首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The changes in arterial plasma concentrations of immunoreactive leukotriene B (LTB) were compared after antigen challenge of two groups of sensitized, mepyramine-treated, and mechanically ventilated guinea pigs, one fed a diet enriched with fish oil and the other a control diet enriched with beef tallow. The lung tissue of animals fed a fish oil-enriched diet (FFD) for 9 to 10 wk incorporated eicosapentaenoic acid (EPA) and docosahexaenoic acid to constitute 8 to 9% of total fatty acid content, whereas these alternative fatty acids constituted less than 1% of the total fatty acid content of the lung tissue of animals on a beef tallow-supplemented diet (BFD). The maximum increase after antigen challenge in immunoreactive LTB4 from 0.16 +/- 0.04 ng/ml to 0.84 +/- 0.25 ng/ml in BFD animals and from 0.47 +/- 0.11 to 5.1 +/- 1.4 ng/ml immunoreactive LTB (LTB4 and LTB5) in FFD animals was significant (p less than 0.02) for each. Furthermore, the increase in total immunoreactive LTB in mepyramine-treated FFD animals was significantly greater than the increase in LTB4 in mepyramine-treated BFD guinea pigs at 2 to 8 min after antigen challenge (p less than 0.05). Resolution of arterial plasma immunoreactive LTB from pooled samples by reverse-phase high-performance liquid chromatography demonstrated that the sum of LTB4 and LTB5 in FFD animals exceeded that of LTB4 in BFD animals and that the quantity of LTB4 in the FFD animals was at least as great as that in the BFD animals during anaphylaxis. The products eluting at the retention times of LTB4 and LTB5 exhibited the chemotactic activity of their respective synthetic standards. The combination of indomethacin and mepyramine markedly augmented the antigen-induced increase in arterial plasma immunoreactive LTB4 concentrations in BFD animals, but had no effect on immunoreactive LTB levels in FFD animals. Limited in vivo measurements showing a lesser increase of plasma immunoreactive thromboxane B2 in the FFD relative to the BFD animals during anaphylaxis and ex vivo measurements showing a decreased LTB4-stimulated (cyclooxygenase product-dependent) contractile response of pulmonary parenchymal strips from the FFD relative to the BFD animals provide evidence for blockade in the cyclooxygenase pathway in the FFD animals. The measurements of arterial plasma LTB indicate that indomethacin treatment alone, which inhibits cyclooxygenase activity, and FFD treatment each augment the metabolism of arachidonic acid by the 5-lipoxygenase pathway in animals pretreated with mepyramine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Concurrent changes in concentrations of a product of the cyclooxygenase (prostaglandin [PG] F2 alpha) and lipoxygenase (leukotriene [LT] B4) routes of metabolism of arachidonic acid were measured by radioimmunoassay within the wall of periovulatory ovine follicles. Increased concentrations of PGF2 alpha were detected within follicles before, during and following the time of ovulation. A significant rise in LTB4 was not observed until after follicular rupture had occurred. Inhibition of synthesis of PGF2 alpha by indomethacin was associated with a complete blockade of ovulation. Nordihydroguaiaretic acid, an inhibitor of 5-lipoxygenase, had no effect on ovulation. Periovulatory administration of either drug did not alter sera profiles of progesterone during subsequent luteal phases. These results reconfirm the importance of the cyclooxygenase system in the mechanism of ovulation. It does not appear that follicular LTB4 is a key component in the processes of ovulation or luteinization in sheep.  相似文献   

