首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to define the role of secretory phospholipase A2 (sPLA2), calcium-independent PLA2, and cytosolic PLA2 (cPLA2) in arachidonic acid (AA) release from fMLP-stimulated human neutrophils. While fMLP induced the release of extracellular sPLA2 activity and AA, 70% of sPLA2 activity remained associated with the cell. Treatment with the cell-impermeable sPLA2 inhibitors DTT or LY311-727, or the anti-sPLA2 Ab 3F10 all inactivated extracellular sPLA2 activity, but had minimal effect on neutrophil AA mass release. In contrast, coincubation of streptolysin-O toxin-permeabilized neutrophils with DTT, LY311-727, or 3F10 all decreased [3H8]AA release from [3H8]AA-labeled, fMLP-stimulated cells. Exposure to fMLP resulted in a decrease in the electrophoretic mobility of cPLA2, a finding consistent with cPLA2 phosphorylation, and stimulated the translocation of cPLA2 from cytosolic to microsomal and nuclear compartments. The role of cPLA2 was further evaluated with the cPLA2 inhibitor methyl arachidonyl fluorophosphonate, which attenuated cPLA2 activity in vitro and decreased fMLP-stimulated AA mass release by intact neutrophils, but had no effect on neutrophil sPLA2 activity. Inhibition of calcium-independent PLA2 with haloenol lactone suicide substrate had no effect on neutrophil cPLA2 activity or AA mass release. These results indicate a role for cPLA2 and an intracellular or cell-associated sPLA2 in the release of AA from fMLP-stimulated human neutrophils.  相似文献   

2.
Group X secretory phospholipase A2 (sPLA2-X) and cytosolic phospholipase A2 alpha (cPLA2alpha) are involved in the release of arachidonic acid (AA) from membrane phospholipids linked to the eicosanoid production in various pathological states. Recent studies have indicated the presence of various types of cross-talk between sPLA2s and cPLA2alpha resulting in effective AA release. Here we examined the dependence of sPLA2-X-induced potent AA release on the cPLA2alpha activation by using specific cPLA2alpha or sPLA2 inhibitors as well as cPLA2alpha-deficient mice. We found that Pyrrophenone, a cPLA2alpha-specific inhibitor, did not suppress the sPLA2-X-induced potent AA release and prostaglandin E2 formation in mouse spleen cells. Furthermore, the amount of AA released by sPLA2-X from spleen cells was not significantly altered by cPLA2alpha deficiency. These results suggest that sPLA2-X induces potent AA release without activation of cPLA2a, which might be relevant to eicosanoid production in some pathological states where cPLA2a is not activated.  相似文献   

3.
T Kambe  M Murakami  I Kudo 《FEBS letters》1999,453(1-2):81-84
By analyzing human embryonic kidney 293 cell transfectants stably overexpressing various types of phospholipase A2 (PLA2), we have shown that polyunsaturated fatty acids (PUFAs) preferentially activate type IIA secretory PLA2 (sPLA2-IIA)-mediated arachidonic acid (AA) release from interleukin-1 (IL-1)-stimulated cells. When 293 cells prelabeled with 13H]AA were incubated with exogenous PUFAs in the presence of IL-1 and serum, there was a significant increase in [3H]AA release (in the order AA > linoleic acid > oleic acid), which was augmented markedly by sPLA2-IIA and modestly by type IV cytosolic PLA2 (cPLA2), but only minimally by type VI Ca2(+)-independent PLA2, overexpression. Transfection of cPLA2 into sPLA2-IIA-expressing cells produced a synergistic increase in IL-1-dependent [3H]AA release and subsequent prostaglandin production. Our results support the proposal that prior production of AA by cPLA2 in cytokine-stimulated cells destabilizes the cellular membranes, thereby rendering them more susceptible to subsequent hydrolysis by sPLA2-IIA.  相似文献   

