首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dizdaroglu M 《Mutation research》2003,531(1-2):109-126
Reactive oxygen-derived species such as free radicals are formed in living cells by normal metabolism and exogenous sources, and cause a variety of types of DNA damage such as base and sugar damage, strand breaks and DNA-protein cross-links. Living organisms possess repair systems that repair DNA damage. Oxidative DNA damage caused by free radicals and other oxidizing agents is mainly repaired by base-excision repair (BER), which involves DNA glycosylases in the first step of the repair process. These enzymes remove modified bases from DNA by hydrolyzing the glycosidic bond between the modified base and the sugar moiety, generating an apurinic/apyrimidinic (AP) site. Some also possess AP lyase activity that subsequently cleaves DNA at AP sites. Many DNA glycosylases have been discovered and isolated, and their reaction mechanisms and substrate specificities have been elucidated. Most of the known products of oxidative damage to DNA are substrates of DNA glycosylases with broad or narrow substrate specificities. Some possess cross-activity and remove both pyrimidine- and purine-derived lesions. Overlapping activities between enzymes also exist. Studies of substrate specificities have been performed using either oligodeoxynucleotides with a single modified base embedded at a specific position or damaged DNA substrates containing a multiplicity of pyrimidine- and purine-derived lesions. This paper reviews the substrate specificities and excision kinetics of DNA glycosylases that have been investigated with the use of gas chromatography/mass spectrometry and DNA substrates with multiple lesions.  相似文献   

2.
Yan SF  Wu M  Geacintov NE  Broyde S 《Biochemistry》2004,43(24):7750-7765
Fidelity of DNA polymerases is predominantly governed by an induced fit mechanism in which the incoming dNTP in the ternary complex fits tightly into a binding pocket whose geometry is determined by the nature of the templating base. However, modification of the template with a bulky carcinogen may alter the dNTP binding pocket and thereby the polymerase incorporation fidelity. High fidelity DNA polymerases, such as bacteriophage T7 DNA polymerase, are predominantly blocked by bulky chemical lesions on the template strand during DNA replication. However, some mutagenic bypass can occur, which may lead to carcinogenesis. Experimental studies have shown that a DNA covalent adduct derived from (+)-anti-BPDE [(+)-(7R,8S,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene], a carcinogenic metabolite of benzo[a]pyrene (BP), primarily blocks Sequenase 2.0, an exo(-) T7 DNA polymerase; however, a mismatched dATP can be preferentially inserted opposite the damaged adenine templating base within the active site of the polymerase [Chary, P., and Lloyd, R. S. (1995) Nucleic Acids Res. 23, 1398-1405]. The goal of this work is to elucidate structural features that contribute to DNA polymerase incorporation fidelity in the presence of this bulky covalent adduct and to interpret the experimental findings on a molecular level. We have carried out molecular modeling and molecular dynamics simulations with AMBER 6.0, investigating a T7 DNA polymerase primer-template closed ternary complex containing this 10S (+)-trans-anti-[BP]-N(6)-dA adduct in the templating position within the polymerase active site. All four incoming dNTPs were studied. The simulations show that the BP ring system fits well into an open pocket on the major groove side of the modified template adenine with anti glycosidic bond conformation, without disturbing critical polymerase-DNA interactions. However, steric hindrance between the BP ring system and the primer-template DNA causes displacement of the modified template adenine, so that the dNTP base binding pocket is enlarged. This alteration can explain the experimentally observed preference for incorporation of dATP opposite this lesion. These studies also rationalize the observed lower probabilities of incorporation of the other three nucleotides. Our results suggest that the differences in incorporation of dGTP, dCTP, and dTTP are due to the effects of imperfect geometric complementarity. Thus, the simulations suggest that altered DNA polymerase incorporation fidelity can result from adduct-induced changes in the dNTP base binding pocket geometry. Furthermore, plausible structural explanations for the observed effects of [BP]-N(6)-dA adduct stereochemistry on the observed stalling patterns are proposed.  相似文献   

