首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentration-dependent metabolism of 1-14C-labelled precursors of 22:5n-6 and 22:6n-3 was compared in rat testis cells. The amounts of [14C]22- and 24-carbon metabolites were measured by HPLC. The conversion of [1-14C]20:5n-3 to [3-14C]22:6n-3 was more efficient than that of [1-14C]20:4n-6 to [3-14C]22:5n-6. At low substrate concentration (4 μM) it was 3.4 times more efficient, reduced to 2.3 times at high substrate concentration (40 μM). The conversion of [1-14C]22:5n-3 to [1-14C]22:6n-3 was 1.7 times more efficient than that of [1-14C]22:4n-6 to [1-14C]22:5n-6 using a low, but almost equally efficient using a high substrate concentration. When unlabelled 20:5n-3 was added to a cell suspension incubated with [1-14C]20:4n-6 or unlabelled 22:5n-3 to a cell suspension incubated with [1-14C]22:4n-6, the unlabelled n-3 fatty acids strongly inhibited the conversion of [1-14C]20:4n-6 or [1-14C]22:4n-6 to [14C]22:5n-6. In the reciprocal experiment, unlabelled 20:4n-6 and 22:4n-6 only weakly inhibited the conversion of [1-14C]20:5n-3 and [1-14C]22:5n-3 to [14C]22:6n-3. The results indicate that if both n-6 and n-3 fatty acids are present, the n-3 fatty acids are preferred over the n-6 fatty acids in the elongation from 20- to 22- and from 22- to 24-carbon atom fatty acids. In vivo the demand for 22-carbon fatty acids for spermatogenesis in the rat may exceed the supply of n-3 precursors and thus facilitate the formation of 22:5n-6 from the more abundant n-6 precursors.  相似文献   

2.
Biosynthesis of very long chain (>C18) fatty acids (VLCFAs) and the pathway for their incorporation into acyl lipids was studied in microspore-derived (MD) and zygotic embryos of Brassica napus L. cv Reston. In the presence of [1-14C]oleoyl-coenzyme A or [1-14C] eicosenoyl-coenzyme A, malonyl-coenzyme A, and reducing equivalents, maximal in vitro elongation activity was expressed in protein preparations from early-mid cotyledonary stage MD embryos (17-20 days in culture), when endogenous eicosenoic (20:1) and erucic (22:1) acids were just beginning to accumulate (approximately 1.5 milligrams per gram dry weight). The biosynthesis of VLCFAs and their incorporation into glycerolipids in vitro in the MD embryo system occurred at rates comparable to those measured in developing zygotic Reston embryos at about 20 days postanthesis. When glycerol-3-phosphate was supplied as acyl acceptor in time-course experiments using homogenates prepared from 18-day MD embryos, newly synthesized [14C]20:1 and [14C]22:1 were incorporated primarily into triacylglycerols (TAGs) and, to a lesser extent, into lyso-phosphatidic/phosphatidic acids, diacylglycerols, and phosphatidylcholines as well as the acyl-coenzyme A and free fatty acid pools. [14C]24:1 was not detected in any acyl lipid. Stereospecific analyses of the radiolabeled TAGs indicated that [14C]20:1 and [14C]22:1 moieties were esterified predominantly at the sn-3 position, but were also found at the sn-1 position. [14C]20:1, but not [14C]22:1, was detected at the sn-2 position. Similar patterns of 14C-labeled VLCFA distribution were obtained in experiments conducted using a 15,000g pellet fraction from 18-day MD embryos. All trends observed in the formation of TAGs containing VLCFAs in the Reston MD embryo system were also confirmed in studies of zygotic embryos of the same cultivar. The data support the biosynthesis of 20:1 and then 22:1 via successive condensations of malonyl-coenzyme A with oleoyl-coenzyme A and, for the first time in B. napus, demonstrate the incorporation of newly synthesized VLCFAs into TAGs via the Kennedy pathway.  相似文献   