3.
The sulfhydryl reactant N-ethylmaleimide (NEM) stimulates the release and cyclooxygenase metabolism of arachidonic acid in rat alveolar macrophages. Because both 5-lipoxygenation and leukotriene (LT) C4 synthesis represent sulfhydryl-dependent steps in the 5-lipoxygenase pathway, we examined the effect of NEM on 5-lipoxygenase, as well as cyclooxygenase, metabolism in resting and agonist-stimulated cells by reverse-phase high performance liquid chromatography and radioimmunoassay. NEM at 5-10 microM stimulated the synthesis of thromboxane, but not prostaglandin E2 or the 5-lipoxygenase products LTC4, LTB4, or 5-hydroxyeicosatetraenoic acid from endogenously released arachidonate. In the presence of exogenous fatty acid, however, NEM stimulated the synthesis of large quantities of LTB4. The effect of NEM on arachidonate metabolism stimulated by the calcium ionophore A23187 and the particulate zymosan was also investigated. NEM augmented arachidonate release and thromboxane synthesis stimulated by A23187 but inhibited A23187-induced LTC4 synthesis with an IC50 of approximately 4.3 microM. This inhibitory effect closely paralleled the ability of NEM to deplete intracellular glutathione (IC50 approximately 4.3 microM). Preincubation with the intracellular cysteine delivery agent L-2-oxothiazolidine-4-carboxylate augmented intracellular glutathione concentration and A23187-stimulated LTC4 synthesis and attenuated the capacity of NEM to deplete glutathione and inhibit LTC4 synthesis. While LTB4 and 5-hydroxyeicosatetraenoic synthesis were unaffected at these low NEM concentrations, LTB4 synthesis was inhibited at high concentrations (IC50 approximately 210 microM). Zymosan-induced eicosanoid synthesis was modulated by NEM in a similar fashion. Thus, NEM is an agonist of arachidonate metabolism with the capacity to modulate the spectrum of macrophage-derived eicosanoids by virtue of specific biochemical interactions with substrates and enzymes of the 5-lipoxygenase pathway.  相似文献   

4.
Leukotriene B4 (LTB4) is a potent chemotactic agent formed via the 5-lipoxygenase pathway from arachidonic acid. To understand the role LTB4 plays in several pathological processes it is essential that endogenous concentrations of LTB4 be accurately quantitated. We have developed a method based on electron capture negative ion mass spectrometry for the analysis of LTB4 in serum at low picogram per milliliter concentrations. Blood is collected into the 5-lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) to suppress ex vivo formation. Serum is isolated, equilibrated with the internal standard [2H4]LTB4, and extracted using octadecyl-silica (C-18) cartridges. After conversion of the carboxylic acids to their pentafluorobenzyl esters the extract is purified by straight-phase HPLC. Gas chromatographic-mass spectrometric analysis is accomplished on the tert-butyldimethylsilyl ether derivatives using dual-selected ion monitoring of m/z 431 and 435. These ions correspond to loss of tert-butyldimethylsilanol from the (M-PFB)- ion of endogenous and [2H4]LTB4, respectively. The concentration of LTB4 in human serum samples was 10.0 +/- 4.0 pg/ml (n = 5). The assay exhibited satisfactory precision, with an intraassay coefficient of variation of 17% and a high degree of accuracy. The concentration of LTB4 in serum collected with (NDGA) was less than 10% of that observed in blood collected without the lipoxygenase inhibitor. Ex vivo formation can therefore be a major obstacle in assessing circulating levels of LTB4.  相似文献   

5.
Glucocorticoids stimulate polyclonal immunoglobulin (Ig) production in cultures of human peripheral blood lymphocytes. The mechanism of action of glucocorticoids in this system, and indeed in any physiologic system, is unknown. Because glucocorticoids stimulate the production of phospholipase A2-inhibitory glycoproteins, we investigated whether glucocorticoids stimulate polyclonal Ig production by inhibition of arachidonic acid metabolism. Nonspecific lipoxygenase/cyclooxygenase inhibitors stimulate polyclonal Ig production in a manner similar to the effect of glucocorticoids, whereas specific cyclooxygenase inhibitors actually inhibit Ig production. Two specific 5-lipoxygenase inhibitors, with little or no activity against cyclooxygenase or other lipoxygenases, also stimulate Ig production. The dose-response effect of all of these drugs on Ig production was similar to the dose response of inhibition of 5-lipoxygenase. Leukotriene B4 (LTB4) added in low concentrations (10(-10)M) on days 1, 2, and 3 of a culture eliminated the stimulatory effect of glucocorticoids or 5-lipoxygenase inhibitors, whereas LTC4, LTD4, prostaglandin E, or 5-hydroxyeicosatetraenoic acid had no effect. These results suggest that the relevant action of glucocorticoids in stimulating Ig production might be in preventing endogenous arachidonic acid metabolism, perhaps the endogenous production of LTB4.  相似文献   

