首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have quantitatively examined the unwinding angles for the complexes of a related series of acridine and quinoline derivatives with DNA. Ethidium bromide was used as a control for determining superhelix densities at different ionic strengths. Relative to ethidium, 9-aminoacridine and quinacrine had an essentially constant unwinding angle of approximately 17 degrees at all ionic strengths tested. The apparent unwinding angle for chloroquine and 9-amino-1,2,3,4-tetrahydroacridine was found to be ionic strength dependent, increasing with increasing ionic strength. This suggests that competitive nonintercalative binding at low ionic strengths causes an apparent lowering of the quinoline unwinding angle. This can also explain why 4-aminoquinaldine, examined at low ionic strength, gives a quite low apparent unwinding angle. Quinacrine along with chloroquinine and 9-aminoacridine approaches a limiting value for their unwinding angle of approximately 17 degrees. 4-aminoquinaldine and 9-amino-1,2,3,4-tetrahydroacridine could not be examined at an ionic strength above 0.03 because of their very low equilibrium binding constants.  相似文献   

2.
M Shure  J Vinograd 《Cell》1976,8(2):215-226
By a method of overlapping the results obtained after agarose gel electrophoresis under two different sets of conditions, it has become possible to determine the number of superhelical turns in a given DNA by counting the bands present after partially relaxing the DNA (Keller and Wendel, 1974) with highly purified nicking-closing (N-C) enzyme from LA9 mouse cell nuclei. Because native supercoiled DNA is heterogeneous with respect to superhelix density, an average number of superhelical turns was determined. Virion SV40 DNA contains 26 +/- 0.5 superhelical turns, and native Minicol DNA contains 19 +/- 0.5 superhelical turns. The above are values at 0.2 M NaCl and at 37 degrees C, the condition under which the enzymatic relaxations were performed. The superhelix densities determined by the band counting method have been compared with superhelix densities determined by buoyant equilibrium in PDl-CsCl gradients. The Gray, Upholt, and Vinograd (1971) calculation procedure has been used for evaluating the superhelix densities by the latter method with the new statement, however, that relaxed DNA has zero superhelical turns. Comparison of the superhelix densities obtained by both methods permits a calculation of an unwinding angle for ethidium. The mean value from experiments with SV40 DNA is 23 +/- 3 degree. The average number of superhelical turns in SV40, 26, combined with the value, 21, obtained by both Griffith (1975) and Germond et al. (1975) for the average number of nucleosomes per SV40 genome, yields an average of 1.25 superhelical turns per 1/21 of the SV40 genome. If the regions of internucleosomal DNA are fully relaxed, 1.25 correesponds to the average number of superhelical turns with a nucleosome. When analyzed under identical conditions, the limit product generated by ligating a nicked circular substrate in the presence of 0.001 M Mg2+ at 37 degrees C (ligation conditions) is slightly more positively supercoiled than the limit product obtained when the N-C reaction is performed in 0.2 M NaCl at 37 degrees C. The difference in superhelix density as measured in gels between the two sets of limit products for both Minicol and SV40 DNAs is 0.0059 +/- 0.0005. This result indicates that the DNA duplex is overwound in the ligation solvent relative to its state in 0.2 M NaCl.  相似文献   

3.
The kinetoplast DNA networks of Trypanosoma cruzi exist under two forms which have been studied by equilibrium density centrifugation in CsCl gradients containing ethidium bromide and by band sedimentation analysis. The relative proportion of the two forms has been measured and varies significantly between the exponential and stationary phase of growth, suggesting that one of these forms is a replicative intermediate. Both forms exhibit very high sedimentation coefficients. The sedimentation velocity ethidium titration was used to measure the superhelix density of the kinetoplast DNA after having established the validity of the method with in vitro closed DNA networks. The superhelix density of the native form of the kinetoplast DNA minicircles is very low and varies according to the physiological state of the trypanosomes. Furthermore, we observed a significant increase of the superhelix density of the kinetoplast DNA of trypanosomes grown in the presence of ethidium.  相似文献   

4.
The SV40 nucleoprotein complex which was isolated from infected CV-1 cells did not possess an active DNA untwisting enzyme. The superhelix density of the DNA in the chromatin complex was unchanged after treatment with purified rat liver DNA untwisting enzyme. However, in the presence of ethidium bromide (1 microgram/ml) the superhelix density was changed. Moreover, the nicked intermediate in the DNA untwisting reaction could be detected using the chromatin DNA as a substrate. These results show that the DNA in the SV40 chromatin which is accessible to the DNA untwisting enzyme is under no topological strain.  相似文献   

