首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been suggested that increases in cyclic GMP levels are responsible for the negative inotropic effects of acetylcholine in the heart. This hypothesis was tested by monitoring the effects of acetylcholine and sodium nitroprusside on tension and cyclic nucleotide levels in strips of cat atrial appendage. Sodium nitroprusside markedly increased atrial cyclic GMP levels but did not decrease the twitch tension developed by the atrial strips. Low concentrations of acetylcholine, on the other hand, decreased twitch tension without increasing myocardial cyclic GMP levels. No significant change in cyclic AMP levels was observed in any of these experiments. These results are not consistent with the proposed role for cyclic GMP as the mediator of the negative inotropic effects of acetylcholine.  相似文献   

2.
Elevation of cyclic GMP by muscarinic agonists has been suggested to be responsible for the negative inotropic effects of these agents in cardiac muscle, and for the endothelium-dependent relaxation caused by these agents in vascular smooth muscle. These relationships were studied by monitoring the effects of muscarinic agonists on tension and cyclic GMP levels in rabbit left atrial strips and aortic rings, in the presence and absence of the cyclic GMP lowering agent, LY83583. LY83583 completely blocked both the cyclic GMP increase and the relaxation caused by acetylcholine in rabbit aortic rings with intact endothelial cells. Acetylcholine-induced cyclic GMP elevation and relaxation in these preparations were also blocked by quinacrine and nordihydroguaiaretic acid (NDGA), but neither response was blocked by the 5-lipoxygenase inhibitor U-60257. In the experiments with rabbit left atrium, LY83583 blocked the acetylcholine-induced cyclic GMP elevation but did not block the negative inotropic effects of the drug. Quinacrine, NDGA, and a guanylate cyclase inhibitor, methylene blue, failed to block either the cyclic GMP increase or the decrease in contractile force caused by carbachol in atrial strips. These results support the suggestion that an increase in cyclic GMP may be responsible for the endothelium-dependent relaxation of rabbit aorta by muscarinic agonists, but not for the direct negative inotropic effects of these drugs in rabbit atrium. Muscarinic agents appear to increase cyclic GMP levels in rabbit atrium and aorta by different mechanisms. Although both are blocked by LY83583, they differ not only in their requirements for endothelial cells, but also in their susceptibility to other blocking agents.  相似文献   

3.
The effect of theophylline and isoproterenol on bovine tracheal smooth muscle tension and cyclic AMP levels was investigated. Concentrations of isoproterenol (4 × 10?6 M) and theophylline (10 mM) that relaxed carbachol-contracted tracheal muscle by 85–95% did not significantly elevate control levels of cyclic AMP. In the absence of carbachol, several-fold increases in cyclic AMP were caused by isoproterenol although no elevations by theophylline were measurable. However, when isoproterenol and theophylline were administered together, theophylline potentiated the rise in cyclic AMP caused by isoproterenol. Phosphodiesterase studies in tracheal muscle showed the presence of a high and a low Km enzyme which were inhibited by theophylline. Cyclic GMP levels were elevated in muscles contracted by carbachol as well as in carbachol-contracted muscles that had been relaxed by theophylline. In non-tension studies, in which the tracheal muscle was not under isometric tension, carbachol or theophylline alone increased cyclic GMP and together they synergistically elevated cyclic GMP. Atropine blocked the elevation caused by carbachol but not that caused by theophylline. In contrast to theophylline, isoproterenol did not elevate cyclic GMP, and in carbachol-contracted muscles that had been relaxed by isoproterenol, cyclic GMP levels were no different from control. Also, in non-tension studies, isoproterenol decreased basal cyclic GMP and antagonized the increase in cyclic GMP due to carbachol.The results indicate that whole-tissue levels of cyclic AMP and cyclic GMP do not correlate with the state of tracheal smooth muscle tension. Cyclic GMP levels do not clearly correlate with either contraction or relaxation. The inhibition by carbachol of increases in cyclic AMP due to isoproterenol and the inhibition by isoproterenol of increases in cyclic GMP due to carbachol provide evidence for a reciprocal cholinergic-adrenergic antagonism of cyclic AMP and cyclic GMP levels. The antagonism did not appear to be due to either cyclic nucleotide affecting the elevation of the other since the levels of both cyclic nucleotides were depressed.  相似文献   