4.
To determine if lysophosphatidylcholine (lysoPC) is able to induce proinflammatory changes in monocytes, its ability to stimulate arachidonic acid (AA) release, a product of phospholipase A2 (PLA(2)) activity, has been analyzed. LysoPC increased AA release in THP-1 and Mono Mac6 cells in a time- and concentration-dependent manner. The monocytes expressed both secretory and cytosolic PLA(2) enzymes and AA release was strongly reduced by cellular pretreatment with different PLA(2) inhibitors and by pertussis toxin, an inhibitor of G(i)-protein activation. This indicates that both cytosolic and secretory PLA(2) enzymes regulate specific lysoPC receptor-induced AA release, suggesting lysoPC participation in monocyte proinflammatory activation.  相似文献   

5.
Cytosolic phospholipase A(2) alpha (cPLA(2)alpha) is the only PLA(2) that exhibits specificity for sn-2 arachidonic acid consistent with its primary role in mediating the agonist-induced release of arachidonic acid for eicosanoid production. It is subject to complex mechanisms of regulation that ensure that levels of free arachidonic acid are tightly controlled. The calcium-induced translocation of cPLA(2)alpha from the cytosol to membrane regulates its interaction with phospholipid substrate. cPLA(2)alpha is additionally regulated by phosphorylation on sites in the catalytic domain. Because of its central position as the upstream regulatory enzyme for initiating production of several classes of bioactive lipid mediators (leukotrienes, prostaglandins and platelet-activating factor), it is a potentially important pharmacological target for the control of inflammatory diseases.  相似文献   

6.
Damaging reactive oxygen species are released during episodes of ischemia and reperfusion. Some cellular adaptive responses are triggered to protect the injured organ, while other cascades are triggered which potentiate the damage. In these studies, we demonstrate that rat cardiomyocte H9c2 cells release arachidonic acid in response to hydrogen peroxide. In H9c2 cells, arachidonic acid release is attenuated by methyl arachidonyl fluorophosphonate (MAFP) and pyrrophenone, indicating that a phospholipase A2 Group IV enzyme mediates arachidonic acid mobilization. Moreover, hydrogen peroxide alters the cellular morphology of the H9c2 cells, causing drastic cell shrinkage. Because MAFP and pyrrophenone prevent the morphological alterations caused by hydrogen peroxide, these studies show that phospholipase A2 Group IV activity is likely integrally involved in the damage initiated by hydrogen peroxide.  相似文献   

7.
Mammalian secreted phospholipases A(2) (sPLA2s) comprise a group of at least eight enzymes, including the recently identified group X sPLA2. A bacterial expression system was developed to produce human group X sPLA2 (hGX). Inhibition studies show that the sPLA2 inhibitor LY311727 binds modestly more tightly to human group IIA sPLA2 than to hGX and that a pyrazole-based inhibitor of group IIA sPLA2 is much less active against hGX. The phospholipid head group preference of vesicle-bound hGX was determined. hGX binds tightly to phosphatidylcholine vesicles, which is thought to be required to act efficiently on cells. Tryptophan 67 hGX makes a significant contribution to interfacial binding to zwitterionic vesicles. As little as 10 ng/ml hGX releases arachidonic acid for cyclooxygenase-2- dependent prostaglandin E(2) generation when added exogenously to adherent mammalian cells. In contrast, human group IIA, rat group V, and mouse group IB sPLA2s are virtually inactive at releasing arachidonate when added exogenously to adherent cells. Dislodging cells from the growth surface enhances the ability of all the sPLA2s to release fatty acids. Studies with CHO-K1 cell mutants show that binding of sPLA2s to glycosaminoglycans is not the basis for poor plasma membrane hydrolysis by group IB, IIA, and V sPLA2s.  相似文献   