3.
The products of desaturation and elongation of [1−14C] 18:3(n − 3) and [1−14C]20:5(n − 3) were studied using hepatocytes and microsomes prepared from livers of trout maintained on diets containing either olive oil or fish oil, to establish the extent to which the formation of 22:6(n − 3) was enhanced in the absence of dietary 22:6(n − 3) and to investigate the pathway(s) of conversion of 18:3(n − 3) and 20:5(n − 3) to 22:6(n − 3). Levels of 20:5(n − 3) and 22:6(n − 3) in the total lipid of hepatocytes from trout fed olive oil were 20-fold and 10-fold, respectively, lower than in cells from trout fed fish oil. For both dietary groups, [1−14C]18:3(n − 3) was incorporated into hepatocyte lipid to a greater extent than [1−14C]20:5(n − 3). Almost 70% of the total radioactivity from [1−14C]18:3(n − 3) was recovered in hepatocyte triacylglycerols, whereas radioactivity from [1−14C]20:5(n − 3) was recovered almost equally in neutral lipids (52%) and polar lipids (48%). The products of desaturation and elongation from both labelled substrates were esterified mainly into hepatocyte polar lipids, whereas elongation products of [1−14C]18:3(n − 3) were preferentially incorporated into neutral lipids. Radioactivity recovered in the 22:6(n − 3) of polar lipids of hepatocytes from trout fed olive oil, from both 14C substrates, was approximately double that in hepatocytes from trout fed fish oil. No radioactivity from either [1−14C]18:3(n − 3) or [1−14C]20:5(n − 3) was incorporated into 22:6(n − 3) by microsomes isolated from livers from either group of fish and incubated in the presence of acetyl-CoA, malonyl-CoA, NADH, NADPH, ATP and coenzyme A. However, significant radioactivity was recovered in 24:5(n − 3) and 24:6(n − 3) from [1−14C]20:5(n − 3) and more radioactive 24:6(n − 3) accumulated in microsomes from trout fed olive oil than from trout fed fish oil. The results establish that the formation of 22:6(n − 3) from both 18:3(n − 3) and 20:5(n − 3) in hepatocytes of rainbow trout is stimulated by omitting 22:6(n − 3) from the diet and are consistent with the biosynthesis of 22:6(n − 3) in trout liver cells proceeding via 24:5(n − 3) and 24:6(n − 3) intermediates.  相似文献   

4.
Radioactive polysaccharide was synthesized when uridine 5′-(α-d-[U-14C]apio-d-furanosyl pyrophosphate) (containing some uridine 5′-(α-d-[U-14C]xylopyranosyl pyrophosphate)) was incubated with a particulate enzyme preparation from Lemna minor. Characterization experiments established that the product: (i) was insoluble in methanol and water, (ii) contained d-[U-14C]apiose (75%) and d-[U-14C]xylose (25%), and (iii) was soluble in 1% ammonium oxalate. The material solubilized by ammonium oxalate (solubilized product): (i) was separated into five fractions by column chromatography with diethylaminoethyl-Sephadex (DEAE-Sephadex), (ii) contained [U-14C]apiobiose side chains that were removed by hydrolysis at pH 4, and (iii) was degraded by fungal pectinase. Both d-[U-14C]apiose residues of the [U-14C]apiobiose side chains were synthesized in vivo since radioactivity was distributed equally between the two residues. The presence of uridine 5′-(α-d-galactopyranosyluronic acid pyrophosphate) during synthesis of radioactive polysaccharide resulted in: (i) an increase in the incorporation of radioactive d-[U-14C]apiose into solubilized product, (ii) an increase in the ratio of d-[U-14C]apiose to d-[U-14C]xylose present in solubilized product, (iii) an increase in the amount of [U-14C]apiobiose plus d-[U-14C]apiose released from the solubilized product by hydrolysis at pH 4, and (iv) a tighter binding of the solubilized product to DEAE-Sephadex. These results show that apiogalacturonans similar to or the same as those synthesized by the intact plant were synthesized in the particulate enzyme preparation isolated from L. minor. [14C]Apiogalacturonans completely free of d-[U-l4C]xylose were not isolated. The [14C]apiogalacturonan with the least d-[U-14C]xylose still had 4.8% of its radioactivity present in d-[U-14C]xylose. The possibility remains that d-xylose is a normal constituent of the apiogalacturonans of the cell wall of L. minor.  相似文献   