4.
A novel cyclic GMP-lowering agent, LY83583(6-anilino-5,8-quinolinedione), was used to investigate the possibility that increases in myocardial cyclic GMP levels are responsible for the negative inotropic effects of cholinergic agonists. Concentrations of carbachol from 0.3 to 3 microM elevated cyclic GMP levels in electrically paced rabbit atrial strips by 75 to 200% and decreased contractile force in the strips by 30 to 60%. Pretreatment of the muscles for 10 min with 10 microM LY83583 significantly lowered resting cyclic GMP levels and completely blocked the elevation of cyclic GMP by these concentrations of carbachol. However, the negative inotropic effects of carbachol were not blocked by the LY83583. These results indicate that the negative inotropic effects of carbachol in rabbit atrium are not mediated by increases in tissue levels of cyclic GMP.  相似文献   

5.
Amylase secretion and changes in the levels of cyclic AMP and GMP were studied in rabbit parotid gland slices incubated in vitro with a variety of neurohumoral transmitters, their analogs and inhibitors. Cyclic GMP levels increased 8-fold 5 min after exposure to carbachol (10(-4) M), without a change in cyclic AMP levels; amylase output also rose. These effects were completely inhibited by muscarinic blockade with atropine, but were unaffected by alpha-adrenergic blockade with phenoxybenzamine. Epinephrine (4 - 10(-5) M) produced a rapid increase in the levels of both cyclic nucleotides and in amylase release. The increase in cyclic GMP level was inhibited by previous exposure of the slices to phenoxybenzamine, while the cyclic AMP rise was prevented by the beta-blocking agent, propranolol. Pure alpha-adrenergic stimulation with methoxamine (4 - 10(-4) M) produced modest elevations in cyclic GMP content and amylase output, effects blocked by pre-treatment of slices with either atropine or phenoxybenzamine. At a concentration of 4 - 10(-6) M, isoproterenol (a beta-agonist) failed to affect cyclic GMP levels, but promptly stimulated increases in cyclic AMP levels, and after a short lag, amylase secretion. At a higher dose (4 - 10(-5) M) isoproterenol produced elevations in the levels of both nucleotides. The carbachol-induced effects on cyclic GMP content and amylase release were greatly potentiated by the addition of isoproterenol (4 - 10(-6) M). These data strongly suggest that cholinergic muscarinic agonists and alpha-adrenergic agonists stimulate amylase output in rabit parotid gland by mechanisms involving cyclic GMP. The atropine-sensitive intracellular events effected by alpha-stimulation may be dependent upon endogenous generation of acetylcholine. Both cyclic nucleotides seem to be required for the early rapid secretion of amylase. The unique responses achieved by the combination of carbachol and isoproterenol suggest that isoproterenol may increase the sensitivity of this tissue to the effects of cholinergic stimuli.  相似文献   

6.
The effects of adrenergic and cholinergic agents, present singly or in combination, on the levels of cyclic AMP and cyclic GMP in slices of rat lung were studied. It was found that isoproterenol increased pulmonary cyclic AMP levels about 3-fold, and this increase was abolished by propranolol, but not by phenoxybenzamine. Acetylcholine increased the cyclic GMP levels also about 3-fold (thus raising its tissue content above that of cyclic AMP), and this increment was largely reduced by atropine, but not by hexamethonium. While without effects on the cyclic GMP levels when present alone, isoproterenol antagonized acetylcholine in increasing cyclic GMP levels. Acetylcholine, while lacking effects on the basal levels of cyclic AMP, on the other hand, depressed the augmented levels caused by isoproterenol.The data presented indicate that cyclic GMP may mediate the cholinergic action in lung and that the pulmonary cyclic GMP levels are also closely regulated by β-adrenergic receptor activation.  相似文献   

