首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using a fast reaction technique which employs H2S gas as a fast-reacting chemical repair agent, it is possible to measure the competition kinetics between chemical repair reactions and oxygen fixation reactions in model DNA and cellular systems. In plasmid pBR322 DNA irradiated with electrons, we have compared the oxygen fixation reactions of the free radical precursors that lead to the production of single-strand (SSBs) and double-strand breaks (DSBs). For the oxygen-dependent fixation of radical damage leading to SSBs, a second-order rate constant of 2.3 x 10(8) dm3 mol(-1) s(-1) was obtained compared to 8.9 x 10(7) dm3 mol(-1) s(-1) for DSBs. The difference is in general agreement with predictions from a multiple-radical model where the precursor of a DSB originates from two radicals. The fixation of this precursor by oxygen will require both radicals to be fixed for the DSB to be formed, which will have slower kinetics than that of single free-radical precursors of SSBs.  相似文献   

2.
R J Heckly  J Quay 《Cryobiology》1983,20(5):613-624
Free radicals have been associated with loss of viability of lyophilized bacteria exposed to oxygen. Free radical concentration was proportional to the log of the oxygen pressure in the sample. Sugars, such as lactose or sucrose, preserved viability and inhibited free radical production. Lyophilized tissue, particularly liver and spleen, also reacted with oxygen to produce free radicals, which appear to be associated with ascorbic acid in the tissues. Pure ascorbic acid in air does not produce free radicals, but when mixed with protein before lyophilization it reacts with oxygen in air. When a mixture of sodium ascorbate and phenylalanine or tryptophan is lyophilized, free radicals identical to those observed in tissue are obtained. Propyl gallate and di- or trihydroxybenzoates also react with oxygen when lyophilized with phenylalanine, but the g value of the free radical is significantly less than that obtained with ascorbate. A number of amino acids and similar nitrogenous compounds act as catalysts to form propyl gallate free radicals. As with the bacterial or tissue preparations, various sugars or similar carbohydrates inhibited free radical production by either ascorbate or gallate. In the absence of water the free radicals produced by the action of oxygen on lyophilized samples are stable for years. The rate of free radical production is increased by small amounts of moisture (exposure to moist air), but at humidities over 30% rh the radicals are unstable.  相似文献   

3.
The kinetics of copper-catalyzed autoxidation of cysteine and its derivatives were investigated using oxygen consumption, spectroscopy and hydroxyl radical detection by fluorescence of a coumarin probe. The process has complex two-phase kinetics. During the first phase a stoichiometric amount of oxygen (0.25 moles per mole of thiol) is consumed without production of hydroxyl radicals. In the second reaction phase excess oxygen is consumed in a hydrogen peroxide-mediated process with significant ·OH production. The reaction rate in the second phase is decreased for cysteine derivatives with a free aminogroup and increased for compounds with a modified aminogroup. The kinetic data suggest the catalytic action of copper in the form of a cysteine complex. The reaction mechanism consists of two simultaneous reactions (superoxide-dependent and peroxide-dependent) in the first phase, and peroxide-dependent in the second phase. The second reaction phase begins after oxidation of free thiol. This consists of a Fenton-type reaction between cuprous-cysteinyl complex and following oxidation of cysteinyl radical to sulfonate with the consumption of excessive oxygen and significant production of hydroxyl radicals.  相似文献   

4.
Scavenging of a superoxide and simultaneous formation of free radicals with phenolic antioxidants were investigated with cobalt and iron tetraphenylporphyrin-thiolate complexes as models of P-450 enzymes. The kinetics of decay of the superoxide and development of free radical ESR signal intensities were studied. Based on a molecular orbital calculation of the hyperfine splitting, the radical species generated were confirmed to be those of phenoxyl radicals. The biological implication of superoxide, including active oxygen forms, for the reaction was discussed.  相似文献   