6.
L-663,536 (3-[1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2, 2-dimethylpropanoic acid) is a potent inhibitor of leukotriene (LT) biosynthesis in intact human polymorphonuclear leukocytes (PMN) (IC50, 2.5 nM). Similarly, L-663,536 inhibited A23187-induced LTB4 formation by rat peripheral blood and elicited PMN. At concentrations where inhibition of leukotriene biosynthesis occurred in human whole blood (1.1 microM), no effect was seen on cyclooxygenase or 12-lipoxygenase, an effect also observed in washed human platelets. The compound had no effect on rat or porcine 5-lipoxygenase indicating that L-663,536 is not a direct 5-lipoxygenase inhibitor. When administered in vivo L-663,536 was a potent inhibitor of antigen-induced dyspnea in inbred rats pretreated with methysergide (ED50, 0.036 mg/kg p.o.) and of Ascaris-induced bronchoconstriction in squirrel monkeys (1 mg/kg p.o.). The compound inhibited leukotriene biosynthesis in vivo in a rat pleurisy model (ED50, 0.2 mg/kg p.o.), an inflamed rat paw model (ED50, 0.8 mg/kg), a model of leukotriene excretion in rat bile following antigen provocation, and a model in the guinea-pig ear where leukotriene synthesis was induced by topical challenge with ionophore A23187 (ED50, 2.5 mg/kg p.o. and 0.6 micrograms topically). The results indicate that L-663,536 is a potent inhibitor of leukotriene biosynthesis both in vitro and in vivo indicating that the compound is suitable for studying the role of leukotrienes in a variety of pathological situations.  相似文献   

7.
Bacterial endotoxin produces sepsis associated with alterations in body temperature (fever or hypothermia). The intraperitoneal administration of bacterial endotoxin, lipopolysaccharide (LPS; 50 microg/mouse) led to a decrease in colonic temperature starting 1 hr after the injection. The hypothermic effect was accompanied by a significant increase in hypothalamic leukotriene B4 (LTB4) and prostaglandin E2 (PGE2) levels. 5-lipoxygenase inhibitor, zileuton (200 and 400 mg/kg, po) administered 30 min before LPS challenge significantly prevented hypothermia. However, non-selective cyclooxygenase inhibitor, indomethacin (10, 20 mg/kg, po) did not reverse the hypothermic response. Further, pretreatment of mice with zileuton prevented LPS-stimulated increase in hypothalamic LTB4 levels and caused a relatively small increase in PGE2 levels. Indomethacin had no effect on LTB4 levels but it reduced PGE2 levels. These results suggest a possible involvement of leukotrienes in LPS-induced hypothermia and the potential protective role of 5-lipoxygenase inhibitors in endotoxemia.  相似文献   

8.
This study examined the hemodynamic effects of leukotriene B4 (LTB4) in chronically instrumented awake sheep, and the role of cyclooxygenase products in the sheep's response to LTB4. LTB4 (25 micrograms) was given as a bolus into the pulmonary artery. Six sheep were studied with LTB4, both before and after pretreatment with meclofenamate (5 mg/kg load, 3 mg/kg/hr maintenance infusion). LTB4 alone caused a rapid rise in pulmonary arterial pressure from 15 +/- 1 to 42 +/- 11 cm H2O. LTB4 had no effect on pulmonary arterial pressure following pretreatment with meclofenamate. LTB4 alone caused an increase in serum thromboxane B2 (TxB2) from 130 +/- 35 to 320 +/- 17 pg/ml 3 minutes after dosing but did not increase TxB2 following pre-treatment with meclofenamate. LTB4 caused a slight decrease in mean systemic arterial pressure and a transient fall in circulating white blood cells, both of which were unaffected by meclofenamate pre-treatment. The vasoactive effects of LTB4 in the pulmonary circulation appear to be mediated indirectly through the production of cyclooxygenase metabolites of arachidonic acid.  相似文献   