7.
Y X Ye  T Akera  Y C Ng 《Life sciences》1989,45(20):1853-1861
Gossypol is an orally active male contraceptive with cardio-depressant side effects. To understand the mechanism of its cardiac actions, the interaction of gossypol with positive inotropic drugs was examined in isolated atrial muscle preparations obtained from guinea-pig heart. Gossypol delayed the onset of arrhythmias caused by digoxin. In the presence of gossypol, the positive inotropic effect of isoproterenol declined rapidly, and the effect of isoproterenol to increase tissue cyclic AMP concentrations was smaller. Pretreatment of atrial muscle with the combination of gossypol and isoproterenol markedly reduced effects of isoproterenol on developed tension and cyclic AMP concentrations when these effects were tested after the washout of the first dose of isoproterenol. These effects, however, were not specific to isoproterenol. The gossypol-isoproterenol pretreatment reduced the positive inotropic effect of ouabain or extracellular Ca2+. These results indicate that gossypol has pharmacodynamic interactions with several positive inotropic agents that are known to enhance developed tension by increasing intracellular Ca2+ transients.  相似文献   

8.
P Stemmer  T Akera  T M Brody  E Hosoya 《Life sciences》1986,39(16):1411-1416
Berberine has been shown to increase developed tension in cardiac muscle but its derivatives have been reported to inhibit the catalytic subunit of adenylate cyclase. In the present study, the cardiac actions of the most potent derivative, 13-propylberberine, were examined. It produced a transient increase followed by a sustained decrease in developed tension in paced left atrial muscle preparations isolated from guinea-pig heart. In the presence of 13-propylberberine, isoproterenol caused only a transient increase in developed tension; marked desensitization to the positive inotropic effect of isoproterenol occurred within 20 min. After washout of isoproterenol and an additional 15-min incubation in the presence of 13-propylberberine, the muscle lost its sensitivity to isoproterenol. Moreover, the positive inotropic effect of ouabain or effects of decrease or increase in extracellular Ca2+ concentration on the force of muscle contraction were markedly attenuated. Isoproterenol-induced elevation of tissue cyclic AMP concentration was inhibited by 13-propylberberine; however, 13-propylberberine did not alter the basal cyclic AMP concentration and its effects on inotropic actions of ouabain or extracellular Ca2+ appear unrelated to tissue cyclic AMP concentration.  相似文献   

9.
Amylase secretion and changes in the levels of cyclic AMP and GMP were studied in rabbit parotid gland slices incubated in vitro with a variety of neurohumoral transmitters, their analogs and inhibitors. Cyclic GMP levels increased 8-fold 5 min after exposure to carbachol (10−4 M), without a change in cyclic AMP levels; amylase output also rose. These effects were completely inhibited by muscarinic blockade with atropine, but were unaffected by α-adrenergic blockade with phenoxybenzamine. Epinephrine (4 · 10−5 M) produced a rapid increase in the levels of both cyclic nucleotides and in amylase release. The increase in cyclic GMP level was inhibited by previous exposure of the slices to phenoxybenzamine, while the cyclic AMP rise was prevented by the β-blocking agent, propranolol. Pure α-adrenergic stimulation with methoxamine (4 · 10−4 M) produced modest elevations in cyclic GMP content and amylase output, effects blocked by pre-treatment of slices with either atropine or phenoxybenzamine. At a concentration of 4 · 10−6 M, isoproterenol (a β-agonist) failed to affect cyclic GMP levels, but promptly stimulated increases in cyclic AMP levels, and after a short lag, amylase secretion. At a higher dose (4 · 10−5 M) isoproterenol produced elevations in the levels of both nucleotides. The carbachol-induced effects on cylcic GMP content and amylase release were greatly potentiated by the addition of isoproterenol (4 · 10−6 M).These data strongly suggest that cholinergic muscarinic agonists and α-adrenergic agonist stimulate amylase output in rabbit parotid gland by mechanisms involving cyclic GMP. The atropine-sensitive intracellular events effected by α-stimulation may be dependent upon endogenous generation of acetylcholine. Both cyclic nucleotides seem to be required for the early rapid secretion of amylase. The unique responses achieved by the combination of carbachol and isoproterenol suggest that isoproterenol may increase the sensitivity of this issue to the effects of cholinergic stimuli.  相似文献   