5.
The synthesis of mitochondrial DNA (mDNA) in HeLa cells is selectively inhibited by relatively low concentrations of ethidium bromide. After exposure of cells to strongly inhibitory concentrations of the drug, the apparent superhelix density of mDNA is rapidly increased, as judged by its buoyant density in CsCl in the presence of ethidium bromide. Mitochondrial DNA synthesized in the presence of partially inhibitory concentrations of ethidium bromide is also altered in its buoyant density in the presence of the dye, but is more heterogeneous in this respect. However, the change in buoyant density of newly synthesized mDNA may be explained by changes in structure other than a change in superhelix density, as indicated by its increased resistance to digestion by pancreatic DNase.  相似文献   

6.
Covalently closed intracellular and viral simian virus 40 (SV40) deoxyribonucleic acid (DNA) were separately isolated from infected African green monkey cells (BSC-1) grown in culture. The two DNA species form overlapping bands centered at different positions in a propidium di-iodide-cesium chloride (PDI-CsCl) buoyant density gradient capable of separating closed DNA species with different superhelix densities. When the dense side of a (32)P-labeled intracellular DNA band was mixed with the light side of a (3)H-labeled intracellular DNA band and again centrifuged in a PDI-CsCl density gradient, two overlapping bands formed with modes displaced from each other. Similar band-splitting experiments performed with viral DNA always gave superimposable bands. The foregoing experiments demonstrate that the intracellular DNA is heterogeneous in superhelix density, whereas, by the same criteria, the viral DNA is homogeneous. The mean superhelix density of the intracellular closed DNA is approximately three-fourths as large as the superhelix density of the viral DNA. These results rule out the possibility that closed SV40 DNA is drawn randomly from the intracellular pool and assembled without a further nicking-closing step into virions. When the cells were grown and infected in the presence of ethidium bromide (EB), the intracellular closed DNA was found to be homogeneous in superhelix density and to have the same superhelix density as the viral DNA which, in turn, was unaffected by the presence of the drug. The foregoing results were explained by postulating that the intracellular DNA is formed with a homogeneous superhelix density and becomes heterogeneous in the absence of EB as a result of a nicking-closing cycle that occurs in a spacially or temporally heterogeneous environment. The drug EB would inhibit this action by inhibiting the nicking enzyme(s).  相似文献   

7.
Superhelix density of replicating simian virus 40 DNA molecules   总被引:6,自引:0,他引:6  
Simian virus 40 replicating DNA molecules were isolated and fractionated according to the extent of replication by isopynic centrifugation in ethidium bromide-CsCl. Electron microscopic examination of the replicating molecules in the presence of ethidium bromide revealed that the sense of the superhelix in replicating molecules is the same as that of simian virus 40 DNA I. Replicating DNA molecules of differing extents of replication were also analyzed by sedimentation in varying concentrations of ethidium bromide. It was observed that the superhelix density of the unreplicated portion of replicating molecules was greater than that of DNA I and that it increased as the degree of replication increased. In contrast with the increase in superhelix density that was related to the extent of replication, all replicating molecules contained a rather constant number (2 to 5) of additional superhelical turns per molecule, irrespective of the extent of replication. This suggests that a region (or regions) of about 20 to 50 nucleotides may exist in a denatured state in replicating molecules, presumably at the replicating forks of the molecule.  相似文献   

8.
Examination of in vivo long-labeled, pulse-labeled and pulse-chase-labeled mitochondrial DNA has corroborated and extended the basic elements of the displacement model of replication. Mitochondrial DNA molecules are shown to replicate an average of once per cell doubling in exponentially growing cultures. Analysis of the separate strands of partially replicated molecules indicates that replication is highly asynchronous with heavy-strand synthesis preceding light-strand synthesis. Native and denatured pulse-labeled replicating molecules exhibit sedimentation properties predicted by the displacement model of replication. Pulse-label incorporated into molecules isolated in the lower band region of ethidium bromide/cesium chloride gradients is found primarily in heavy daughter strands. Pulse-label incorporated into molecules isolated in the upper band region is found primarily in light daughter strands. The results of a series of pulse-chase experiments indicate that the complete process of replication requires approximately 120 minutes. Both daughter molecules are shown to segregate in an open circular form. They are then converted to closed circular molecules having a superhelix density near zero. After closure, the 7 S heavy-strand initation sequence is synthesized, and this process is accompanied by nicking, unwinding and closing of at least one of the parental strands resulting in the formation of the D-loop structure. The 7 S heavy-strand initiation sequence of the D-loop structure is not stable and turns over with a half-life of 7·9 hours. We suggest that all in vivo forms of parental closed circular mitochondrial DNA have superhelix densities of near zero, and that the previously observed superhelix density of closed circular mitochondrial DNA, σ~ ?0·02, results from the loss of the 7 S heavy-strand initiation sequence from D-loop mitochondrial DNA molecules during isolation.  相似文献   