3.
Su M  Yang Y  Yang G 《FEBS letters》2006,580(17):4136-4142
Reactive oxygen species, such as hydroxyl or superoxide radicals, can be generated by exogenous agents as well as from normal cellular metabolism. Those radicals are known to induce various lesions in DNA, including strand breaks and base modifications. These lesions have been implicated in a variety of diseases such as cancer, arteriosclerosis, arthritis, neurodegenerative disorders and others. To assess these oxidative DNA damages and to evaluate the effects of the antioxidant N-acetyl-L-cysteine (NAC), atomic force microscopy (AFM) was used to image DNA molecules exposed to hydroxyl radicals generated via Fenton chemistry. AFM images showed that the circular DNA molecules became linear after incubation with hydroxyl radicals, indicating the development of double-strand breaks. The occurrence of the double-strand breaks was found to depend on the concentration of the hydroxyl radicals and the duration of the reaction. Under the conditions of the experiments, NAC was found to exacerbate the free radical-induced DNA damage.  相似文献   

4.
Kim JE  Choi S  Yoo JA  Chung MH 《FEBS letters》2004,556(1-3):104-110
7,8-Dihydro-8-oxoguanine (8-oxoguanine; 8-oxo-G), one of the major oxidative DNA adducts, is highly susceptible to further oxidation by radicals. We confirmed the higher reactivity of 8-oxo-G toward reactive oxygen (singlet oxygen and hydroxyl radical) or nitrogen (peroxynitrite) species as compared to unmodified base. In this study, we raised the question about the effect of this high reactivity toward radicals on intramolecular and intermolecular DNA damage. We found that the amount of intact nucleoside in oligodeoxynucleotide containing 8-oxo-G decreased more by various radicals at higher levels of 8-oxo-G incorporation, and that the oligodeoxynucleotide damage and plasmid cleavage by hydroxyl radical were inhibited in the presence of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG). We conclude that 8-oxo-G within DNA induces intramolecular DNA base damage, but that free 8-oxo-G protects intermolecular DNA from oxidative stress. These results suggest that 8-oxo-G within DNA must be rapidly released to protect DNA from overall oxidative damage.  相似文献   

5.
DNA repair is known as a defense mechanism against genotoxic insults. However, the most lethal type of DNA damages, double-strand DNA breaks (DSBs), can be produced by DNA repair. We have previously demonstrated that when long patch base excision repair attempts to repair a synthetic substrate containing two uracils, the repair produces DSBs (Vispe, S. and Satoh, M. S. (2000) J. Biol. Chem. 275, 27386-27392 and Vispe, S., Ho, E. L., Yung, T. M., and Satoh, M. S. (2003) J. Biol. Chem. 278, 35279-35285). In this synthetic substrate, the two uracils are located on the opposite DNA strands (separated by an intervening sequence stable at 37 degrees C) and represent a high risk site for DSB formation. It is not clear, however, whether similar high risk sites are also induced in genomic DNA by exposure to DNA damaging agents. Thus, to investigate the mechanisms of DSB formation, we have modified the DSB formation assay developed previously and demonstrated that high risk sites for DSB formation are indeed generated in genomic DNA by exposure of cells to alkylating agents. In fact, genomic DNA containing alkylated base damages, which could represent high risk sites, are converted into DSBs by enzymes present in extracts prepared from cells derived from clinically normal individuals. Furthermore, DSBs are also produced by extracts from cells derived from ataxia-telangiectasia patients who show cancer proneness due to an impaired response to DSBs. These results suggest the presence of a novel link between base damage formation and DSBs and between long patch base excision repair and human diseases that occur due to an impaired response to DSB.  相似文献   

6.
Reducing sugars for example glucose, fructose, etc., and their phosphate derivatives non-enzymatically glycate biological macromolecules (e.g., proteins, DNA and lipids) and is related to the production of free radicals. Here we present a novel study, using differential scanning calorimetry (DSC) along with UV/Vis absorption and photon correlation spectroscopy (PCS), on normal and glycated human placenta DNA and have explored the antioxidant property of the naturally occurring polyhydroxy flavone quercetin (3,3',4',5,7-pentahydroxyflavone) in preventing the glycation. The decrease in the absorption intensity of DNA in presence of sugars clearly indicates the existence of sugar molecules between the two bases of a base pair in the duplex DNA molecule. Variations were perceptible in the PCS relaxation profiles of normal and glycated DNA. The melting temperature of placenta DNA was decreased when glycated suggesting a decrease in the structural stability of the double-stranded glycated DNA. Our DSC and PCS data showed, for the first time, that the dramatic changes in the structural properties of glycated DNA can be prevented to a significant extent by adding quercetin. This study provides valuable insights regarding the structure, function, and dynamics of normal and glycated DNA molecules, underlying the manifestation of free radical mediated diseases, and their prevention using therapeutically active naturally occurring flavonoid quercetin.  相似文献   