10.
We investigated the effects of exogenous cyclic GMP and stimulants of endogenous cyclic GMP accumulation on L-form (hepatic) pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) activity in isolated rat hepatocytes. Exogenous cyclic GMP (200 muM) reduced pyruvate kinase activity, but was less potent than exogenous cyclic AMP (50 muM) (Ki congruent to 120 muM vs. 30 muM, respectively), had a slower onset of action (1.0 vs. 0.3 min, respectively) and a less rapid maximal effect (5.0 vs. 1.0 min, respectively). Similar results were noted with dibutyryl cyclic GMP or dibutyryl cyclic AMP. 1.0 muM acetylcholine increased cyclic GMP concentrations in isolated hepatocytes from 233 +/- 16 to 447 +/- 3 pmol/g cell protein (P less than 0.001), but did not alter pyruvate kinase activity. Similar results were noted with carbamylcholine, NaN3 or acetylcholine plus eserine sulfate. The results suggest a differential effect of exogenous vs. endogenous cyclic GMP on L-form pyruvate kinase activity, and question the physiological relevance of observations with exogenous cyclic GMP in this system.  相似文献   

11.
The effects of prostaglandin E1 (PGE1) and prostaglandin F1 alpha (PGF1 alpha) were studied on perfused rat hearts and isolated rat atria. Both PGE1 and PGF1 alpha produced dose-dependent increases in right atrial rate but had no effect on left atrial tension development. PGE1 (10(-4) M) increased right atrial cyclic AMP content without changing phosphorylase a activity. PGF1 alpha (10(-4) M) did not change right atrial cyclic AMP or cyclic GMP content. Both prostaglandins had no effect on left atrial cyclic nucleotide content. When infused at a rate of 1 microgram/min, PGE1 produced a time-dependent increase in cyclic AMP content in the Langendorff perfused hearts but did not alter contractile force development or phosphorylase a activity. An infusion of PGF1 alpha produced a dose-dependent increase in tension development which was secondary to a negative chronotropic effect. PGF1 alpha (1 microgram/min) did not produce any changes in cyclic nucleotide levels or phosphorylase a activity in the Langendorff perfused hearts. These results show that PGE1 can selectively increase myocardial cyclic AMP content without altering contractile force or phosphorylase activity and that PGF1 alpha does not increase rat cardiac AMP levels.  相似文献   

12.
Acetylcholine (1muM) increased cyclid GMP content in paced perfused rat hearts within 15 sec., with peak content occurring at 1 min. No effect of acetylcholine on cyclic AMP content, phosphorylase activity or glycogen synthase was observed. Epinephrine (1muM) infusion increased both cyclic AMP content and phosphorylase, but did not alter cyclic GMP content or glycogen synthase activity. When acetylcholine was infused during the second min. of a 2 min. infusion of epinephrine, the cholinergic agent increased cyclic GMP and reduced the stimulated phosphorylase activity and elevated cyclic AMP.  相似文献   

13.
The effects of sodium alpha-tocopherol phosphate (TPNa), a new vitamin E derivative, on cyclic nucleotide phosphodiesterases from a soluble supernatant fraction of rat liver were investigated. TPNa produced a dose-dependent increase in cyclic AMP hydrolysis at a low substrate concentration (1 muM cyclic AMP), whereas the compound inhibited the hydrolytic activity at a high substrate level (100 muM cyclic AMP). Cyclic GMP phosphodiesterase activity was suppressed by TPNa regardless of the substrate concentration. The addition of TPNa did not change the apparent Km value (50 muM) of cyclic AMP phosphodiesterase at low substrate level (less than 5 muM). In contrast, at higher substrate concentration, the concave downward curve observed in a Lineweaver-Burk plot became straight in the presence of TPNa. Low concentrations of cyclic GMP, which are known to activate cyclic AMP hydrolysis, showed an additive effect on cyclic AMP phosphodiesterase only when a submaximal concentration of cyclic GMP was present in addition to TPNa. These and other data suggest that TPNa modifies cyclic AMP phosphodiesterase in all allosteric fashion.  相似文献   