9.
CGS 8515 inhibited 5-hydroxyeicosatetraenoic acid (5-HETE) and leukotriene B4 synthesis in guinea pig leukocytes (IC50 = 0.1 microM). The compound did not appreciably affect cyclooxygenase (sheep seminal vesicles), 12-lipoxygenase (human platelets), 15-lipoxygenase (human leukocytes) and thromboxane synthetase (human platelets) at concentrations up to 100 microM. CGS 8515 inhibited A23187-induced formation of leukotriene products in whole blood (IC50 values of 0.8 and 4 microM, respectively, for human and rat) and in isolated rat lung (IC50 less than 1 microM) in vitro. The selectivity of the compound as a 5-lipoxygenase inhibitor was confirmed in rat whole blood by the 20-70-fold separation of inhibitory effects on the formation of leukotriene from prostaglandin products. Ex vivo and in vivo studies with rats showed that CGS 8515, at an oral dose of 2-50 mg/kg, significantly inhibited A23187-induced production of leukotrienes in whole blood and in the lung. The effect persisted for at least 6 h in the ex vivo whole blood model. CGS 8515, at oral doses as low as 5 mg/kg, significantly suppressed exudate volume and leukocyte migration in the carrageenan-induced pleurisy and sponge models in the rat. Inhibitory effects of the compound on inflammatory responses and leukotriene production in leukocytes and target organs are important parameters suggestive of its therapeutic potential in asthma, psoriasis and inflammatory conditions.  相似文献   

10.
Human mast cells, dispersed from lung tissue by proteolytic treatment and enriched to a purity of 23 to 68% by density-gradient centrifugation, were maintained ex vivo for up to 13 days when co-cultured with mouse skin-derived 3T3 fibroblasts in RPMI 1640 containing 10% fetal calf serum. The human mast cells were adherent to the fibroblast cultures within 2 to 4 hr after seeding, and after 7 days of co-culture were localized between the layers of fibroblasts. The cell surfaces of the mast cells and the fibroblasts did not form tight junctions, but rather approached within 20 nm of each other. The co-cultured mast cells did not divide; they maintained their cellular content of histamine and TAMe esterase and resembled in vivo mast cells in that their secretory granules exhibited scroll patterns and their nuclei were oval. Both the freshly isolated and the co-cultured mast cells responded to activation with anti-human IgE by exocytosing histamine and generating and releasing arachidonic acid metabolites. When freshly isolated mast cells were activated immunologically, they exocytosed 38 +/- 8% of their total histamine content and released 28 +/- 1.9 ng (mean +/- range, n = 2) of immunoreactive equivalents of prostaglandin D2 (PGD2) per microgram of total cellular histamine, but did not generate significant amounts of either leukotriene C4 (LTC4) or leukotriene B4 (LTB4). The 1-wk co-cultured mast cells, on the other hand, exocytosed 43 +/- 2.4% of their total histamine content, and released 86 +/- 10, 43 +/- 20, and 5.2 +/- 5.2 ng (mean +/- SD, n = 4) of immunoreactive equivalents of PGD2, LTC4, and LTB4, respectively, per microgram of histamine. Thus, human lung-derived mast cells can be maintained ex vivo when co-cultured with fibroblasts, and, when treated with anti-IgE, they metabolize arachidonic acid via both the cyclooxygenase and the 5-lipoxygenase pathways.  相似文献   

11.
We examined whether arachidonate metabolism exerted any influence on the enhancement of intracellular transglutaminase activity in mouse peritoneal macrophages. Enhancement of the intracellular transglutaminase activity was observed on stimulation of macrophages with normal sheep red blood cells (SRBC) or immunoglobulin G (IgG)-coated SRBC, and was inhibited by inhibitors of phospholipase A2 and cyclooxygenase. Moreover, prostaglandin E2 (PGE2), a main product of the cyclooxygenase pathway, leukotriene B4 (LTB4), a product of 5-lipoxygenase, and arachidonic acid also could directly induce high levels of intracellular transglutaminase activity without stimulation of macrophages by SRBC or IgG-coated SRBC, but leukotriene C4, prostaglandin D2, and prostacyclin were unable to induce high activity of the enzyme. Enhancement of transglutaminase activity induced by LTB4 was inhibited by cyclooxygenase inhibitor, but the enzyme activity induce by PGE2 was not inhibited. Furthermore, the quantity of PGE2 released into the culture medium of macrophages stimulated with SRBC or IgG-coated SRBC correlated well with the activity of intracellular transglutaminase in macrophages. Moreover, enhancement of transglutaminase activity by treatment of macrophages with SRBC or IgG-coated SRBC was partially suppressed by sodium benzoate, which is a scavenger of hydroxy radical. These findings suggest that arachidonate metabolism, in particular the cyclooxygenase pathway, plays an important role in the enhancement of intracellular transglutaminase activity.  相似文献   