8.
Activation of the cytosolic Group IV phospholipase A(2) (cPLA(2)) by agonists has been correlated with the direct phosphorylation of the enzyme by members of the mitogen-activated protein kinase (MAPK) cascade. Phosphorylation of the cPLA(2) increases the specific activity of the enzyme, thereby stimulating the arachidonic acid release. We show here, however, that conditions that lead to full phosphorylation of the cPLA(2) do not lead to enhanced AA release. As the above observations were made under both Ca(2+)-dependent and Ca(2+)-independent conditions, they emphasize that the current paradigm for activation of the cPLA(2) in cells involving both phosphorylation and Ca(2+) is incomplete and that other factors should be taken into account.  相似文献   

9.
10.
Group V secretory phospholipase A2 (sPLA2) rather than Group IIA sPLA2 is involved in short term, immediate arachidonic acid mobilization and prostaglandin E2 (PGE2) production in the macrophage-like cell line P388D1. When a new clone of these cells, P388D1/MAB, selected on the basis of high responsivity to lipopolysaccharide plus platelet-activating factor, was studied, delayed PGE2 production (6-24 h) in response to lipopolysaccharide alone occurred in parallel with the induction of Group V sPLA2 and cyclooxygenase-2 (COX-2). No changes in the level of cytosolic phospholipase A2 (cPLA2) or COX-1 were observed, and Group IIA sPLA2 was not detectable. Use of a potent and selective sPLA2 inhibitor, 3-(3-acetamide 1-benzyl-2-ethylindolyl-5-oxy)propanesulfonic acid (LY311727), and an antisense oligonucleotide specific for Group V sPLA2 revealed that delayed PGE2 was largely dependent on the induction of Group V sPLA2. Also, COX-2, not COX-1, was found to mediate delayed PGE2 production because the response was completely blocked by the specific COX-2 inhibitor NS-398. Delayed PGE2 production and Group V sPLA2 expression were also found to be blunted by the inhibitor methylarachidonyl fluorophosphonate. Because inhibition of Ca2+-independent PLA2 by an antisense technique did not have any effect on the arachidonic acid release, the data using methylarachidonyl fluorophosphonate suggest a key role for the cPLA2 in the response as well. Collectively, the results suggest a model whereby cPLA2 activation regulates Group V sPLA2 expression, which in turn is responsible for delayed PGE2 production via COX-2.  相似文献   

11.
Phospholipases A2 (PLA2) and cyclooxygenases (COX) are important enzymes responsible for production of potent lipid mediators, including prostaglandins (PG) and thromboxane A2. We investigated coupling between PLA2 and COX isoforms by using transient transfection in COS-1 cells. Untransfected cells, incubated with or without phorbol ester + the Ca2+ ionophore ionomycin, generated trivial amounts of PGE2. In cells co-transfected with cytosolic PLA2 (cPLA2) and COX-1 or COX-2, phorbol ester + ionomycin markedly stimulated PGE2 production. There was no preferential coupling of cPLA2 to either of the COX isoforms. In contrast, group IIA secretory PLA2 (sPLA2) co-transfected with COX-1 or COX-2 did not lead to an increase in PGE2 production, despite high levels of sPLA2 enzymatic activity. Transfection of cPLA2 did not affect basal free arachidonic acid (AA) levels. Phorbol ester + ionomycin stimulated release of AA in cPLA2-transfected COS-1 cells, but not in untransfected cells, whereas sPLA2 transfection (without stimulation) led to high basal free AA. Thus, AA released by cPLA2 is accessible to both COX isoforms for metabolism to PG, whereas AA released by sPLA2 is not metabolized by COX.  相似文献   