14.
An assay method based on the ability of high concentrations of Mg2+ to stimulate phosphorylation of histone in the presence of low concentrations of ATP was developed for the measurement of cyclic GMP-dependent protein kinase activity ratios (activity -cyclic GMP/activity + cyclic GMP). In tissues which contain only trace amounts of cyclic GMP-dependent protein kinase, the basal activity ratios were high due to interference from a cyclic nucleotide-independent protein kinase. In order to study the regulation of the cardica cyclic GMP-dependent protein kinase, factors affecting the equilibrium between the active and inactive forms of the enzyme were determined. Since the rate of dissociation of cyclic GMP from its binding site(s) was relatively slow at 0–4°C at pH 7.0, the amount of time required to process tissue samples was the major limiting factor for preserving the equilibrium between active and inactive forms of the enzyme. Dilution of heart tissue extracts at 0–4°C did not significantly alter the activity ratio of the enzyme under conditions of basal or elevated cyclic GMP levels. Experiments using charcoal or exogenous cyclic GMP-dependent protein kinase in the homogenizing medium demonstrated that the release of sequestered cyclic GMP was not responsible for the elevation of the cyclic GMP-dependent protein kinase activity ratios by agents like acetylcholine. Therefore, the assay reflected in part, at least, the retention of kinase-bound cyclic GMP in the tissue extracts. The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, the cyclic GMP-dependent protein kinase activity ratios, and force of contraction were studied in the perfused rat heart. Both agents produced rapid, dose-dependent increases in cardiac cyclic GMP. Optimal concentrations of acetylcholine produced a 2–3-fold increase in the levels of cyclic GMP and an increase in the cyclic GMP-dependent protein kinase activity ratio. No significant effect of acetylcholine on cyclic nucleotide-independent protein kinase activity was observed. Associated witth the acetylcholine-induced protein kinase, factors affecting the equilibrium between the active and inactive forms of the enzyme were determined. Since the rate of dissociation of cyclic GMP from its binding site(s) was relatively slow at 0–4°C at pH 7.0, the amount of time required to process tissue samples was the major limiting factor for preserving the equilibrium between active and inactive forms of the enzyme. Dilution of heart tissue extracts at 0–4°C did not significantly alter the activity ratio of the enzyme under conditions of basal elevated cyclic GMP levels. Experiments using charcoal or exogenous cyclic GMP-dependent protein kinase in the homogenizing medium demonstrated that the release of sequestered cyclic GMP was not responsible for the elevation of the cyclic GMP-dependent protein kinase activity ratios by agents like acetylcholine. Therefore, the assay reflected in part, at least, the retention of kinase-bound cyclic GMP in the tissue extracts. The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, the cyclic GMP-dependent protein kinase activity ratios, and force of contraction were studied in the perfused rat heart. Both agents produced rapid, dose-dependent increases in cardiac cyclic GMP. Optimal concentrations of acetylcholine produced a 2–3-fold increase in the levels of cyclic GMP and an increase in the cyclic GMP-dependent protein kinase activity ratio. No significant effect of acetylcholine on cyclic nucleotide-independent protein kinase activity was observed. Associated with the acetylcholine-induced increase in cyclic GMP and the cyclic GMP-dependent protein kinase activity ratio was a reduction in the force of contraction. In contrast, nitroprusside produced little or no increase in the cyclic GMP-dependent protein kinase activity ratio despite increasing the level of cyclic GMP 8–10-fold. Nitroprusside also had no effect on contractile force. In combination, nitroprusside and acetylcholine produced additive effects on cyclic GMP levels, but protein kinase activation and force of contraction were similar to those seen with acetylcholine alone. The results suggest that the cyclic GMP produced by acetylcholine in the rat heart is coupled to activation of the cyclic GMP-dependent protein kinase, while that produced by nitroprusside is not.  相似文献   