5.
Cytochrome P-450scc (P-450 XIA1) from bovine adrenocortical mitochondria was investigated using a suicide substrate: [14C]methoxychlor. [14C]Methoxychlor irreversibly abolished the activity of the side-chain cleavage enzyme for cholesterol (P-450scc) and the inactivation was prevented in the presence of cholesterol. The binding of [14C]methoxychlor and cytochrome P-450scc occurred in a molar ratio of 1:1 and the cholesterol-induced difference spectrum of cytochrome P-450scc was similar with the methoxychlor-induced difference spectrum. [14C]Methoxychlor-binding peptides were purified from tryptic-digested cytochrome P-450scc modified with [14C]methoxychlor. Determination of the sequence of the amino-acid residues of a [14C]methoxychlor-binding peptide allowed identification of the peptide comprising the amino-terminal amino-acid residues 8 to 28.  相似文献   

6.
Rainbow trout leucocytes contain high levels of neutral lipid (about 70% of total lipid on a wt% basis) consisting of mostly triacylglycerol, free sterols and sterol esters (25%, 15% and 52% of neutral lipid, respectively). The phospholipids, separated by thin-layer chromatography, consisted predominantly of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine, each present at about 30% of the total phospholipid. Radiolabelling of the leucocytes for 1 h with 1 μCi (approx. 6 μM) [1−14C]20:4(n−6), [1−14C]20:5(n−3) or [1−14C]22:6(n−3) each gave similar uptake values (approx. 1 · 105 cpm/107 leucocytes). The incorporation into total phospholipids was highest for 22:6(n−3) and lowest for 20:4(n−6). A higher percentage of radiolabel from [1−14C]22:6(n − 3) was found incorporated into phosphatidylcholine and phosphatidylethanolamine as compared to that from [1−14C]20:4(n − 6) and [1−14C]20:5(n−3), while the reverse situation was found with phosphatidylinositol and phosphatidylserine. The relative rates of incorporation into the different phospholipid classes for all three fatty acids were in the order phosphatidylinositol > sphingomyelin > diphosphatidylglycerol > phosphatidylcholine > phosphatidylethanolamine > phosphatidylserine. Calcium ionophore-challenge did not significantly alter the pattern of phospholipid radiolabel. Ionophore-challenge released large amounts of radiolabel, much of which was recovered after high-performance liquid chromatographic separation as free fatty acid/monohydroxy fatty acids, although only approx. 0.3% was recovered in leukotriene B4 and leukotriene B5 for the [1−14C]20:4(n−6) and [1−14C]20:5(n−3) labelled leucocytes, respectively. Other lipoxygenase products were also radiolabelled and tentatively identified as 20-carboxy-LTB4, 20-hydroxy-LTB4, 6-trans-LTB4, 6-trans-12-epi-LTB4, 6-trans-8-cis-12-epi-LTB4 and the corresponding LTB5 structures. No ‘6-series’ leukotrienes were produced from [1−14C]22:6(n−3), nor was there any evidence for the synthesis of ‘5-series’ leukotrienes via retroconversion of 22:6(n−3) to 20:5(n−3). This latter finding shows that, despite the preponderance of 22:6(n−3) in the membranes of trout leucocytes, this fatty acid is not a substrate for leukotriene generation.  相似文献   

7.
A particulate enzyme preparation capable of catalyzing the transfer of d-[U-14C]apiose and d-[U-14C]xylose from uridine 5′-(α-d-[U-14C]apio-d-furanosyl pyrophosphate) (UDP[U-14C]Api) and uridine 5′-(α-d-[U-14C]xylopyranosyl pyrophosphate) (UDP[U-14C]Xyl) to endogenous acceptor molecules was isolated from Lemna minor. The two enzymes were named UDP-d-apiose:acceptor d-apiosyltransferase and UDP-d-xylose:acceptor d-xylosyltransferase and were associated with particulate material sedimenting between 480 and 34,800g. The rate of d-[U-14C]apiose or d-[U-14C]xylose incorporation was proportional to the quantity of enzyme preparation used and was constant with time to 1.5 min. Both enzymes showed a pH optimum of 5.7 in citrate-phosphate buffer. The d-apiosyltransferase has a Km for UDP[U-14C]Api of 4.9 μm. Bovine serum albumin and sucrose stimulated the rate of incorporation of both pentoses. Both enzymes rapidly lost activity; with our best conditions, approximately 50% of each enzyme activity was lost in 6 min at 25 °C or in 3 h at 4 °C. Incorporation of d-[U-14C]apiose was obtained in the absence of added uridine 5′-(α-d-galactopyranosyluronic acid pyrophosphate) (UDPGalUA); however, the addition of UDPGalUA not only almost doubled the rate of incorporation, but also increased the total incorporation of d-[U-l4C]apiose and extended the proportional range of incorporation at 25 °C from 1.5 to 2 min.  相似文献   

