its complex with berenil. These intermolecular contacts either vanished or diminished substantially at 45 degrees C. Two molecular models are proposed for the berenil-(GCAATTGC)2 complex; one has hydrogen bonds between the berenil amidine protons and the carbonyl oxygen, O2, of the external thymines, and the other has hydrogen bonds between the drug amidine protons and the purine nitrogen, N3, of the internal adenines. Quantitative analysis of the NOE data favors the second model.  相似文献   

19.
The conformation of the hexanucleoside pentaphosphate r( CGCGCG ) in aqueous solution was studied by circular dichroism, 1H- and 31P-NMR spectroscopy. The base-, H1'- and H2'-proton resonances were assigned by means of 2D-NOE spectroscopy. The base- and H1'-proton chemical shifts were studied as a function of temperature. Proton-proton distances are computed in A- and A'-RNA as well as in A-, B- and Z-DNA. A qualitative interpretation of the observed 2D-NOE intensities shows that r( CGCGCG ) adopts a regular A-type double helical conformation under our experimental conditions. The CD- and 31P-NMR experiments described in this paper are in agreement with this structure both under low- and high-salt conditions.  相似文献   

20.
The stoichiometric reaction between d-TpGpGpCpCpA (d(T-G-G-C-C-A)) and cis-[Pt(NH3)2(H2O)2](NO3)2 (8.4 × 10?6 to 1.3 × 10?4M in water at pH 5.5–6) gives a single complex. High pressure gel permeation chromatography and pH-dependent 1H NMR analyses of the nonexchangeable base protons, show that it is a platinum chelate with the cis-PtII(NH3)2 moiety bound to the two N7 atoms of the adjacent guanines. A 3 × 10?3M reaction gives the same platinum chelate, via the formation of intermediate complexes, together with unsoluble adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号