15.
In this study the role of cyclic AMP in the antilpolytic effect of the alpha-adrenergic agents methoxamine and phenylephrine in hamster epididymal adipocytes was studied. Both methozamine and phenylephrine lowered the very high levels of cyclic AMP that were produced by high concentrations of isoproterenol (10 muM) or ACTH (100 MU/ml), and partially inhibited lipolysis. When lower concentrations of isoproterenol were used, the antilipolytic effect of phenylephrine and methoxamine was still evident. Under these conditions methoxamine produced a slight suppression of cyclic AMP levels while phenylephrine increased accumulation of cyclic AMP. It follows, therefore, that the inhibition of lipolysis by the alpha agents is most likely unrelated to changes in cyclic AMP levels; in contrast, phenylephrine promoted lipolysis and increased cyclic AMP levels. When the stimulus for lipolysis was provided by methylxanthines a different picture emerged. Methoxamine antagonized lipolysis and lowered cyclic AMP levels. In the presence of propranolol, phenylephrine lowered cyclic AMP levels and suppressed methylxanthine-accelerated lipolysis. It is suggested that when methy xanthines provide the stimulus for lipolysis the antilipolytic effect of methoxamine and phenylephrine (in the presence of propranolol) may be mediated by the suppression in cyclic AMP levels.  相似文献   

16.
Three agents that activate guanylate cyclase, sodium nitroprusside, nitroglycerin and sodium axide, were examined for their effects on cyclic GMP and cyclic AMP accumulation and muscle motility with several tissues. All of these agents, except nitroglycerin with ventricle preparations, increased cyclic GMP levels and did not alter cyclic AMP in incubations of preparations of bovine tracheal smooth muscle, guinea pig tracheal chains, taenia cecum, atria and ventricle, and rat liver and cerebral cortex. Increases in cyclic GMP with these agents occurred with relaxation of smooth muscle preparations and without alteration in the contractility of atrial preparations. These observations support the hypothesis that cyclic GMP accumulation in smooth muscle may be related to relaxation rather than contraction as proposed previously. Relaxation with these agents is not associated with alterations in cyclic AMP levels. Increases in cyclic GMP levels in atrial preparations can also occur without changes in contractile force or rate of contraction.  相似文献   

17.
Insulin (10nM) completely suppressed the stimulation of gluconeogenesis from 2 mM lactate by low concentrations of glucagon (less than or equal to 0.1 nM) or cyclic AMP (less than or equal to 10 muM), but it had no effect on the basal rate of gluconeogenesis in hepatocyctes from fed rats. The effectiveness of insulin diminished as the concentration of these agonists increased, but insulin was able to suppress by 40% the stimulation by a maximally effective concentration of epinephrine (1 muM). The response to glucagon, epinephrine, or insulin was not dependent upon protein synthesis as cycloheximide did not alter their effects. Insulin also suppressed the stimulation by isoproterenol of cyclic GMP. These data are the first demonstration of insulin antagonism to the stimulation of gluconeogenesis by catecholamines. Insulin reduced cyclic AMP levels which had been elevated by low concentrations of glucagon or by 1 muM epinephrine. This supports the hypothesis that the action of insulin to inhibit gluconeogenesis is mediated by the lowering of cyclic AMP levels. However, evidence is presented which indicates that insulin is able to suppress the stimulation of gluconeogenesis by glucagon or epinephrine under conditions where either the agonists or insulin had no measurable effect on cyclic AMP levels. Insulin reduced the glucagon stimulation of gluconeogenesis whether or not extracellular Ca2+ were present, even though insulin only lowered cyclic AMP levels in their presence. Insulin also reduced the stimulation by epinephrine plus propranolol where no significant changes in cyclic AMP were observed without or with insulin. In addition, insulin suppressed gluconeogenesis in cells that had been preincubated with epinephrine for 20 min, even though the cyclic AMP levels had returned to near basal values and were unaffected by insulin. Thus insulin may not need to lower cyclic AMP levels in order to suppress gluconeogenesis.  相似文献   