9.
Electron microscopy of SV40 DNA cross-linked by anti-Z DNA IgG.   总被引:5,自引:1,他引:4       下载免费PDF全文
Electron microscopy has revealed the specific binding of bivalent anti-Z DNA immunoglobulin G (IgG) to different sites on supercoiled Form I SV40 DNA. The anti-Z IgG links together left-handed regions located within individual or on multiple SV40 DNA molecules at the superhelix density obtained upon extraction. Velocity sedimentation, electrophoresis, and electron microscopy all show that two or more Z DNA sites in the SV40 genome can be intermolecularly cross-linked with bivalent IgG into high mol. wt. complexes. The formation and stability of the intermolecular antibody-DNA complexes are dependent on DNA superhelix density, as judged by three criteria: (1) relaxed circular (Form II) DNA does not react; (2) release of torsional stress by intercalation of 0.25 microM ethidium bromide removes the antibody; and (3) linearization with specific restriction endonucleases reverses antibody binding and DNA cross-linking. Non-immune IgG does not bind to negatively supercoiled SV40 Form I DNA, nor are complexes observed in the presence of competitive synthetic polynucleotides constitutively in the left-handed Z conformation; B DNA has no effect. Using various restriction endonucleases, three major sites of anti-Z IgG binding have been mapped by electron microscopy to the 300-bp region containing nucleotide sequences controlling SV40 gene expression. A limited number of minor sites may also exist (at the extracted superhelix density).  相似文献   

10.
Superhelix density heterogeneity in closed circular intracellular PM2 DNA   总被引:3,自引:0,他引:3  
Covalently closed intracellular DNA obtained from Pseudomonas BAL 31 20 min after infection with PM2 phage has been shown to be heterogeneous in superhelix density. Analytical band sedimentation, in the presence of low concentrations of ethidium bromide, has been carried out on fractions centripetal and centrifugal to the mode of a single band of closed circular DNA in a preparative propidium iodide–CsCl buoyant density gradient. Different average sedimentation rates, as well as different band shapes, have been observed for upper and lower fractions centrifuged at a dye concentration near the minimum in s° versus ethidium bromide concentration titrations performed on DNA from proximate intermediate fractions. Similar differences, although not as pronounced, have been obtained at a dye concentration corresponding to a point in the steep region of the titrations. Differential band sedimentation experiments performed on the same fractions have confirmed these results. Differential band sedimentation experiments on similarly fractionated mature PM2 I DNA (closed circular form) have shown slight differences in the relative sedimentation rates of upper and lower fractions at dye concentrations corresponding to the steep regions in the titrations. The same experiments, when performed on nicked circular DNA obtained from heating both the mature and intracellular fractions, showed no evidence of differences in sedimentation coefficients. Such results may indicate slight heterogeneity in the superhelix density of viral PM2 I DNA; however, the degree of this heterogeneity would be somewhat less than that of the intracellular DNA. The possibility that superhelix density heterogeneity may arise from displacement loops, which have been found at low levels in intracellular PM2 DNA, has been subjected to experimental tests. Unless such structures are originally present and removed by the isolation procedure, this possibility may be rejected.  相似文献   

11.
We have developed a modified isolation procedure that yields kinetoplast DNA networks containing more than 90% closed circular DNA, as judged by two criteria: (a) In 0.15 M NaCl/0.015 M sodium citrate (pH 7.0), less than 10% of the intact kinetoplast DNA melts in the temperature region of sonicated kinetoplast DNA. In 7.2 M NaCl04 the kinetoplast DNA melts with a Tm 26 degrees C higher than sonicated kinetoplast DNA. Even after complete melting in 7.2 M NaClO4 at 90 degrees C, the network remains intact, as judged by regain of hypochromicity on cooling and analysis in CsCl containing propidium dixodide. (b) In alkaline sucrose gradients more than 90% of the kinetoplast DNA sediments in a single peak. 2. In CsCl gradients containing ethidium bromide of propidium diiodide intact kinetoplast DNA gives a single uni-modal band showing an extremely restricted dye uptake. From the position of the bank relative to the bands of PM2 DNA, the superhelix density of these networks is calculated to be +3.9 twists per 1000 base pairs. The superhelix density of closed mini-circles, efficiently liberated from the networks by shear in a French press, is -0.5 twists per 1000 base pairs. We attribute the high superhelix density (the highest yet observed in any DNA) of intact networks to their compact, highly catenated structure, leading to an additional constraint on dye uptake, superimposed on the restriction due to closed circularity.  相似文献   