8.
α-Amylases have been found to convert starch and glycogen, in part, to products other than hemiacetal-bearing entities (maltose, maltodextrins, etc.)—hitherto, the only products obtained from natural α-glucans by α-amylolysis. Glycosides of maltosaccharides were synthesized by purified α-amylases acting on starch or bacterial glycogen in the presence of p-nitrophenyl α- or β-d-glucoside. From a digest with crystallized B. subtilis var. amyloliquefaciens α-amylase, containing 4 mg/ml of [14C]glycogen and 40 mmp-NP β-d-glucoside, three pairs of correspondingly labeled glycosides and sugars were recovered: p-NP α-d-[14C]glucopyranosyl (1 → 4) β-d-glucopyranoside, and [14C]glucose; p-NP α-[14C]maltosyl (1 → 4) β-d-glucopyranoside, and [14C]maltose; p-NP α-[14C]maltotriosyl (1 → 4) β-d-glucopyranoside, and [14C]maltotriose. The three glycosides accounted for 11.4% of the [14C]glycogen donor substrate; the three comparable sugars, for 30.4%; higher maltodextrins, for 58.2%. Calculations based on the molar yields of all reaction products show that [14C]glycosyl moieties were transferred from donor to p-NP β-d-glucoside with a frequency of 0.234 relative to all transfers to water. This is a very high value considering the minute molar ratio (0.0007) of β-d-glucoside-to-water concentration. Less striking but similar findings were obtained with cryst. hog pancreatic and Aspergillus oryzae α-amylases. The results extend earlier findings (Hehre et al., Advan. Chem. Ser. (1973) 117, 309) in showing that α-amylases have a substantial capacity to utilize the C4-carbinols of certain d-glucosyl compounds as acceptor sites.  相似文献   

9.
Biosynthetic pathways to p-hydroxybenzoic acid in polar lignin were examined by tracer experiments. High incorporation of radioactivity to the acid was observed when shikimic acid-[1-14C], phenylalanine-[3-14C], trans-cinnamic acid-[3-14C], p-coumaric acid-[3-14C] and p-hydroxybenzoic acid-[COOH-14C] were administered, while incorporation was low from shikimic acid-[COOH-14C], phenylalanine-[1-14C], phenylalanine-[2-14C], tyrosine-[3-14C], benzoic acid-[COOH-14C], sodium acetate-[1-14C] and d-glucose-[U-14C]. Thus p-hydroxybenzoic acid in poplar lignin is formed mainly via the pathway: shikimic acid → phenylalanine → trans-cinnamic acid → p-coumaric acid → p-hydroxybenzoic acid.  相似文献   

10.
The metabolism of d-gluconate-[1-14C] and -[6-14C] by segments from etiolated hypocotyls of Phaseolus mungo has been studied. The release of 14CO2 from gluconate-[1-14C] was greater than that from gluconate-[6-14C] in all parts of hypocotyls examined. Incorporation of the radioactivity from gluconate-[6-14C] into RNA, lignin and aromatic amino acid fractions was greater in the upper (younger) part of the hypocotyls. Incorporation into sugars was greater in the lower (more mature) parts.  相似文献   

