首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In experiments on anesthetised cats we investigated functional significance of different cholinergic mechanisms regulating the magnitude of vagal chronotropic effect components, inhibitory tonic and synchronizing. It was established that inhibitory tonic vagal component is determined by intensity of acetylcholine hydrolysis and total amount of excited cardiac M-cholinoreceptors. The magnitude of synchronizing vagal component depended on subtypes of cholinoreceptors selectively excited by acetylcholine released from vagal terminals. In particular, the blockade of M1- or M3-cholinoreceptors potentiated the synchronizing vagal component, whereas the blockade of M2-cholinoreceptors inhibited it.  相似文献   

2.
In 11 experiments on anesthetised cats burst stimulation of peripheral cut end of right vagus nerve leads to synchronization of cardiac and vagus rhythms. Alterations of burst sequence frequency within definite limits has been synchronously reproduced by heart thus creating managed bradycardia possibility. Somatostatin (10(-8)-10(-9) M intravenously) decreases heart rate and inhibits total vagus chronotropic effect. Vagolytic effect of somatostatin caused a decrease of tonic component of the vagus chronotropic effect. On the other hand, somatostatin augmented the extent of the vagal synchronizing influences and caused enlargement of the ranges of managed bradycardia. The observed results testify to participation of the peptidergic mechanisms in genesis of vagal managed bradycardia.  相似文献   

3.
In 29 experiments on anaesthetized cats burst stimulation of peripheral cut end of right vagus nerve leads to synchronization of heart and vagus rhythm. Influence of proserine, pilocarpine and prolonged vagus stimulation upon extent of vagus chronotropic effect and its components--tonic and synchronizing--was investigated. In all cases changes of vagus chronotropic effect during this actions were caused by unidirectional shifts of tonic component. Extent of synchronizing vagus chronotropic influences did not depend on the changes of acetylcholine concentration.  相似文献   

4.
Burst vagus stimulation led to synchronization of the cardiac and vagal rhythms at certain frequency ranges. The increase of the number of impulses in a burst from 1 to 16 extended the range of synchronization and shifted it towards lower frequencies forming a total range of exact regulation of the heart rate within 85--40% of the initial rate. It was suggested that vagal effect consists of tonic and synchronizing components.  相似文献   

5.
The influence of ethacizin (a diethylamine analog of ethmozine) (1.10(-7)-1.10(-6) g/ml) upon the phase-dependent chronotropic parasympathetic effects was studied on the perfused frog heart. The vagolytic influence of ethacizin (5.10(-7) and 1.10(-6) g/ml) was detected; the concentration of 1.10(-7) g/ml was found ineffective. The vagolytic effect consisted of a decreased maximum of phase-dependent effect, reduced latency and time required for the manifestation of the maximum increase. The period of inhibitory vagal stimulus effectiveness did not change significantly.  相似文献   

6.
Neurotensin (NT) and bombesin (BM)-like peptides are known to be involved in the regulation of the rat hypothalamo-pituitary-adrenal axis. By using selective NT- and BM-receptor antagonists (NT-A and BM-A, respectively) we investigated whether endogenous NT and BM-like peptides play a role in the control of rat adrenal secretion and growth during enucleation-induced regeneration. At day 5 of regeneration, NT-A did not affect the plasma concentrations of aldosteronc (PAC) and corticosterone (PBC), but at day 8, it raised both PAC and PBC over the respective baseline value; the simultaneous administration of NT abolished this effect of NT-A. BM-A did not alter PAC and PBC at day 5 of regeneration, while at day 8 it enhanced PBC, an effect reversed by BM. NT-A did not alter mitotic index, and BM-A lowered it at both day 5 and day 8 of regeneration, an effect suppressed by the simultaneous administration of BM. Collectively, these findings allow us to draw the following conclusions: 1) endogenous NT and BM-like peptides influence adrenocortical regeneration in rats; 2) NT exerts a tonic inhibitory action on both aldosterone and corticosterone secretion, without affecting cell-proliferation rate; and 3) BM-like peptides exert a tonic suppressive effect on corticosterone production, coupled with a clear-cut stimulating effect on cell proliferation.  相似文献   