7.
Electron paramagnetic resonance (EPR) spectra of the two-atom-tethered six-membered ring thymidylate spin label (DUMTA) incorporated into duplexes of different sizes were found to display a helix length dependence and a local-order parameter S = 0.32 +/- 0.01 for B-DNA based on the dynamic cylinder model (Keyes, R. S., and A. M. Bobst. 1995. Detection of internal and overall dynamics of a two-atom-tethered spin-labeled DNA. Biochemistry. 34:9265-9276). This sensitivity to size, which reflects global tumbling, is now reported for the more flexible five-atom-tethered five-membered ring thymidylate spin label (DUAP) that can be readily incorporated enzymatically and sequence specifically into nucleic acids of different sizes. The DUAPs containing B-DNA systems were simulated with the same dynamic cylinder model, giving S = 0.20 +/- 0.01 for the more flexibly tethered spin label. This shows that S is dependent on tether length but not on global motion. An analysis with the same motional model of the B-Z transition in a (dG-dC)n polymer containing the five-atom-tethered six-membered ring cytidylate spin label (DCAT) (Strobel, O. K., R. S. Keyes, and A. M. Bobst. 1990b. Base dynamics of local Z-DNA conformations as detected by electron paramagnetic resonance with spin-labeled deoxycytidine analogues. Biochemistry. 29:8522-8528) revealed an increase in S from 0.15 +/- 0.01 to 0.26 +/- 0.01 in response to the B- to Z-DNA transition. This indicates that S is not only sensitive to tether length, but also to conformational changes in DNA. Both the DUAP- and the DCAT-labeled systems were also simulated with a base disk model. From the DUAP spectral series, the perpendicular component of the correlation time tau perpendicular describing the spin-labeled base diffusion was found to be sensitive to global tumbling, confirming earlier results obtained with DUMTA. The DCAT polymer results demonstrated that tau perpendicular monitors a conformational change from B- to Z-DNA, indicating that tau perpendicular is also sensitive to local base dynamics. These results confirm that the dynamics of five-atom-tethered nitroxides are coupled to the nucleic acid dynamics and, as with two-atom-tethered spin labels, can be characterized by S and tau perpendicular. The analyses of both spin-labeled systems provide good evidence for spin-labeled base motions within double-stranded DNA occurring on the nanosecond time scale, and establish that both labels can be used to monitor changes in global tumbling and local order parameter due to variations in DNA conformation and protein-DNA interactions.  相似文献   

8.
Mercaptopurine and thioguanine, two of the most widely used antileukemic agents, exert their cytotoxic, therapeutic effects by being incorporated into DNA as deoxy-6-thioguanosine. However, the molecular mechanism(s) by which incorporation of these thiopurines into DNA translates into cytotoxicity is unknown. The solution structure of thioguanine-modified duplex DNA presented here shows that the effects of the modification on DNA structure were subtle and localized to the modified base pair. Specifically, thioguanine existed in the keto form, formed weakened Watson-Crick hydrogen bonds with cytosine and caused a modest approximately 10 degrees opening of the modified base pair toward the major groove. In contrast, thioguanine significantly altered base pair dynamics, causing an approximately 80-fold decrease in the base pair lifetime with cytosine compared with normal guanine. This perturbation was consistent with the approximately 6 degrees C decrease in DNA melting temperature of the modified oligonucleotide, the 1.13 ppm upfield shift of the thioguanine imino proton resonance, and the large increase in the exchange rate of the thioguanine imino proton with water. Our studies provide new mechanistic insight into the effects of thioguanine incorporation into DNA at the level of DNA structure and dynamics, provide explanations for the effects of thioguanine incorporation on the activity of DNA-processing enzymes, and provide a molecular basis for the specific recognition of thioguanine-substituted sites by proteins. These combined effects likely cooperate to produce the cellular responses that underlie the therapeutic effects of thiopurines.  相似文献   