11.
Calf brain membranes have previously been shown to enzymatically transfer N-acetyl[14C]glucosamine from UDP-N-acetyl[14C]glucosamine into N-acetyl[14C]glucosami-nylpyrophosphoryldolichol, N,N′-diacetyl[14C]chitobiosylpyrophosphoryldolichol and a minor labeled product with the chemical and chromatographic properties of a [14C]trisaccharide lipid (Waechter, C. J., and Harford, J. B. (1977) Arch. Biochem. Biophys.181, 185–198). This paper demonstrates that incubating calf brain membranes containing endogenous, prelabeled N-acetyl[14C]glucosaminyl lipids with unlabeled GDP-mannose enhances the formation of the [14C]trisaccharide lipid. The intact [14C]trisaccharide lipid behaves like a dolichol-bound trisaccharide, in which the glycosyl group is linked via a pyrophosphate bridge, when chromatographed on SG-81 paper or DEAE-cellulose. Mild acid treatment releases a water-soluble product that comigrates with authentic β-Man-(1→4)-β-GlcNAc(1→4)-GlcNAc. The free [14C]trisaccharide is converted to N,N′-diacetyl[14C]chitobiose by incubation with a highly purified β-mannosidase. These findings indicate that the trisaccharide lipid formed by calf brain membranes is β-mannosyl-N,N′-diacetylchito-biosylpyrophosphoryldolichol. The two glycosyltransferases responsible for the enzymatic conversion of the N-acetylglucosaminyl lipid to the trisaccharide lipid have been studied using exogenous, purified [14C]glycolipid substrates. Calf brain membranes enzymatically transfer N-acetylglucosamine from UDP-N-acetylglucosamine to exogenous N-acetyl[14C] glucosaminylpyrophosphoryldolichol to form [14C]disaccharide lipid. The biosynthesis of [14C]disaccharide lipid is stimulated by unlabeled UDP-N-acetylglucosamine under conditions that inhibit N-acetylglucosaminylpyrophosphoryldolichol synthesis. Unlike the formation of N-acetylglucosaminylpyrophosphoryldolichol the enzymatic addition of the second N-acetylglucosamine residue is not inhibited by tunicamycin. Exogenous purified [14C] disaccharide lipid is enzymatically mannosylated by calf brain membranes to form the [14C] trisaccharide lipid. The formation of the [14C]trisaccharide lipid from exogenous [14C] disaccharide lipid is stimulated by unlabeled GDP-mannose and Mg2+, and inhibited by EDTA. Exogenous dolichyl monophosphate is also inhibitory. These results strongly suggest that the calf brain mannosyltransferase involved in the synthesis of the trisaccharide lipid requires a divalent cation and utilizes GDP-mannose, not mannosylphosphoryldolichol, as the direct mannosyl donor.  相似文献   

12.
《Insect Biochemistry》1990,20(6):645-652
Post-emergence levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and ketocatechol were determined in cuticle from adult Tenebrio molitor. Possible pathways for biosynthesis of DOPAC were studied by comparing the incorporation of injected [U-14C]tyrosine, [7-14C]dopamine, [7-14C]DOPA, [7-14C]tyramine, [U-14C]p-hydroxyphenylpyruvic acid (p-HPPA) and [ring-3H]p-hydroxyphenylacetic acid (p-HPAA) into cuticular DOPAC during its period of maximal increase 1–3 days after adult emergence. Increased incorporation of [U-14C]tyrosine between days 0 and 3 suggests rapid de novo biosynthesis of DOPAC from this primary precursor. Of the putative intermediates tested, only p-HPPA had a pattern of incorporation similar to that seen with tyrosine. Since p-HPAA was poorly incorporated into both cuticle and DOPAC, a tentative pathway tyrosine → p-HPPA → 3,4-dihydroxyphenylpyruvic acid → DOPAC is proposed.  相似文献   

13.
Biosynthetic activity for mycolic acid occurred in the fluffy layer fraction but not in the 5000g supernatant of Bacterionema matruchotii. With [1-14C]palmitic acid as precursor for the in vitro system, the predominant product was identified as C32:0 mycolic acid by radio-gas-liquid chromatographie (radio-GLC) and gas chromatographic/mass spectroscopic analyses; if [1-14C]stearic acid was used, two major radioactive peaks appeared on GLC: one corresponding to the peak of (C34:0 + C34:1) mycolic acids and the other to (C36:0 + C36:1) mycolic acids. By pyrolysis/radio-GLC analysis, C32:0 mycolic acid synthesized by [1-14C]palmitic acid was pyrolyzed at 300 °C to form palmitaldehyde (the mero moiety) and methyl palmitate (the branch moiety). The pH optimum for the incorporation of [1-14C]palmitate into bacterionema mycolic acids was 6.4 and the reaction required a divalent cation. The in vitro system utilized myristic, palmitic, stearic and oleic acids (probably via their activated forms) well as precursors, among which myristic and palmitic acids were more effective than the rest. Avidin showed no effect on the biosynthesis of mycolic acid from 14C-palmitate whereas cerulenin, a specific inhibitor of β-ketoacyl synthetase in de novo fatty acid synthesis, inhibited the reaction at a relatively higher concentration. Thin-layer chromatographic analysis of lipids extracted from the reacting mixture without alkaline hydrolysis showed that both exogenous [1-14] fatty acid and synthesized mycolic acids were bound to an unknown compound by an alkali-labile linkage and this association seemed to occur prior to the condensation of two molecules of fatty acid.  相似文献   