7.
In anaesthetised cats, an increase in the vagal burst rate resulted in a paradoxical decrease of vagal bradycardia. This seems to be due to a shift of the vagal stimulus position towards early phase of cardiac cycle. The mechanism of this paradoxical effect depends on the magnitude of vagal chronotropic effect upon the time of vagal stimulus delivery within cardiac cycle.  相似文献   

8.
In acute experiments on rats and dogs, compounds IEM-1556 and IEM-1678, the blockers of transmission through the parasympathetic ganglia, reduced the negative chronotropic effect of stimulation of the vagus nerve (VN), while practically not changing the heart rate (HR). In chronic experiments on dogs, these compounds increased the HR, substantially reduced the respiratory heart arrhythmia, did not change the arterial blood pressure (AP), and reduced the chronotropic effects of VN stimulation. IEM-1556 exerted more strong and long-lasting blocking effects on vagal heart control than IEM-1678 did, but in anesthetized animals could evoke a drop in the AP. Acetylcholine, if administered during the action of the above compounds, inhibited heart activity. It is concluded that both IEM-1678 and IEM-1556 are selective parasympatholytics (although IEM-1556 may produce a side effect). The above compounds block synaptic transmission through the intracardiac parasympathetic ganglia and do not affect neuro-effector transmission in the heart.Neirofiziologiya/Neurophysiology, Vol. 28, No. 2/3, pp. 151–159, March–June, 1996.  相似文献   

9.
Denervation of the heart (bilateral vagotomy and propranolol) in artificially ventilated cats didn't remove respiratory peaks on the spectrogram of heart rate, while burst stimulation of vagus nerve increased or decreased them several times by synchronization of the heart and vagus rhythms, which in its turn was observed under the bradycardia only. At the same time, the desynchronization of rhythms provoked severe sinus arrhythmia which had a distinct periodic character. Under these conditions, there were high non-respiratory peaks appearing at the spectrogram of the heart rate that indicated existence of two vagus chronotropic effects: a well known tonic one and special intracycle synchronizing effect correcting duration of every cardiac cycle.  相似文献   

10.
The following conclusions may be drawn from the results in this work. The respiratory cycles are formed by the neuronal machinery in the reticular formation under the posterior part of the vagal motor nucleus. The motor neurones or the neuronal networks composing the motor nucleus of the respiratory muscles tonically discharge the action potentials, when the neurones or the networks are released from the inhibitory influences of the interneurones connecting the neuronal machinery to the motor neurones. Furthermore, the interneurones probably generate the tonic discharges after removing the inhibitory influences of the other interneurones or the neuronal machinery on them. A reflex mouth closing is elicited by a mechanical stimulus applying on the upper lip. The motor neurones of the m. adductor mandibulae are activated via only one synapse in the reflex. The reflex action potentials recorded from the motor nerve reduce in amplitude at the resting phase of the nerve in the respiratory cycles. These results suggest that the respiratory motor neurones are by nature spontaneous generators of the tonic action potentials and, in the time of the normal breathing, the tonic activity is interrupted by an inhibitory influence of the neuronal machinery generating the respiratory cycles.  相似文献   

11.
Neuropeptide Y (NPY), a putative co-transmitter in noradrenergic sympathetic nerves of the cardiovascular system, inhibits the negative chronotropic action of the cardiac vagus. In the present study, peptides related to NPY were tested for potency in producing this effect. In bilaterally vagotomized, anaesthetised dogs, the increase in pulse interval caused by electrical stimulation of the peripheral stump of the right vagus was measured before and after intravenous administration of peptide. The effects of doses of NPY were compared with those of equimolar doses of peptide YY (PYY), and of avian and human pancreatic polypeptides (APP and HPP). PYY inhibited the vagal action more effectively than did NPY. APP and HPP, however, caused no change in strength of vagal action at the doses used. The response to a second injection of NPY, given soon after the injection of APP or HPP, was not significantly different from the original. Thus no evidence was obtained for a competitive inhibition of the action of NPY by either pancreatic polypeptide. A C-terminal hexapeptide fragment of human pancreatic polypeptide was also tested. Like APP and HPP, it neither inhibited the cardiac vagus nor blocked the action of NPY. The order of potency obtained here (PYY greater than NPY much greater than APP, HPP, CFPP) can be expected to be of use in efforts to distinguish the active site(s) of the NPY molecule, and to characterise the receptors involved in these modulatory effects.  相似文献   