12.
We previously described that recombinant interleukin-1beta (IL-1beta) induced the significant release of substance P (SP) via a cyclooxygenase (COX) pathway in primary cultured rat dorsal root ganglion (DRG) cells. In the present study, we examined the involvement of two types of phospholipase A2 (PLA2) enzymes, which lie upstream of COX in the prostanoid-generating pathway, in the IL-1beta-induced release of SP from DRG cells. The expression of type IIA secretory PLA2 (sPLA2 -IIA) mRNA was undetectable by ribonuclease protection assay in non-treated DRG cells, while in DRG cells incubated with 1 ng/mL of IL-1beta, the expression was induced in a time-dependent manner. On the other hand, type IV cytosolic PLA2 (cPLA2 ) mRNA was constitutively expressed in the non-treated DRG cells, and treatment with 1 ng/mL of IL-1beta for 3 h significantly increased the levels of cPLA2 mRNA. The IL-1beta-induced SP release was significantly inhibited by the sPLA2 inhibitor, thioetheramide phosphorylcholine (TEA-PC), and the cPLA2 inhibitor, arachidonyl trifluoromethyl ketone (AACOCF3 ). Furthermore AACOCF3 suppressed the induction of sPLA2 -IIA mRNA expression induced by IL-1beta. These observations suggested that two types of PLA2, sPLA2 -IIA and cPLA2, were involved in the IL-1beta-induced release of SP from DRG cells, and that the functional cross-talk between the two enzymes might help to control their activity in the prostanoid-generating system in DRG cells. These events might be key steps in the inflammation-induced hyperactivity in primary afferent neurons of spinal cord.  相似文献   

13.
Although it has been proposed that arachidonate release by several secretory phospholipase A2 (sPLA2) isozymes is modulated by cytosolic PLA2 (cPLA2), the cellular component(s) that intermediates between these two signaling PLA2s remains unknown. Here we provide evidence that 12- or 15-lipoxygenase (12/15-LOX), which lies downstream of cPLA2, plays a pivotal role in cytokine-induced gene expression and function of sPLA2-IIA. The sPLA2-IIA expression and associated PGE2 generation induced by cytokines in rat fibroblastic 3Y1 cells were markedly attenuated by antioxidants that possess 12/15-LOX inhibitory activity. 3Y1 cells expressed 12/15-LOX endogenously, and forcible overexpression of 12/15-LOX in these cells greatly enhanced cytokine-induced expression of sPLA2-IIA, with a concomitant increase in delayed PG generation. Moreover, studies using 293 cells stably transfected with sPLA2-IIA revealed that stimulus-dependent hydrolysis of membrane phospholipids by sPLA2-IIA was enhanced by overexpression of 12/15-LOX. These results indicate that the product(s) generated by the cPLA2-12/15-LOX pathway following cell activation may play two roles: enhancement of sPLA2-IIA gene expression and membrane sensitization that leads to accelerated sPLA2-IIA-mediated hydrolysis.  相似文献   

14.
Oxidant stress and phospholipase A2 (PLA2) activation have been implicated in numerous proinflammatory responses of the mesangial cell (MC). We investigated the cross-talk between group IValpha cytosolic PLA2 (cPLA2alpha) and secretory PLA2s (sPLA2s) during H2O2-induced arachidonic acid (AA) release using two types of murine MC: (i). MC+/+, which lack group IIa and V PLA2s, and (ii). MC-/-, which lack groups IIa, V, and IValpha PLA2s. H2O2-induced AA release was greater in MC+/+ compared with MC-/-. It has been argued that cPLA2alpha plays a regulatory role enhancing the activity of sPLA2s, which act on phospholipids to release fatty acid. Group IIa, V, or IValpha PLA2s were expressed in MC-/- or MC+/+ using recombinant adenovirus vectors. Expression of cPLA2alpha in H2O2-treated MC-/- increased AA release to a level approaching that of H2O2-treated MC+/+. Expression of either group IIa PLA2 or V PLA2 enhanced AA release in MC+/+ but had no effect on AA release in MC-/-. When sPLA2 and cPLA2alpha are both present, the effect of H2O2 is manifested by preferential release of AA compared with oleic acid. Inhibition of the ERK and protein kinase C signaling pathways with the MEK-1 inhibitor, U0126, and protein kinase C inhibitor, GF 1092030x, respectively, and chelating intracellular free calcium with 1,2-bis(2-aminophenoyl)ethane-N,N,N',N'-tetraacetic acid-AM, which also reduced ERK1/2 activation, significantly reduced H2O2-induced AA release in MC+/+ expressing either group IIa or V PLA2s. By contrast, H2O2-induced AA release was not enhanced when ERK1/2 was activated by infection of MC+/+ with constitutively active MEK1-DD. We conclude that the effect of group IIa and V PLA2s on H2O2-induced AA release is dependent upon the presence of cPLA2alpha and the activation of PKC and ERK1/2. Group IIa and V PLA2s are regulatory and cPLA2alpha is responsible for AA release.  相似文献   