14.
In vivo biosynthesis of -linolenic acid in plants   总被引:6,自引:0,他引:6  
[1-14C]acetate was readily incorporated into unsaturated fatty acids by leaf slices of spinach, barley and whole cells of Chlorellapyrenoidosa and Candidabogoriensis. In these systems the [14C] label in newly synthesized oleate and linoleate was approximately equally distributed in the C1–9 and the C10–18 fragments obtained by reductive ozonolysis of these acids, whereas in a-linolenic acid over 90% of the total [14C] was localized in the C1–9 fragment. While [1-14C]oleic acid was converted by whole cells of Chlorella to [1-14C]linoleic and [1-14C]linolenic acids, [U-14C]oleic acid yielded [U-14C]linoleic acid but a-linolenic acid was labeled only in the carboxyl terminal carbon atoms. When spinach leaf slices were supplied with carboxyl labeled octanoic, decanoic, dodecanoic, tetradecanoic and octadecanoic acids, only the first three acids were converted to a-linolenic acids while the last two acids were ineffective. Thus we suggest that (a) linoleic acid is not the precursor of a-linolenic acid and (b) 12:3(3, 6, 9) is the earliest permissible trienoic acid which is then elongated to a-linolenic acid.  相似文献   

15.
About ScienceDirect 《BBA》1978,504(3):466-467
Culture of Trypanosoma cruzi (Tulahuen strain) in the presence of ethidium bromide (1–20 μg/ml) resulted in dyskinetoplasty and inhibition of growth, to an extent depending on the dye concentration and the medium composition. The ethidium bromide-induced dyskinetoplasty caused a decrease of (a) the cytochrome content of epimastigotes (a,a3 and b species); (b) the rate of respiration (endogenous or supported by D-glucose); and (c) the rate of production of 14CO2 from [2-14C]acetate and [1-14C]glucose. [2-14C]Acetate oxidation to 14CO2 was affected by dyskinetoplasty more than [1-14C]glucose oxidation, particularly at the exponential growth phase. With dyskinetoplastic epimastigotes, diminution of 14CO2 production from [2-14C]acetate largely exceeded that of oxygen uptake, while with [1-14C]glucose, 14CO2production and respiration were affected to about the same extent. Dyskinetoplasty also decreased the incorporation of [2-14C]acetate carbon into intermediates of the tricarboxylic acid cycle and related amino acids, and modified the distribution pattern of 14C in accordance with the decrease of respiration. Reduction of cytochrome content of epimastigotes by restriction of heme compounds during growth decreased 14CO2 production from [2-14C]acetate, like the ethidium-induced dyskinetoplasty. The same occurred after inhibition of electron transfer by antimycin and cyanide, though to a much more significant extent, thus confirming the functional association of electron transport at the mitochondrial cytochrome system of T. cruzi and the enzymatic reactions of the tricarboxylic acid cycle.  相似文献   

16.
Transport and metabolism of [2,3-14C] 1-aminocyclopropane-1-carboxylic acid (ACC) from roots to shoots in 4-day-old sunflower (Helianthus annuus L.) seedlings were studied. [14C]ACC was detected in, and 14C2H4 was evolved from, shoots 0.5 hours after [14C]ACC was supplied to roots. Ethylene emanation from the shoots returned to normal levels after 6 hours. The roots showed a similar pattern, although at 24 hours ethylene emanation was still slightly higher than in those plants that did not receive ACC. [14C]N-malonyl-ACC (MACC) was detected in both tissues at all times sampled. [14C]MACC levels surpassed [14C]ACC levels in the shoot at 2 hours, whereas [14C]MACC levels in the root remained below [14C]ACC levels until 6 hours, after which they were higher. Thin-layer chromatography analysis identified [14C] ACC in 1-hour shoot extracts, and [14C]MACC was identified in root tissues at 1 and 12 hours after treatment. [14C]ACC and [14C] MACC in the xylem sap of treated seedlings were identified by thin-layer chromatography. Xylem transport of [14C]ACC in treated seedlings, and transport of ACC in untreated seedlings, was confirmed by gas chromatography-mass spectrometry. Some evidence for the presence of [14C]MACC in xylem sap in [14C]ACC-treated seedlings is presented. A substantial amount of radioactivity in both ACC and MACC fractions was detected leaking from the roots over 24 hours. A second radiolabeled volatile compound was trapped in a CO2-trapping solution but not in mercuric perchlorate. Levels of this compound were highest after the peak of ACC levels and before peak MACC levels in both tissues, suggesting that an alternate pathway of ACC metabolism was operating in this system.  相似文献   