18.
The effects of isoproterenol and forskolin on tension, cyclic AMP levels, and cyclic AMP dependent protein kinase activity were compared in helical strips of bovine coronary artery. Elevation of cyclic AMP and activation of the protein kinase appeared to be well correlated with relaxation of potassium-contracted arteries by isoproterenol. Forskolin, at 1 microM or higher concentrations, also markedly elevated cyclic AMP levels, activated the kinase, and relaxed the arteries. However, a lower concentration of forskolin (0.1 microM) caused significant increases in both cyclic AMP levels and cyclic AMP dependent protein kinase activity, but did not relax the muscles. Relaxation caused by isoproterenol was accompanied by an apparent translocation of cyclic AMP dependent protein kinase activity from the soluble to the particulate fraction in these preparations. A similar shift in the distribution of the kinase was caused by various concentrations of forskolin, irrespective of whether the arteries were relaxed or not. In contrast to previous results in other tissues, low concentrations of forskolin (less than or equal to 1 microM), which themselves markedly elevated cyclic AMP levels in the arteries, did not potentiate the effects of isoproterenol on cyclic AMP levels or tension in these preparations. These results suggest that either cyclic AMP is not solely responsible for the relaxation caused by these agents, or some form of functional compartmentalization of cyclic AMP and cyclic AMP dependent protein kinase exists in this tissue.  相似文献   

19.
Catecholamines increased guanosine 3':5'-monophosphate (cyclic GMP) accumulation by isolated rat liver cells. The increases in cyclic GMP due to 1.5 muM epinephrine, isoproterenol, or phenylephrine were blocked by phenoxybenzamine but not by propranolol. The possibility that cyclic GMP is involved in the glycogenolytic action of catecholamines seems unlikely since cyclic GMP accumulation is also elevated by carbachol, insulin, A23187, and to a lesser extent by glucagon. Furthermore, carbachol had little effect on glycogenolysis while insulin actually inhibited hepatic glycogenolysis. The rise in cyclic GMP due to carbachol was abolished by atropine and that due to all agents was markedly reduced by the omission of extracellular calcium. However, the glycogenolytic action of glucagon and catecholamines was only slightly inhibited by the omission of calcium. The only agent which was unable to stimulate glycogenolysis in calcium-free buffer was the divalent cation ionophore A23187. There was a drop in ATP content of liver cells during incubation in calcium-free buffer which was accompanied by an inhibition of glucagon-activated adenosine 3':5'-monophosphate (cyclic AMP) accumulation. The presence of calcium inhibited the rise in adenylate cyclase activity of lysed rat liver cells due to glucagon or isoproterenol but not that due to fluoride. These results suggest that the stimulation by catecholamines and glucagon of glycogenolysis is not mediated through cyclic GMP nor does it depend on the presence of extracellular calcium. Cyclic GMP accumulation was increased in liver cells by agents which either inhibit, have little affect, or accelerate glycogenolysis. The significance of elevations of cyclic GMP in rat liver cells remains to be established.  相似文献   

20.
The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, contractile force, and glycogen metabolism were investigated in the perfused rat heart. While both agents produced time- and concentration-dependent increases in cyclic GMP, only acetylcholine significantly decreased contractile force. Neither agent altered the basal cyclic AMP concentration, cyclic AMP-dependent protein kinase activity ratio, or phosphorylase activity. When dosages were adjusted to give approximately equal increases in cyclic GMP, acetylcholine attenuated the effect of epinephrine on contractile force and glycogen phosphorylase activity while nitroprusside did not antagonize the action of the beta-adrenergic agent on either parameter. The data suggest that increased cardiac cyclic GMP is not sufficient to completely explain the action of acetylcholine on either contractile force or its antagonism of epinephrine-induced increases in force or glycogen phosphorylase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号