12.
Characterization of leukotriene A4 and B4 biosynthesis   总被引:4,自引:0,他引:4  
We have studied LTA4 and LTB4 synthesis in a cell-free system from RBL-1 cells. All the enzymes leading to the formation of LTB4 from arachidonic acid are localized in the soluble fraction (100,000 x g supernatant) of these cells. The formation of LTA4 and LTB4 is complete by 10 min. When we varied the arachidonic acid concentration from 1 to 300 microM, the synthesis of LTB4 leveled off at 30 microM and of LTA4 at 100 microM while 5-HETE had not reached a plateau at 300 microM. This enzyme system has the capacity to generate relatively large amounts of 5-HETE and LTA4 and only a relatively small amount of LTB4. Therefore, the rate limiting step is not the 5-lipoxygenase, the first step in the pathway, but the conversion of LTA4 to LTB4. This is in contrast to cyclooxygenase pathway where the first step is rate limiting. A second addition of arachidonic acid at submaximal concentration for LTA4 synthesis did not produce any additional LTA4 or LTB4. Further study of this phenomenon showed that the 5-lipoxygenase and LTA-synthase were inactivated with time by preincubation with arachidonic acid and that peroxy fatty acids seem to be the inactivating species.  相似文献   

13.
To determine identities of mediators and mechanisms for their release from pulmonary airway epithelial cells, we examined the capacities of epithelial cells from human, dog and sheep airways to incorporate, release and oxygenate arachidonic acid. Purified cell suspensions were incubated with radiolabeled arachidonic acid and/or ionophore A23187; fatty acid esterification and hydrolysis were traced chromatographically, and oxygenated metabolites were identified using high-pressure liquid chromatography and mass-spectrometry. In each species, cellular uptake of 10 nM arachidonic acid was concentrated in the phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine fractions, and subsequent incubation with 5 microM A23187 caused release of 10-12% of the radiolabeled pool selectively from phosphatidylcholine and phosphatidylinositol. By contrast, the products of arachidonic acid oxygenation were species-dependent and in the case of human cells were also novel: A23187-stimulated human epithelial cells converted arachidonic acid predominantly to 15-hydroxyeicosatetraenoic acid (15-HETE) and two distinct 8,15-diols in addition to prostaglandin (PG) E2 and PGF2 alpha. Cell incubation with exogenous arachidonic acid (2.0-300 microM) led to progressively larger amounts of 15-HETE and the dihydroxy, epoxyhydroxy and keto acids characteristic of arachidonate 15-lipoxygenase. Both dog and sheep cells converted exogenous or endogenous arachidonic acid to low levels of 5-lipoxygenase products, including leukotriene B4 without significant 15-lipoxygenase activity. In the cyclooxygenase series, sheep cells selectively released PGE2, while dog cells generated predominantly PGD2. The findings demonstrate that stereotyped esterification and phospholipase activities are expressed at uniform levels among airway epithelial cells from these species, but pathways for oxygenating arachidonic acid allow mediator diversity depending greatly on species and little on arachidonic acid presentation.  相似文献   

14.
PGs produced from arachidonic acid by the action of cyclooxygenase enzymes play a pivotal role in the regulation of both inflammatory and immune responses. Because leukotriene B4 (LTB4), a product of 5-lipoxygenase (5-LO) pathway, can exert numerous immunoregulatory and proinflammatory activities, we examined the effects of PGs on LTB4 release from dendritic cells (DC) and from peritoneal macrophages. In concentration-dependent manner, PGE1 and PGE2 inhibited the production of LTB4 from DC, but not from peritoneal macrophage, with an IC50 of 0.04 microM. The same effect was observed with MK-886, a 5-LO-activating protein (FLAP)-specific inhibitor. The decreased release of LTB4 was associated with an enhanced level of IL-10. Furthermore, the inhibition of LTB4 synthesis by PGs was significantly reversed by anti-IL-10, suggesting the involvement of an IL-10-dependent mechanism. Hence, we examined the effects of exogenous IL-10 on the 5-LO pathway. We demonstrate that IL-10 suppresses the production of LTB4 from DC by inhibiting FLAP protein expression without any effect on 5-LO and cytosolic phospholipase A2. Taken together, our results suggest links between DC cyclooxygenase and 5-LO pathways during the inflammatory response, and FLAP is a key target for the PG-induced IL-10-suppressive effects.  相似文献   