12.
In 20 experiments on anesthetised cats burst stimulation of peripheral cut end of right vagus nerve leads to synchronisation of cardiac and vagus rhythms. Inhibitory effect of dalargin was caused by a decrease of tonic component while secretin would selectively inhibit synchronizing component. The observed results testify to existence of selective peptidergic modulation of vagus influence on the cardiac rhythm.  相似文献   

13.
Stimulation of the vagus nerve with a volley of electric impulses changed the action of grass-snake heart producing a negative chronotropic and inotropic effect. The effect of vagal stimulation was not different from the effect of acetylcholine administration and it was absent in the presence of atropine and hexamethonium. It was not possible to demonstrate sympathetic nervous fibres in the stimulated segment of the vagus nerve and trials of finding a separate nerve increasing the heart rate were unsuccessful. Parasympathicotonic agents caused bradycardia and a fall in the amplitude of cardiac contractions, and in sufficiently high doses they arrested the heart in diastole. The action of muscarine-like agents was stronger than that of nicotine, and the anticholinergic action of tubocurarine was weaker than that of atropine. Catecholamines exerted a positive inotropic and chronotropic effect which was completely blocked by propranolol in some tests only.  相似文献   

14.
Following a burst of pulses applied to the vagus nerve with progressively incremental delay after the P wave of the ECG, the narrow zone of the cardiac cycle was identified where even a small shift of the vagal burst position evoked an abrupt alteration of the chronotropic effect magnitude. Met-enkephalin potentiated the phase-dependent vagal chronotropic effect, whereas neurotensin moved its limits toward the initial part of the P-P interval.  相似文献   

15.
Cardiovascular effects of atrial natriuretic extract in the whole animal   总被引:2,自引:0,他引:2  
Atrial tissue extract (AE) and ventricular tissue extract cause identical decreases in total peripheral resistance when they are injected i.v. into anesthetized rats. However, only AE causes significant hypotension because of cardiac inhibition. This involves both bradycardia and failure of stroke volume to increase appropriately. The observations cannot be explained by direct action of AE on myocytes, but are more likely to be the result of interactions with cardiovascular reflex mechanisms. Excitation of chemosensitive cardiac receptors with vagal afferents appears to be an important afferent mechanism. The efferent limb for the negative chronotropic response resides partly in the vagus nerves and partly in cardiac sympathetic nerves. The negative inotropic response of AE was not altered by vagotomy, spinal section, atropine, or propranolol. These results suggest that atrial peptides may cause the release of a negatively inotropic substance from a site that is not yet identified.  相似文献   

16.
The mechanism of extracellular ATP-triggered vagal depressor reflex was further studied in a closed-chest canine model. Adenosine and ATP were administered individually in equimolar doses (0.01-1.0 mumol/kg) into the right coronary artery (RCA) and left circumflex coronary artery (LCA). When administered into the RCA, adenosine and ATP exerted an identical and relatively small negative chronotropic effect on sinus node automaticity; the time to peak negative chronotropic effect was >/=7 s. When administered into the LCA, adenosine had no effect on sinus node automaticity, whereas ATP markedly suppressed sinus node automaticity. This effect of ATP 1) reached its peak in <2 s after its administration, 2) was short lasting, and 3) was completely abolished by either intravenous administration of the muscarinic cholinergic blocker atropine (0.2 mg/kg) or intra-LCA administration of 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP), a potent P2X(2/3) purinergic receptor (P2X(2/3)R) antagonist, but not by diinosine pentaphosphate (Ip(5)I), a potent inhibitor of P2X(1)R and P2X(3)R. Repetitive administrations of ATP were not associated with reduced effects, indicative of receptor desensitization, thereby excluding the involvement of the rapidly desensitized P2X(1)R in the action of ATP. It was concluded that ATP triggers a cardio-cardiac vagal depressor reflex by activating P2X(2/3)R located on vagal sensory nerve terminals localized in the left ventricle. Because these terminals mediate vasovagal syncope, these data could suggest a mechanistic role of extracellular ATP in this syndrome and, in addition, give further support to the hypothesis that endogenous ATP released from ischemic myocytes is a mediator of atropine-sensitive bradyarrhythmias associated with left ventricular myocardial infarction.  相似文献   