15.
Exposure of PC12 cells to A23187 or thapsigargin caused a concentration-dependent release of arachidonic acid (AA) mediated by cytosolic phospholipase A2 (PLA2). Under the same conditions, however, analysis of nitric oxide (NO) formation revealed that activation of NO synthase (NOS) is best described by a bell-shaped curve. Reduced detection of NO observed at increasing A23187 or thapsigargin concentrations was not due to formation of peroxynitrite or to activation of NO-consuming processes, but rather to AA-dependent inhibition of NOS activity. Furthermore, NO formation observed under optimal conditions for NOS activity was suppressed by AA as well as by the PLA2 activator melittin. Finally, the effects of AA were not the consequence of direct enzyme inhibition, because this lipid messenger failed to inhibit formation of NO by purified neuronal NOS, but were mediated by an AA-dependent signaling and not by downstream products of the cyclooxygenase and lipoxygenase pathways. In conclusion, the present study underscores a novel mechanism whereby endogenous, or exogenous, AA promotes inhibition of NOS activity. Because AA is generated in response to various agonists acting on membrane receptors and extensively released in inflammatory conditions, these findings have important physiopathological implications.  相似文献   

16.
Cytosolic group IV phospholipase A2 (cPLA2) is a ubiquitously expressed enzyme with key roles in intracellular signaling. The current paradigm for activation of cPLA2 by stimuli proposes that both an increase in intracellular calcium and mitogen-activated protein kinase-mediated phosphorylation occur together to fully activate the enzyme. Calcium is currently thought to be needed for translocation of the cPLA2 to the membrane via a C2 domain, whereas the role of cPLA2 phosphorylation is less clearly defined. Herein, we report that brief exposure of P388D1 macrophages to UV radiation results in a rapid, cPLA2-mediated arachidonic acid mobilization, without increases in intracellular calcium. Thus, increased Ca2+ availability is a dispensable signal for cPLA2 activation, which suggests the existence of alternative mechanisms for the enzyme to efficiently interact with membranes. Our previous in vitro data suggested the importance of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) in the association of cPLA2 to model membranes and hence in the regulation of cPLA2 activity. Experiments described herein show that PtdInsP2 also serves a similar role in vivo. Moreover, inhibition of PtdInsP2 formation during activation conditions leads to inhibition of the cPLA2-mediated arachidonic acid mobilization. These results suggest that cellular PtdInsP2 levels are involved in the regulation of group IV cPLA2 activation.  相似文献   

17.
Clinical observations strongly support an association of circulating levels of secretory phospholipases A(2) (sPLA(2)) in atherosclerotic cardiovascular disease (ACVD). Two modes of action can provide causal support for these statistical correlations. One is the action of the enzymes on circulating lipoproteins and the other is direct action on the lipoproteins once in the arterial extracellular intima. In this review we discuss results suggesting a distinct profile of characteristics related to localization, action on plasma lipoproteins and interaction with arterial proteoglycans for sPLA(2)-IIA and sPLA(2)-V. The differences observed indicate that these enzymes may contribute to atherosclerosis through dissimilar pathways. Furthermore, we comment on recent animal studies from our laboratory indicating that the expression of type V enzyme is up-regulated by genetically and nutritionally-induced dyslipidemias but not the group type IIA enzyme, which is well known to be up-regulated by acute inflammation. The results suggest that if similar up-regulation occurs in humans in response to hyperlipidemia, it may create a distinctive link between the group V enzyme and the disease.  相似文献   