9.
DNA replication fidelity is dictated by DNA polymerase enzymes and associated proteins. When the template DNA is damaged by a carcinogen, the fidelity of DNA replication is sometimes compromized, allowing mispaired bases to persist and be incorporated into the DNA, resulting in a mutation. A key question in chemical carcinogenesis by metabolically activated polycyclic aromatic hydrocarbons (PAHs) is the nature of the interactions between the carcinogen-damaged DNA and the replicating polymerase protein that permits the mutagenic misincorporation to occur. PAHs are environmental carcinogens that, upon metabolic activation, can react with DNA to form bulky covalently linked combination molecules known as carcinogen-DNA adducts. Benzo[a]pyrene (BP) is a common PAH found in a wide range of material ingested by humans, including cigarette smoke, car exhaust, broiled meats and fish, and as a contaminant in other foods. BP is metabolically activated into several highly reactive intermediates, including the highly tumorigenic (+)-anti-benzo[a]pyrene diol epoxide (BPDE). The primary product of the reaction of (+)-anti-BPDE with DNA, the (+)-trans-anti-benzo[a]pyrene diol epoxide-N(2)-dG ((+)-ta-[BP]G) adduct, is the most mutagenic BP adduct in mammalian systems and primarily causes G-to-T transversion mutations, resulting from the mismatch of adenine with BP-damaged guanine during replication. In order to elucidate the structural characteristics and interactions between the DNA polymerase and carcinogen-damaged DNA that allow a misincorporation opposite a DNA lesion, we have modeled a (+)-ta-[BP]G adduct at a primer-template junction within the replicative phage T7 DNA polymerase containing an incoming dATP, the nucleotide most commonly mismatched with the (+)-ta-[BP]G adduct during replication. A one nanosecond molecular dynamics simulation, using AMBER 5.0, has been carried out, and the resultant trajectory analyzed. The modeling and simulation have revealed that a (+)-ta-[BP]G:A mismatch can be accommodated stably in the active site so that the fidelity mechanisms of the polymerase are evaded and the polymerase accepts the incoming mutagenic base. In this structure, the modified guanine base is in the syn conformation, with the BP moiety positioned in the major groove, without interfering with the normal protein-DNA interactions required for faithful polymerase function. This structure is stabilized by a hydrogen bond between the modified guanine base and dATP partner, hydrophobic interactions between the BP moiety and the polymerase, a hydrogen bond between the modified guanine base and the polymerase, and several hydrogen bonds between the BP moiety and polymerase side-chains. Moreover, the G:A mismatch in this system closely resembles the size and shape of a normal Watson-Crick pair. These features reveal how the polymerase proofreading machinery may be evaded in the presence of a mutagenic carcinogen-damaged DNA, so that a mismatch can be accommodated readily, allowing bypass of the adduct by the replicative T7 DNA polymerase.  相似文献   

10.
Genotoxicity of singlet oxygen   总被引:9,自引:0,他引:9  
Singlet oxygen, 1O2(1Δg), fulfills essential prerequisites for a genotoxic substance, like hydroxyl radicals and other oxygen radicals: it can react efficiently with DNA and it can be generated inside cells, e.g. by photosensitization and enzymatic oxidation. As might be anticipated from the non-radical character of singlet oxygen, the pattern of DNA modifications it produces is very different from that caused by hydroxyl radicals. While hydroxyl radicals produce DNA strand breaks and sites of base loss (AP sites) in high yield and react with all four bases of DNA, singlet oxygen generates predominantly modified guanine residues and few strand breaks and AP sites. There is now convincing evidence that a major product of base modification caused by singlet oxygen is 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). Indeed, the recently reported miscoding properties of 8-hydroxyguanine can explain the predominant type of mutations observed when DNA modified by singlet oxygen is replicated in cells. There are also strong indications that singlet oxygen generated by photosensitization can act as an ultimate DNA modifying species inside cells. However, indirect genotoxic mechanisms involving other reactive oxygen species produced from singlet oxygen are also possible and appear to predominate in some cases. The cellular defense system against oxidants consists of effective singlet oxygen scavengers such as carotenoids. The observation that carotenoids can inhibit neoplastic cell transformation when administered not only together with but also after the application of chemical or physical carcinogens might indicate a role of singlet oxygen in tumor promotion that could be independent of the direct or indirect DNA damaging properties.  相似文献   