17.
We tested the hypothesis that nitric oxide (NO) produced within the carotid body is a tonic inhibitor of chemoreception and determined the contribution of neuronal and endothelial nitric oxide synthase (eNOS) isoforms to the inhibitory NO effect. Accordingly, we studied the effect of NO generated from S-nitroso-N-acetylpenicillamide (SNAP) and compared the effects of the nonselective inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME) and the selective nNOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole (TRIM) on chemosensory dose-response curves induced by nicotine and NaCN and responses to hypoxia (Po(2) approximately 30 Torr). CBs excised from pentobarbitone-anesthetized cats were perfused in vitro with Tyrode at 38 degrees C and pH 7.40, and chemosensory discharges were recorded from the carotid sinus nerve. SNAP (100 microM) reduced the responses to nicotine and NaCN. l-NAME (1 mM) enhanced the responses to nicotine and NaCN by increasing their duration, but TRIM (100 microM) only enhanced the responses to high doses of NaCN. The amplitude of the response to hypoxia was enhanced by l-NAME but not by TRIM. Our results suggest that both isoforms contribute to the NO action, but eNOS being the main source for NO in the cat CB and exerting a tonic effect upon chemoreceptor activity.  相似文献   

18.
19.
Vagal control of heart rate (HR) is mediated by direct and indirect actions of ACh. Direct action of ACh activates the muscarinic K(+) (K(ACh)) channels, whereas indirect action inhibits adenylyl cyclase. The role of the K(ACh) channels in the overall picture of vagal HR control remains to be elucidated. We examined the role of the K(ACh) channels in the transfer characteristics of the HR response to vagal stimulation. In nine anesthetized sinoaortic-denerved and vagotomized rabbits, the vagal nerve was stimulated with a binary white-noise signal (0-10 Hz) for examination of the dynamic characteristic and in a step-wise manner (5, 10, 15, and 20 Hz/min) for examination of the static characteristic. The dynamic transfer function from vagal stimulation to HR approximated a first-order, low-pass filter with a lag time. Tertiapin, a selective K(ACh) channel blocker (30 nmol/kg iv), significantly decreased the dynamic gain from 5.0 +/- 1.2 to 2.0 +/- 0.6 (mean +/- SD) beats.min(-1).Hz(-1) (P < 0.01) and the corner frequency from 0.25 +/- 0.03 to 0.06 +/- 0.01 Hz (P < 0.01) without changing the lag time (0.37 +/- 0.04 vs. 0.39 +/- 0.05 s). Moreover, tertiapin significantly attenuated the vagal stimulation-induced HR decrease by 46 +/- 21, 58 +/- 18, 65 +/- 15, and 68 +/- 11% at stimulus frequencies of 5, 10, 15, and 20 Hz, respectively. We conclude that K(ACh) channels contribute to a rapid HR change and to a larger decrease in the steady-state HR in response to more potent tonic vagal stimulation.  相似文献   

20.
The molecular mechanism of relaxin action was studied taking into account the evolutionary relationship of the peptides belonging to the insulin superfamily and using the authors' previous data on the involvement of the adenylyl cyclase (AC) signalling system in the action of insulin and related peptides. Human relaxin 2 (10(-12)-10(-8) M) has been shown to cause a dose-dependent activating effect on AC in the human myometrium (+370%), in rat skeletal muscles (+117%) and the smooth foot muscles of the bivalve mollusc Anodonta cygnea (+73%). In these tissues mammalian insulin and insulin-like growth factor-1 (IGF-1) also had the AC activating effect. The order of efficiency of the above peptides based upon their ability to induce the maximal AC activating effect was as follows: relaxin > IGF-1 > insulin (human myometrium); IGF-1 > relaxin > insulin (rat skeletal muscle); molluscan insulin-like peptide > IGF-I > insulin > relaxin (molluscan muscle). The relaxin AC activating effect was inhibited with a selective tyrosine kinase blocker tyrphostin 47 and potentiated with Gpp[NH]p providing evidence for the participation of the receptor-tyrosine kinase and G-protein of the stimulatory type (Gs) in the regulatory action of relaxin. The conclusion is that the signalling chain: receptor tyrosine kinase ==> Gs protein ==> AC is involved in the mechanism of relaxin action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号