5.
The oxidation of proteins and other macromolecules by radical species under conditions of oxidative stress can be modulated by antioxidant compounds. Decreased levels of the antioxidants glutathione and ascorbate have been documented in oxidative stress-related diseases. A radical generated on the surface of a protein can: (1) be immediately and fully repaired by direct reaction with an antioxidant; (2) react with dioxygen to form the corresponding peroxyl radical; or (3) undergo intramolecular long range electron transfer to relocate the free electron to another amino acid residue. In pulse radiolysis studies, in vitro production of the initial radical on a protein is conveniently made at a tryptophan residue, and electron transfer often leads ultimately to residence of the unpaired electron on a tyrosine residue. We review here the kinetics data for reactions of the antioxidants glutathione, selenocysteine, and ascorbate with tryptophanyl and tyrosyl radicals as free amino acids in model compounds and proteins. Glutathione repairs a tryptophanyl radical in lysozyme with a rate constant of (1.05 ± 0.05) × 105 M–1 s–1, while ascorbate repairs tryptophanyl and tyrosyl radicals ca. 3 orders of magnitude faster. The in vitro reaction of glutathione with these radicals is too slow to prevent formation of peroxyl radicals, which become reduced by glutathione to hydroperoxides; the resulting glutathione thiyl radical is capable of further radical generation by hydrogen abstraction. Although physiologically not significant, selenoglutathione reduces tyrosyl radicals as fast as ascorbate. The reaction of protein radicals formed on insulin, β-lactoglobulin, pepsin, chymotrypsin and bovine serum albumin with ascorbate is relatively rapid, competes with the reaction with dioxygen, and the relatively innocuous ascorbyl radical is formed. On the basis of these kinetics data, we suggest that reductive repair of protein radicals may contribute to the well-documented depletion of ascorbate in living organisms subjected to oxidative stress.  相似文献   

6.
Direct electron spin resonance was used to detect tert-alkylperoxyl radicals generated by hematin and the corresponding hydroperoxides at near-physiological pH values. The spin-trapping method was necessary to detect the less persistent primary ethylperoxyl radical. Under a nitrogen atmosphere, the electron spin resonance signal of the tert-alkylperoxyl radicals decreased, and the ethylperoxyl spin-adduct concentration did not change. Concomitant studies, using a Clark oxygen electrode, show that oxygen was consumed by the hematin-tert-alkyl hydroperoxide systems, but was released by the hematin-ethyl hydroperoxide reaction. Thus, molecular oxygen seems to play a subsidiary role in the hematin-catalyzed decomposition of hydroperoxides. Based on the electron spin resonance and oxygen electrode results, a mechanism for the continuous production of the peroxyl free radicals is proposed for hematin/hydroperoxide systems. The present spectroscopic methodology can be used to search for peroxyl free radical formation by hemoprotein/hydroperoxide systems.  相似文献   

7.
Reperfusion injury   总被引:9,自引:0,他引:9  
Several lines of evidence point to a major role of oxygen free radicals in the pathogenesis of cell death or dysfunction in a variety of disease processes. Recent studies from this as well as other laboratories have demonstrated that oxygen free radicals play a major role in the pathogenesis of post-ischemic reperfusion injury in the heart. We have recently developed methods for direct measurement of radical species and/or specific byproducts of radical injury. Timely administration of oxygen radical scavengers reduced the quantity of free radicals generated following reperfusion and in addition improved recovery of post-ischemic ventricular function and metabolism. In a regionally ischemic model the free radical scavenger recombinant human superoxide dismutase also administered at the time of reflow was shown to limit infarct size. In this article we review the biophysical and molecular mechanisms of oxygen free radical generation that are viewed as contributing to post-ischemic reperfusion injury. We also discuss the mechanisms by which the body defends against free radical attack and the interrelationships of free radical injury to other mechanisms of tissue injury.  相似文献   