11.
Fluorescent light (FL) has been shown to generate free radicals within cells, however, the specific chemical nature of DNA damage induced by FL has not previously been determined. Using gas chromatography/isotope dilution mass spectrometry, we have detected induction of the oxidative DNA lesions 5-hydroxycytosine (5-OH-Cyt), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) and 4, 6-diamino-5-formamidopyrimidine (FapyAde) in cultured cells irradiated with FL. We followed the repair of these lesions in normal and xeroderma pigmentosum group A (XP-A) cells. 5-OH-Cyt and FapyGua were repaired efficiently in normal cells within 6 h following FL exposure. XP-A cells were unable to repair these oxidative DNA base lesions. Additionally, to compare the repair of oxidative lesions induced by various sources, in vitro repair studies were performed using plasmid DNA damaged by FL, gamma-irradiation or OsO(4)treatment. Whole cell extracts from normal cells repaired damaged substrates efficiently, whereas there was little repair in XP-A extracts. Our data demon-strate defective repair of oxidative DNA base lesions in XP-A cells in vivo and in vitro.  相似文献   

12.
Free radicals do not commonly add to nucleotides in DNA, despite the fact that radicals are produced in all aerobically metabolizing cells. Why is this? For oxy-radicals, the ratio of the rate constant for addition to double bonds divided by that for H-abstraction from good H-donors parallels the electrophilicity of the radical, and among oxy-radicals the hydroxyl radical is the most electrophilic, with an unusually high ratio of Kad/kH. The hydroxyl radical also is very reactive in H-atom abstraction reactions, with a large absolute value of kH. However, the hydroxyl radical's high reactivity makes it unselective and relatively nondiscriminating between H-abstraction from a sugar moiety in DNA and penetration to, and reaction with, a base. Oxy-radicals such as alkoxyl and peroxyl radicals do not have as high electrophilicity or as high reactivity. Interestingly, carbon-centered radicals (such as the methyl radical) also can both add to double bonds and abstract H-atoms, but carbon-centered radicals are not commonly observed to add to DNA bases. However, they cannot be generated near DNA in vivo. In contrast, hydroxyl radical generating systems appear to complex with DNA and produce the hydroxyl radical in the immediate vicinity of the DNA, producing a type of DNA damage that is called site specific. Thus, addition of a radical to a DNA base may require all three features possessed by the hydroxyl radical: high electrophilicity, high thermokinetic reactivity, and a mechanism for production near DNA.  相似文献   

13.
7,8-dihydro-8-oxoguanine (8-oxoG) adducts are formed frequently by the attack of oxygen-free radicals on DNA. They are among the most mutagenic lesions in cells because of their dual coding potential, where, in addition to normal base-pairing of 8-oxoG(anti) with dCTP, 8-oxoG in the syn conformation can base pair with dATP, causing G to T transversions. We provide here for the first time a structural basis for the error-free replication of 8-oxoG lesions by yeast DNA polymerase η (Polη). We show that the open active site cleft of Polη can accommodate an 8-oxoG lesion in the anti conformation with only minimal changes to the polymerase and the bound DNA: at both the insertion and post-insertion steps of lesion bypass. Importantly, the active site geometry remains the same as in the undamaged complex and provides a basis for the ability of Polη to prevent the mutagenic replication of 8-oxoG lesions in cells.  相似文献   

14.
In contrast to proteins recognizing small-molecule ligands, DNA-dependent enzymes cannot rely solely on interactions in the substrate-binding centre to achieve their exquisite specificity. It is widely believed that substrate recognition by such enzymes involves a series of conformational changes in the enzyme–DNA complex with sequential gates favoring cognate DNA and rejecting nonsubstrates. However, direct evidence for such mechanism is limited to a few systems. We report that discrimination between the oxidative DNA lesion, 8-oxoguanine (oxoG) and its normal counterpart, guanine, by the repair enzyme, formamidopyrimidine-DNA glycosylase (Fpg), likely involves multiple gates. Fpg uses an aromatic wedge to open the Watson–Crick base pair and everts the lesion into its active site. We used molecular dynamics simulations to explore the eversion free energy landscapes of oxoG and G by Fpg, focusing on structural and energetic details of oxoG recognition. The resulting energy profiles, supported by biochemical analysis of site-directed mutants disturbing the interactions along the proposed path, show that Fpg selectively facilitates eversion of oxoG by stabilizing several intermediate states, helping the rapidly sliding enzyme avoid full extrusion of every encountered base for interrogation. Lesion recognition through multiple gating intermediates may be a common theme in DNA repair enzymes.  相似文献   