15.
B lymphocytes convert arachidonic acid (AA) to the 5-lipoxygenase products leukotriene B4 (LTB4) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) when subjected to oxidative stress. 5-HETE has little biological activity, but can be oxidized by a selective dehydrogenase in some cells to 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), a potent eosinophil chemoattractant. We found that CESS cells, a B lymphocyte cell line, convert AA to 5-oxo-ETE and this is selectively stimulated by oxidative stress. In the presence of H2O2, 5-oxo-ETE is a major AA metabolite in these cells (5-oxo-ETE≈5-HETE>LTB4). The cyclooxygenase product 12-hydroxy-5,8,10-heptadecatrienoic acid is also formed, but is not affected by H2O2. Diamide had effects similar to those of H2O2 and both substances had similar effects on human tonsillar B cells. H2O2 also stimulated 5-oxo-ETE formation from its direct precursor 5-HETE in tonsillar B and CESS cells, and this was inhibited by the glutathione reductase inhibitor carmustine. H2O2 concomitantly induced rapid increases in GSSG and NADP+ and reductions in GSH and NADPH. We conclude that oxidative stress stimulates 5-oxo-ETE synthesis in B lymphocytes by two mechanisms: activation of 5-lipoxygenase and increased oxidation of 5-HETE by NADP+-dependent 5-hydroxyeicosanoid dehydrogenase. B lymphocyte-derived 5-oxo-ETE could contribute to eosinophilic inflammation in asthma and other allergic diseases.  相似文献   

16.
In this study we report the in vitro inhibition of leukotriene synthesis in calcium ionophore (A23187)-stimulated, intact human blood neutrophils by AHR-5333. The results showed that AHR-5333 inhibits 5-HETE, LTB4 and LTC4 synthesis with IC50 values of 13.9, 13.7 and 6.9 microM, respectively. Further examination of the effect of AHR-5333 on individual reactions of the 5-lipoxygenase pathway (i.e. conversion of LTA4 to LTB4, LTA4 to LTC4, and arachidonic acid to 5-HETE) showed that this agent was not inhibitory to LTA4 epoxyhydrolase and glutathione-S-transferase activity in neutrophil homogenates. However, conversion of arachidonic acid (30 microM) to 5-HETE was half maximally inhibited by 20 microM AHR-5333 in the cell-free system. The inhibition of LTB4 and LTC4 formation in intact neutrophils by AHR-5333 appears to be entirely due to a selective inhibition of 5-lipoxygenase activity and an impaired formation of LTA4, which serves as substrate for LTA4 epoxyhydrolase and glutathione-S-transferase. AHR-5333 did not affect the transformation of exogenous arachidonic acid to thromboxane B2, HHT and 12-HETE in preparations of washed human platelets, indicating that this agent has no effect on platelet prostaglandin H synthase, thromboxane synthase and 12-lipoxygenase activity. The lack of inhibitory activity of AHR-5333 on prostaglandin H synthase activity was confirmed with microsomal preparations of sheep vesicular glands.  相似文献   