8.
Production, detection, and adaptive responses to free radicals in exercise   总被引:2,自引:0,他引:2  
Free radicals (particularly oxygen- and nitrogen-centered radicals), and related reactive oxygen and nitrogen species, are generated in cells and tissues during exercise. Mitochondria (actually, 'leakage' of electrons from ubisemiquinone and other electron transport chain components), xanthine oxidase, and phagocytes such as neutrophils may all contribute to free radical production. In this article we review mechanisms of free radical production during exercise and methods for detecting free radicals and related reactive species, during, or immediately following exercise. The evidence presented strongly suggests that free radicals generated during mild to moderate endurance-type exercise actually form part of the mechanism of exercise adaptation that includes extensive biogenesis of muscle mitochondria, increased muscle blood supply, and altered fuel consumption patterns. We suggest, as originally proposed [1], that (at moderately increased levels) free radicals actually act as intracellular signaling molecules to initiate exercise adaptation. In contrast, endurance exercise of extreme duration and extreme intensity appears to generate much higher levels of free radicals that overwhelm cellular antioxidant defenses, and cause tissue damage. Such free radical damage requires effective protein, lipid, and DNA repair systems, and sufficient recuperation, before exercise adaptation can recommence.  相似文献   

9.
Oxygen free radicals can be blamed for evoking gastric mucosal damage, because of the protective effect of some lipid soluble free radical scavengers (vitamin A related compounds, Vitamin E). Direct determination of free oxygen radicals related chemical entities in the gastric tissue during ulcerogenesis yielded controversial results. Aluminum antacid compound together with acid binding property exhibited cytoprotection too, elevating the tissue PGE2 level substantially. Magnesium containing antacid according to our model experiments on red blood cells damage by free radicals, is capable to bind free radicals as well as to counteract with the dangerous intracellular calcium accumulation. It has been concluded that aluminum-magnesium antacid has a cytoprotective effect via: 1. acid binding; 2. prostaglandin generation; 3. free radical scavenging; 4. calcium antagonist activity.  相似文献   

10.
A relatively stable free radical signal was detected by ESR spectroscopy in the mela-noidin prepared from glycine and glucose. All attempts made to remove molecular oxygen from the melanoidin matrix resulted in a reversible increase in signal height without changing the line width and g-value of central resonance. Nitric oxide, a well-known quenching agent for radicals, retarded the reaction ensuing in disappearance of furfurals and deposition of a new compound. These results allowed to envisage a steps of free radical formation involved in the amino-carbonyl reaction and also nature of the free radical species.  相似文献   

11.
Because short-lived reactive oxygen radicals such as superoxide have been implicated in a variety of disease processes, methods to measure their production quantitatively in biological systems are critical for understanding disease pathophysiology. Electron paramagnetic resonance (EPR) spin trapping is a direct and sensitive technique that has been used to study radical formation in biological systems. Short-lived oxygen free radicals react with the spin trap and produce paramagnetic adducts with much higher stability than that of the free radicals. In many cases, the quantity of the measured adduct is considered to be an adequate measure of the amount of the free radical generated. Although the intensity of the EPR signal reflects the magnitude of free radical generation, the actual quantity of radicals produced may be different due to modulation of the spin adduct kinetics caused by a variety of factors. Because the kinetics of spin trapping in biochemical and cellular systems is a complex process that is altered by the biochemical and cellular environment, it is not always possible to define all of the reactions that occur and the related kinetic parameters of the spin-trapping process. We present a method based on a combination of measured kinetic data for the formation and decay of the spin adduct alone with the parameters that control the kinetics of spin trapping and radical generation. The method is applied to quantitate superoxide trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO). In principle, this method is broadly applicable to enable spin trapping-based quantitative determination of free radical generation in complex biological systems.  相似文献   