15.
Amara P  Serre L 《DNA Repair》2006,5(8):947-958
The formamidopyrimidine-DNA glycosylase (Fpg) recognizes and eliminates efficiently 8-oxoguanine, an abundant mutagenic DNA lesion. The X-ray structure of the inactive E3Q mutant of Fpg from Bacillus stearothermophilus, complexed to an 8-oxoG-containing DNA, revealed a small peptide (called the alphaF-beta10 loop) involved in the recognition of the lesion via an interaction with the protonated N(7) atom. This region, which is disordered in the X-ray models where an abasic site-containing DNA is bound to Fpg, interacts tightly with the 8-oxoG which appears to be confined within the enzyme. Molecular dynamics simulations were performed on this mutant and the wild type derived model at 298 and 323K, to determine if this tight assembly around the 8-oxoG was due to the mutation and/or to an inappropriate experimental temperature. Differences in the relative orientation of the protein structural domains and in the architecture around the damaged base were observed, depending on the presence of the mutation and/or on the temperature. This data allowed us to show that the recognition of the damaged base by the wild type enzyme close to its optimal temperature might require significant movements of the enzyme, leading to conformational changes that could not be detected within the only X-ray structure. In addition, a dynamics performed with a normal guanine suggests that the alphaF-beta10 loop dynamics could be needed by the active Fpgs to distinguish a damaged guanine from a normal nucleotide.  相似文献   

16.
Synthetic oligonucleotides with a fluorescent coumarin group replacing a basepair have been used in recent time-resolved Stokes-shift experiments to measure DNA dynamics on the femtosecond to nanosecond timescales. Here, we show that the APE1 endonuclease cleaves such a modified oligonucleotide at the abasic site opposite the coumarin with only a fourfold reduction in rate. In addition, a noncatalytic mutant (D210N) binds tightly to the same oligonucleotide, albeit with an 85-fold reduction in binding constant relative to a native oligonucleotide containing a guanine opposite the abasic site. Thus, the modified oligonucleotide retains substantial biological activity and serves as a useful model of native DNA. In the complex of the coumarin-containing oligonucleotide and the noncatalytic APE1, the dye's absorption spectrum is shifted relative to its spectrum in either water or within the unbound oligonucleotide. Thus the dye occupies a site within the DNA:protein complex. This result is consistent with modeling, which shows that the complex accommodates coumarin at the site of the orphaned base with little distortion of the native structure. Stokes-shift measurements of the complex show surprisingly little change in the dynamics within the 40 ps-40 ns time range.  相似文献   