17.
Phorbol myristate acetate (PMA), a tumor-promoting phorbol ester, and the calcium ionophore A23187 synergistically induced the noncytotoxic release of leukotriene B4 (LTB4) and other 5-lipoxygenase products of arachidonic acid metabolism from human neutrophils. Whereas neutrophils incubated with either A23187 (0.4 microM) or PMA (1.6 microM) alone failed to release any 5-lipoxygenase arachidonate products, neutrophils incubated with both stimuli together for 5 min at 37 degrees C released LTB4 as well as 20-COOH-LTB4, 20-OH-LTB4, 5-(S),12-(R)-6-trans-LTB4, 5-(S),12-(S)-6-trans-LTB4, and 5-hydroxyeicosatetraenoic acid, as determined by high pressure liquid chromatography. This synergistic response exhibited concentration dependence on both PMA and A23187. PMA induced 5-lipoxygenase product release at a concentration causing a half-maximal effect of approximately 5 nM in the presence of A23187 (0.4 microM). Competition binding experiments showed that PMA inhibited the specific binding of [3H]phorbol dibutyrate ([3H]PDBu) to intact neutrophils with a 50% inhibitory concentration (IC50) of approximately 8 nM. 1-oleoyl-2-acetyl-glycerol (OAG) also acted synergistically with A23187 to induce the release of 5-lipoxygenase products. 4 alpha-phorbol didecanoate (PDD), an inactive phorbol ester, did not affect the amount of lipoxygenase products released in response to A23187 or compete for specific [3H]PDBu binding. PMA and A23187 acted synergistically to increase arachidonate release from neutrophils prelabeled with [3H]arachidonic acid but did not affect the release of the cyclooxygenase product prostaglandin E2. Both PMA and OAG, but not PDD, induced the redistribution of protein kinase C activity from the cytosol to the membrane fraction of neutrophils, a characteristic of protein kinase C activation. Thus, activation of protein kinase C may play a physiologic role in releasing free arachidonate substrate from membrane phospholipids and/or in modulating 5-lipoxygenase activity in stimulated human neutrophils.  相似文献   

18.
Incubation of cell sonicates from monoclonal B cells with arachidonic acid led to the formation of leukotriene (LT) B4 and 5-hydroxy-eicosatetraenoic acid (5-HETE). In contrast, stimulation of intact B cells with the calcium ionophore A23187 +/- arachidonic acid did not, under similar conditions, lead to formation of LTB4. The identification of these products was based on reverse phase- and straight phase-HPLC analysis, UV-spectroscopy and gas chromatography-mass spectrometry. Cell sonicates of highly enriched human tonsillar B lymphocytes also converted arachidonic acid to LTB4 and 5-HETE. Activation of these cells with B cell mitogen and cytokines for three days led to an upregulation of 5-lipoxygenase activity. This study provides evidence for the biosynthesis of LTB4 from arachidonic acid in B cell lines and in normal human tonsillar B lymphocytes.  相似文献   

19.
5-lipoxygenase from rat PMN lysate   总被引:2,自引:0,他引:2  
The products of arachidonic acid metabolism in the 15,000xg supernatant of sonicated rat PMN are described. Only products derived from 5-lipoxygenase are observed. These products are 5-HETE and products derived from hydrolysis of LTA4, particularly LTB4. Some minor products derived from decomposition of 5-HPETE are also observed. The dependence of the activity of 5-lipoxygenase on enzyme and on substrate concentrations is presented and discussed in terms of a kinetic model that includes enzyme inactivation during turnover and substrate inhibition. The 5-lipoxygenase activity is stimulated by Ca++ and ATP.  相似文献   

20.
The production of 5-lipoxygenase products from arachidonic acid was investigated in polymorphonuclear leukocytes (PMNL) isolated from non-diabetic and alloxan-induced diabetic rabbits: (i) production of 5-hydroxyeicosatetraenoic acid, leukotriene B4, and the two 6-trans-leukotriene B4 isomers were significantly decreased in the PMNL of diabetic rabbits when compared to non-diabetic rabbits; (ii) production of LTB4 and 5-HETE from diabetic PMNL required the addition of Ca2+ and A23187 to a greater degree than control incubations; and (iii) the availability of substrate in the PMNL of diabetics was not a limiting factor for 5-lipoxygenase product formation. Alternative pathways of arachidonic acid metabolism were also evaluated: the recovery of exogenous leukotriene B4 and 5-hydroxyeicosatetraenoic acid were identical using PMNL from control and diabetic rabbits and peptido-leukotrienes were not detected by radioimmunoassay. The data suggest that the activity of 5-lipoxygenase and the production of 5-hydroperoxyeicosatetraenoic acid in the diabetic PMNL may be limiting factors since the formation of leukotriene B4, leukotriene B4 isomers, and 5-hydroxyeicosatetraenoic acid are depressed in PMNL of diabetic rabbits. Alternative pathways do not account for the conversion of arachidonic acid to other products nor are the elimination pathways for LTB4 and 5-HETE different. Decreased formation of 5-hydroxyeicosatetraenoic acid and leukotriene B4 could predispose diabetic subjects to infection due to a decrease in mediators leading to the local accumulation of PMNL in the inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号