12.
Covalently closed relaxed SV40 DNA [SV40(I')] generated by polynucleotide ligase closure of nicked circular SV40 DNA was analyzed by agarose gel electrophoresis. The DNA can be resolved into a series of bands differing in superhelical density whose intensities are approximately symmetrical about a central most intense band. Densitometric analysis of the gel pattern has revealed that the distribution of DNA species conforms to a Boltzmann distribution and has enabled us to derive an equation for the free energy of superhelix formation for SV40 DNA. We believe the observed bands reflect the time-averaged distribution of thermally induced fluctuations in DNA chain conformation in solution at the time of ligase catalyzed phosphodiester bond formation. Densitometric analysis of native supercoiled SV40 DNA, partially unwound in the presence of ethidium bromide, demonstrates that the separation between adjacent bands is approximately half that seen with SV40(I'). Agarose gel electrophoresis was also used to measure the change in average base rotation angle as a function of temperature by a procedure independent of ethidium dye binding.  相似文献   

13.
We have developed a new helicase assay that overcomes many limitations of other assays used to measure this activity. This continuous, kinetic assay is based on the displacement of fluorescent dyes from dsDNA upon DNA unwinding. These ligands exhibit significant fluorescence enhancement when bound to duplex nucleic acids and serve as the reporter molecules of DNA unwinding. We evaluated the potential of several dyes [acridine orange, ethidium bromide, ethidium homodimer, bis-benzimide (DAPI), Hoechst 33258 and thiazole orange] to function as suitable reporter molecules and demonstrate that the latter three dyes can be used to monitor the helicase activity of Escherichia coli RecBCD enzyme. Both the binding stoichiometry of RecBCD enzyme for the ends of duplex DNA and the apparent rate of unwinding are not significantly perturbed by two of these dyes. The effects of temperature and salt concentration on the rate of unwinding were also examined. We propose that this dye displacement assay can be readily adapted for use with other DNA helicases, with RNA helicases, and with other enzymes that act on nucleic acids.  相似文献   

14.
The in vivo effects of ethidium bromide on the integrity of mitochondrial DNA have been studied in a mouse L-cell system in which this DNA may be nearly exclusively radiolabelled. This allows the detection of mitochondrial DNA in the presence of contaminating nuclear DNA and eliminates the need for extensive purification of mitochondria or the use of deoxyribonuclease. The mitochondrial DNA in treated cells rapidly attains a high negative superhelix density and is not substantially nickel or degraded over the course of several days.  相似文献   

15.
The dye-induced separation between closed and open duplex DNAs in buoyant CsCl is determined primarily by the superhelix density of the closed DNA, provided that all other experimental variables (such as the solution density and dye concentration) are held constant. The extent of the buoyant separation may be used to estimate the superhelix density of an uncharacterized closed DNA, by comparison with the corresponding separation with native SV40 DNAs under identical conditions. We present here an extension of these quantitative relationships to permit the use of an arbitrarily selected closed duplex DNA of known superhelix density, with the accompanying open form, as a reference. The general result is that the ratio of buoyant separations for any two closed/open DNA pairs remains a linear function of the difference in superhelix densities between the closed DNAs. The value of the proportionality constant depends, however, upon the magnitude of the superhelix density of the closed DNA selected as reference.  相似文献   

16.
Pools of young (less than 60% replicated) and mature (60-90% replicated) replicating molecules of simian virus 40 (SV40) DNA have been treated at pH 12.2 in order to dissociate growing chains from the parental strands. The molecules are neutralized so that the parental strands can reassociate and they have then been isolated. They are covalently closed structures which sediment rapidly in alkaline sucrose gradients; however, the sedimentation rates are less than the sedimentation rate of SV40 DNA I. Isopycnic banding in CsCl-ethidium bromide and sedimentation velocity studies in the presence of various amounts of ethidium bromide indicate that these structures contain negative superhelical turns and several-fold-higher superhelix densities than SV40 DNA I (the covalently closed DNA molecule). These structures are those that would be predicted if nicking, unwinding, and sealing of the parental strands occurred as replication proceeded. These experiments provide a direct demonstration that there is a progressive decrease in the topological winding number which accompanies SV40 DNA replication.  相似文献   