17.
Many modeling studies of supercoiled DNA are based on equilibrium structures from theoretical calculations or energy minimization. Since closed circular DNAs are flexible, it is possible that errors are introduced by calculating properties from a single minimum energy structure, rather than from a complete thermodynamic ensemble. We have investigated this question using molecular dynamics simulations on a low resolution molecular mechanics model in which each base pair is represented by three points (a plane). This allows the inclusion of sequence-dependent variations of tip, inclination, and twist. Three kinds of sequences were tested: (1) homogeneous DNA, in which all base pairs have the helicoidal parameters of an ideal, average B-DNA; (2) random sequence DNA; and (3) curved DNA. We examined the rate of convergence of various structural parameters. Convergence for most of these is slowest for homogeneous sequences, more rapid for random sequences, and most rapid for curved sequences. The most slowly converging parameter is the antipodes profile. In a plasmid with N base pairs (bp), the antipodes distance is the distance d ij from base pair i to base pair j halfway around the plasmid, j = i + N/2. The antipodes profile at time t is a plot of d ij over the range i = 1, N/2. In a homogeneous plasmid, convergence requires that the antipodes profile averaged over time must be flat. Even in the small plasmids examined here, the average properties of the ensembles were found to differ from those of static equilibrium structures. These effects will be even more dramatic for larger plasmids. Further, average and dynamic properties are affected by both plasmid size and sequence. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Paul T  Young MJ  Hill IE  Ingold KU 《Biochemistry》2000,39(14):4129-4135
It is well established that the peroxyl radicals formed during the thermal decomposition of 2,2'-azobis(amidinopropane), ABAP, in oxygenated water can cleave double-stranded DNA, from which fact it has been concluded that peroxyl radicals, as a general class, can induce DNA strand scission. However, the ABAP-derived radicals are positively charged, and DNA is a negatively charged polyanion. Moreover, the relatively small and, therefore, free to diffuse peroxyl radicals likely to be formed in vivo will generally be negatively charged or neutral. Plasmid supercoiled DNA [pBR 322, 4361 base pairs (bp)] was reacted with known, equal fluxes of two positively charged peroxyl radicals, a negatively charged peroxyl radical, and a neutral peroxyl radical. The two positively charged peroxyl radicals degraded >/=80% of the supercoiled pBR 322 at a flux of 4 radicals/bp, but the negatively charged and neutral peroxyl radicals had no significant effect even at a flux as high as 24 radicals/bp. The same lack of effect on the DNA was also observed with high fluxes of superoxide/hydroperoxyl radicals. Similar results were obtained with another supercoiled DNA, pUC 19, except that pUC 19 is somewhat more sensitive to strand scission by positively charged peroxyl radicals than pBR 322. We conclude that most of the peroxyl radicals likely to be formed in vivo have little or no ability to induce DNA strand scission and that the potential role of electrostatics in radical/DNA reactions should always be considered.  相似文献   

19.
The width of the DNA minor groove varies with sequence and can be a major determinant of DNA shape recognition by proteins. For example, the minor groove within the center of the Fis–DNA complex narrows to about half the mean minor groove width of canonical B-form DNA to fit onto the protein surface. G/C base pairs within this segment, which is not contacted by the Fis protein, reduce binding affinities up to 2000-fold over A/T-rich sequences. We show here through multiple X-ray structures and binding properties of Fis–DNA complexes containing base analogs that the 2-amino group on guanine is the primary molecular determinant controlling minor groove widths. Molecular dynamics simulations of free-DNA targets with canonical and modified bases further demonstrate that sequence-dependent narrowing of minor groove widths is modulated almost entirely by the presence of purine 2-amino groups. We also provide evidence that protein-mediated phosphate neutralization facilitates minor groove compression and is particularly important for binding to non-optimally shaped DNA duplexes.  相似文献   

20.
The short-time (submicrosecond) bending dynamics of duplex DNA were measured to determine the effect of sequence on dynamics. All measurements were obtained from a single site on duplex DNA, using a single, site-specific modified base containing a rigidly tethered, electron paramagnetic resonance active spin probe. The observed dynamics are interpreted in terms of single-step sequence-dependent bending force constants, determined from the mean squared amplitude of bending relative to the end-to-end vector using the modified weakly bending rod model. The bending dynamics at a single site are a function of the sequence of the nucleotides constituting the duplex DNA. We developed and examined several dinucleotide-based models for flexibility. The models indicate that the dominant feature of the dynamics is best explained in terms of purine- and pyrimidine-type steps, although distinction is made among all 10 unique steps: It was found that purine-purine steps (which are the same as pyrimidine-pyrimidine steps) were near average in flexibility, but the pyrimidine-purine steps (5' to 3') were nearly twice as flexible, whereas purine-pyrimidine steps were more than half as flexible as average DNA. Therefore, the range of stepwise flexibility is approximately fourfold and is characterized by both the type of base pair step (pyrimidine/purine combination) and the identity of the bases within the pair (G, A, T, or C). All of the four models considered here underscore the complexity of the dependence of dynamics on DNA sequence with certain sequences not satisfactorily explainable in terms of any dinucleotide model. These findings provide a quantitative basis for interpreting the dynamics and kinetics of DNA-sequence-dependent biological processes, including protein recognition and chromatin packaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号