17.
The occurrence of the complete orotic acid pathway for the biosynthesis de novo of pyrimidine nucleotides was demonstrated in the intact cells of roots excised from summer squash (Cucurbita pepo L. cv. Early Prolific Straightneck). Evidence that the biosynthesis of pyrimidine nucleotides proceeds via the orotate pathway in C. pepo included: (a) demonstration of the incorporation of [14C]NaHCO3, [14C]carbamylaspartate, and [14C]orotic acid into uridine nucleotides; (b) the isolation of [14C]orotic acid when [14C]NaHCO3 and [14C]carbamylaspartate were used as precursors; (c) the observation that 6-azauridine, a known inhibitor of the pathway, blocked the incorporation of early precursors into uridine nucleotides while causing a concomitant accumulation of orotic acid; and (d) demonstration of the activities of the component enzymes of the orotate pathway in assays employing cell-free extracts.  相似文献   

18.
The cyanobacterium (blue-green alga) Synechococcus 6301 incorporated a large amount of isotope from [1-14C] and [2-14C]acetate into phaeophorbide a obtained from chlorophyll a and into glutamatein cell protein; very little radioactivity was present in aspartate in cell protein. This distribution of isotope indicates that aspartate and the tetrapyrrole of chlorophyll a are not derived from a common C4, precursor. The ratios of the specific radioactivities of phaeophorbide a to glutamate for organisms grown in the presence of 1-14C] and [2-4C ] acetate were 2.5:1 and 10:1 respectively. These are close to the theoretical values for the C5, route to δ-aminolaevulinate which indicates that this is the only pathway to the tetrapyrrole precursor in Synechococcus 6301.  相似文献   

19.
Two galactosyltransferase activities (1 and 2) were measured in the pancreas, liver and gut of the developing rat embryo. 1. N-Acetylglucosamine:Galactosyltransferase. UDP [14C]galactose + N-acetylglucosamine → [14C]galactosyl-β-(1 → 4)-N-acetylglucosamine + UDP. 2. N-Acetylgalactosamine-protein:Galactosyltransferase. UDP [14C]galactose + N-acetylgalactosamine-protein → [14C]galactosyl-β-(1 → 3)-N-acetylgalactosamine-protein + UDP. Galactosyltransferases 1 and 2 increased in the pancreas, about 10- and 40-fold in specific activity, respectively, from 11 to 12 days in utero to birth. During this period the activities of both transferases in the liver were somewhat variable, but showed no definite trend. A drop in the level of galactosyltransferase 1 in the pancreas occurred at birth or shortly thereafter. The “Golgimarker” enzyme for liver, galactosyltransferase 1, may be absent or present at low levels in adult rat pancreas.Zymogen granule membrane preparations apparently are devoid of these galactosyltransferase activities. Bromodeoxyuridine, which inhibits the development of the synthetic capability of the specific exocrine proteins, had essentially no effect on the normal accretion of the galactosyltransferase activities in organ cultures of pancreatic rudiments from 13-day rat embryos.  相似文献   

20.
Exogenous [1-14C]oleic acid and [1-14C]linoleic acid were taken up and esterified to complex lipids by greening cucumber (Cucumis sativus L.) cotyledons. Both 14C-labeled fatty acids were initially esterified to phosphatidylcholine prior to eventual accumulation in triacylglycerols and galactolipids. Kinetic data suggest that esterification occurs prior to desaturation and that phosphatidylcholine is the initial site of both [14C]-oleate and [1-14C]linoleate esterification and of [1-14C]oleate desaturation to [1-14C]linoleate. [1-14C]Linoleic acid was esterified more rapidly than [14C]oleic acid and its desaturation product, [1-14C]α-linolenate, occurred mainly on monogalactosyl diacylglycerol, although some was also observed on the other major acyl lipids, including phosphatidylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号