18.
Secretory phospholipase A(2)s (sPLA(2)) hydrolyze glycerophospholipids to liberate lysophospholipids and free fatty acids. Although group X (GX) sPLA(2) is recognized as the most potent mammalian sPLA(2) in vitro, its precise physiological function(s) remains unclear. We recently reported that GX sPLA(2) suppresses activation of the liver X receptor in macrophages, resulting in reduced expression of liver X receptor-responsive genes including ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1), and a consequent decrease in cellular cholesterol efflux and increase in cellular cholesterol content (Shridas et al. 2010. Arterioscler. Thromb. Vasc. Biol. 30: 2014-2021). In this study, we provide evidence that GX sPLA(2) modulates macrophage inflammatory responses by altering cellular cholesterol homeostasis. Transgenic expression or exogenous addition of GX sPLA(2) resulted in a significantly higher induction of TNF-α, IL-6, and cyclooxygenase-2 in J774 macrophage-like cells in response to LPS. This effect required GX sPLA(2) catalytic activity, and was abolished in macrophages that lack either TLR4 or MyD88. The hypersensitivity to LPS in cells overexpressing GX sPLA(2) was reversed when cellular free cholesterol was normalized using cyclodextrin. Consistent with results from gain-of-function studies, peritoneal macrophages from GX sPLA(2)-deficient mice exhibited a significantly dampened response to LPS. Plasma concentrations of inflammatory cytokines were significantly lower in GX sPLA(2)-deficient mice compared with wild-type mice after LPS administration. Thus, GX sPLA(2) amplifies signaling through TLR4 by a mechanism that is dependent on its catalytic activity. Our data indicate this effect is mediated through alterations in plasma membrane free cholesterol and lipid raft content.  相似文献   

19.
Exposure of mouse peritoneal macrophages to ethanol induces a rapid release of arachidonic acid to the extracellular medium. All major classes of phospholipids, phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol contribute to this release. Ethanol-induced mobilization of arachidonic acid occurs by deacylation, but it is not accompanied by eicosanoid synthesis. These data suggest that at least two signals are necessary for the release and metabolism of arachidonic acid. Ethanol also activates a phospholipase C which hydrolyzes only phosphatidylinositol, and not its phosphorylated derivatives.  相似文献   

20.
It has been reported that interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2) expression is regulated by peroxisome proliferator-activated receptor (PPAR)-gamma synthetic ligands. We have shown previously that cytosolic phospholipase A2 (cPLA2) is able to activate gene expression through PPAR-gamma response elements (Pawliczak, R., Han, C., Huang, X. L., Demetris, A. J., Shelhamer, J. H., and Wu, T. (2002) J. Biol. Chem. 277, 33153-33163). In this study we investigated the influence of cPLA2 and secreted phospholipase A2 (sPLA2) Group IIA, Group V, and Group X on IL-8 and COX-2 expression in human lung epithelial cells (A549 cells). We also studied the results of cPLA2 activation by epidermal growth factor (EGF) and calcium ionophore (A23187) on IL-8 and COX-2 reporter gene activity, mRNA level, and protein synthesis. cPLA2 overexpression and activation increased both IL-8 and COX-2 reporter gene activity. Overexpression and activation of Group IIA, Group V, or Group X sPLA2s did not increase IL-8 and COX-2 reporter gene activity. Methyl arachidonyl fluorophosphate, a cPLA2 inhibitor, inhibited the effect of A23187 and of EGF on both IL-8 and COX-2 reporter gene activity, steady state levels of IL-8 and COX-2 mRNA, and IL-8 and COX-2 protein expression. Small inhibitory RNAs directed against PPAR-gamma1 and -gamma2 blunted the effect of A23187 and of EGF on IL-8 and COX-2 protein expression. Moreover small inhibitory RNAs directed against cPLA2 decreased the effect of A23187 and EGF on IL-8 and COX-2 protein expression. These results demonstrate that cPLA2 has an influence on IL-8 and COX 2 gene and protein expression at least in part through PPAR-gamma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号