12.
Research in smoke inhalation has established that free radicals are produced from gases released during combustion and these species impair lung function. Using spin traps and their adducts in an animal model free radicals were measured. Various hyperbaric oxygen regimens were tested in an attempt to attenuate pulmonary damage caused by free radical reactions. Our data demonstrated that persistent oxygen- and carbon-centered free radicals are detectable in intravascular fluids after smoke inhalation. The smoke inhalation model showed however, clearing of spin trap adducts one hour after smoke exposure. Other researchers have found that when 100% oxygen is given at 1 atmosphere absolute (ATA) for 1 h, free radicals were not detectable. However, oxygen given at 2.5 ATA does produce detectable free radicals. With continued exposure at this pressure, the levels of free radicals increase for up to 60min. This study suggests that the level of free radical induced oxygen toxicity may be a function of oxygen pressure and duration of oxygen exposure.  相似文献   

13.
The role of oxygen free radicals in ischemia and reperfusion injury of skeletal muscle has not been well defined, partly because of the relative resistance of this tissue to normothermic ischemia. Under normal conditions small quantities of oxygen free radicals are produced but they are quenched by intracellular free radical scavenging enzymes (superoxide dismutase, catalase and glutathione peroxidase) or alpha-tocopherol. The increase in malondialdehyde suggests increased lipid peroxidation initiated by free radical reactions. Lipid peroxidation is potentially a very damaging process to the organized structure and function of membranes. The results of recent studies indicate that: a) oxygen free-radicals mediates, at least in part, the increased microvascular permeability produced by reoxygenation, b) free radical scavengers can reduce skeletal muscle necrosis occurring after prolonged ischemia. Additional evidence support the hypothesis of the interrelationship between ischemic tissue and inflammatory cells. So capillary plugging by granulocytes and oxygen free radical formation may contribute to the ischemic injury.  相似文献   

14.
Iron and free radical oxidations in cell membranes.   总被引:5,自引:0,他引:5  
Brain tissue being rich in polyunsaturated fatty acids, is very susceptible to lipid peroxidation. Iron is well known to be an important initiator of free radical oxidations. We propose that the principal route to iron-mediated lipid peroxidations is via iron-oxygen complexes rather than the reaction of iron with hydrogen peroxide, the Fenton reaction. To test this hypothesis, we enriched leukemia cells (K-562 and L1210 cells) with docosahexaenoic acid (DHA) as a model for brain tissue, increasing the amount of DHA from approximately 3 mole % to 32 mole %. These cells were then subjected to ferrous iron and dioxygen to initiate lipid peroxidation in the presence or absence of hydrogen peroxide. Lipid-derived radicals were detected using EPR spin trapping with alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN). As expected, lipid-derived radical formation increases with increasing cellular lipid unsaturation. Experiments with desferal demonstrate that iron is required for the formation of lipid radicals from these cells. Addition of iron to DHA-enriched L1210 cells resulted in significant amounts of radical formation; radical formation increased with increasing amount of iron. However, the exposure of cells to hydrogen peroxide before the addition of ferrous iron did not increase cellular radical formation, but actually decreased spin adduct formation. These data suggest that iron-oxygen complexes are the primary route to the initiation of biological free radical oxidations. This model proposes a mechanism to explain how catalytic iron in brain tissue can be so destructive.  相似文献   

15.
Rabbit liver metallothionein-1 (Mr 6500), which contains zinc and/or cadmium ions, appears to scavenge free hydroxyl (.OH) and superoxide (O-.2) radicals produced by the xanthine/xanthine oxidase reaction much more effectively than bovine serum albumin (Mr 65 000) which was used as a control. Kinetic competition studies between metallothionein and either a spin trap for .OH or ferricytochrome c for O-.2 radicals, gave bimolecular rate constants of the order of kOH/MT approximately equal to 10(12) M-1 X s-1 and kO-2/MT approximately equal to 5 X 10(5) M-1 X s-1, respectively. The former value suggests that all 20 cysteine sulfur atoms are involved in this quenching process and that they all act in the diffusion control limit. The aerobic radiolysis of an aqueous solution of metallothionein, generating O-.2 and .OH radicals, induced metal ion loss and thiolate oxidation. These effects could be reversed by incubation of the irradiated protein with reduced glutathione and the appropriate bivalent metal ion. Metallothionein appears to be an extraordinarily efficient .OH radical scavenger even when compared to proteins 10-50-times its molecular weight. Moreover, hydroxyl radical damage to metallothionein appears to occur at the metal-thiolate clusters, which may be repaired in the cell by reduced glutathione. Metallothionein has the characteristics of a sacrificial but renewable cellular target for .OH-mediated cellular damage.  相似文献   