17.
The rotational variant method of Lutter et al. was developed to measure the bend angle induced when a protein binds to DNA. To measure the intrinsic bend conferred by a sequence of six adenine bases (an A6 tract), the method was modified by relaxing at high temperature to remove the bend. We describe here an alternative approach that involves unwinding the duplex DNA between adjacent bends in plasmids containing tandemly repeated blocks of A-tracts. This method measures the topological difference contributed by adjacent bends when they are in two different rotational settings, and therefore does not require reference to a straight state. The interbend DNA was unwound by use of the intercalator chloroquine, or, alternatively, by raising the temperature in the relaxation reaction. The effect of this unwinding is to change the pitch of the superhelix of the tandem repeats from which the bend angle is measured. The result is a bend angle value that is consistent with that measured using the bend-straightening version of the method. This version offers several advantages that complement the conventional bent versus straight approach.  相似文献   

18.
Theoretical model for the equilibrium behavior of DNA superhelices   总被引:1,自引:0,他引:1  
N Laiken 《Biopolymers》1973,12(1):11-26
A statistical-mechanical model for superhelical DNA is presented. The partition function for a DNA superhelix is written by using a combinatorial approach in order to allow for the known relation between the number of superhelical twists and the states of the base pairs in the double helix. While the theory allows any factors which might contribute to the free energy of superhelical twisting to be included in the statistical weights of the superhelical twists, only the reduction in configurational entropy is considered in this paper. Similarities between an imperfectly matched DNA double helix and a DNA superhelix are used in the derivation of expressions for the entropy of superhelical DNA. Although the partition function is presented in a general form, permitting many equilibrium properties of DNA superhelices to be treated, the application considered in this paper is the calculation of helix–coil transition curves. Several experimentally observed features of such transitions are predicted. For example, the curves are bimodal, with an early and a late transition relative to that of a nicked molecule. The results are very sensitive to the volume within which two parts of the double helix must meet when forming a superhelical twist. The free energy of superhelix formation is calculated, and the results are compared with those obtained from the data of Bauer and Vinograd for ethidium bromide intercalation. In the present model, the free energy increases less sharply with an increase in the number of superhelical twists than observed experimentally, indicating that factors other than configurational entropy probably make important contributions to the free energy of superhelix formation.  相似文献   

19.
When closed circular duplex DNAs are exposed to alkali in the presence of ethidium bromide, from 0 to 100% of the DNA can be recovered as the fully base-paired duplex (native) form upon neutralization of the solutions. The fraction of native DNA depends on the concentration of ethidium bromide, time of incubation, ionic strength and temperature of the solutions before neutralization as well as the molecular weight and superhelix density of the DNA. Limiting ethidium concentrations exist below and above which 0 and 100% of the DNA, respectively, is recovered as native material under a given set of incubation conditions regardless of the length of time of incubation before neutralization. The strong molecular weight dependence of the fraction of DNA recovered in the native form after a given time of pre-neutralization incubation at ethidium concentrations between the limiting values noted above allows larger DNAs to remain fully denatured upon neutralization while smaller DNAs in the same mixture are fully renatured. This permits the rapid fractionation of mixtures of closed duplex DNAs on the basis of molecular weight when a technique for the separation of denatured from fully base-paired DNA is applied to such mixtures. Such a separation has been demonstrated through the marked enrichment of plasmid cloning vector DNA containing cloned inserts in the fractions that remain denatured after neutralization of alkaline solutions of these DNAs containing ethidium bromide.  相似文献   

20.
When a negatively twisted covalently closed DNA is annealed with single-stranded fragments of the same DNA, under proper conditions a loop (or loops) may form by the disruption of a segment (or segments) of base pairs between the complementary strands of the covalently closed DNA, and the formation of base pairs between the strands of the covalently closed DNA and the single-stranded fragments. Since such a process involves essentially no net gain or loss of the number of base pairs, it is driven by the free energy favoring the reduction of the number of superhelical turns. If the fragments are sufficiently long or are present at a sufficiently hig concentration during annealing, the most stable product between a covalently closed DNA and the DNA fragments (under conditions favoring the formation of double-stranded DNA) is a looped molecule devoid of superhelical turns. The size of the looped region or regions, which can be measured by electron microscopy, provides a way to determine the degree of superhelicity of the covalently closed DNA in the absence of the fragments. When this is compared with the degree of superhelicity of the covalently closed DNA determined by titration with the intercalative dye ethidium, the unwinding angle of the DNA double helix due to the intercalation of an ethidium can be calculated. Such measurements were done on two samples of phage PM2 DNA with different extents of supercoiling. The results are in agreement with the value 26 degree obtained recently by alkaline titration of covalently closed PM2 DNA samples in CsC1 density gradients (Wange, J.C., (1974) J. Mol. Biol. 89, 783-801).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号