16.
The tandem of free radicals and methylglyoxal   总被引:1,自引:0,他引:1  
Methylglyoxal is an alpha-oxoaldehyde inevitably produced from triose-phosphate intermediates of phosphorylating glycolysis, and also from amino acids and acetone. Recently, the attention has been focused on the involvement of free radicals in methylglyoxal toxicity. In this review, a summary of the relationship between methylglyoxal metabolism and free radical production is presented, extending discussion from the possible metabolic routes to the toxicological events by reviewing the role of free radicals in both generation and degradation of this 1,2-dicarbonyl as well as in the modification of biological macromolecules, and focusing on the action of methylglyoxal upon cellular glutathione content. Methylglyoxal-provoked free radical generation involving reactive oxygen species (ROS), reactive nitrogen species (RNS) as well as organic radicals like methylglyoxal radial or crosslinked protein radical as potential risk factors to tissue damage propagation, is thoroughly discussed. Special attention is paid to the potential therapeutic interventions. The paper arrives at the conclusion that a tight junction exists between methylglyoxal toxicity and free radical (particularly ROS) generation, though the toxicity of 1,2-dicarbonyl evolves even under anaerobic conditions, too. The events follow a sequence beginning with carbonyl stress essential for the toxicity, leading to free radical formation and finally ending in either apoptosis or necrosis. Both oxidative and nitrosative stress play important but not indispensable role in the development of methylglyoxal toxicity.  相似文献   

17.
cis-Parinaric acid (PnA), cis-trans-trans-cis-9, 11, 13, 15-octadecatetraenoic acid, is fluorescent (epsilon = 74,000 at 324 nm) when partitioned into a lipid environment and the fluorescence is destroyed upon reaction with free radicals. It has been used to monitor semiquantitatively free-radical-induced lipid peroxidation in human erythrocyte membranes. We have applied this assay to the quantitative evaluation of potential antioxidants. The kinetics of the reaction of PnA with free radicals were measured in erythrocyte ghosts. After initiation of free radical generation by cumene hydroperoxide and cupric ion, a steady-state rate of fluorescence decay is rapidly established. In the steady state the oxidation of PnA and, hence, the loss of fluorescence is a first-order process. In the presence of antioxidants, such as vitamin E, the rate constant of fluorescence loss decreases, thereby indicating that the antioxidant decreases the steady-state concentration of free radicals. By adding various concentrations of potential antioxidants, pseudo-first-order rate constants [k1] which measure the reactivity of antioxidants with free radicals were determined. Results show that, when incorporated into erythrocyte membranes, U-78, 517f, a vitamin E analog, is a potent free radical scavenger, being approximately 50% as effective as vitamin E and 10-15 times more potent than the aminosteroids evaluated (see Table 1).  相似文献   

18.
The EPR signal recorded in reaction medium containing L-lysine and methylglyoxal is supposed to come from the anion radical (semidione) of methylglyoxal and cation radical of methylglyoxal dialkylimine. These free radical inter-mediates might be formed as a result of electron transfer from dialkylimine to methylglyoxal. The EPR signal was observed in a nitrogen atmosphere, whereas only trace amounts of free radicals were registered under aerobic conditions. It has been established that the decay of methylglyoxal anion radical on aeration of the medium is inhibited by superoxide dismutase. Using the methods of EPR spectroscopy and lucigenin-dependent chemiluminescence, it has been shown that nonenzymatic generation of free radicals including superoxide anion radical takes place during the interaction of L-lysine with methylglyoxal — an intermediate of carbonyl stress — at different (including physiological) pH values. In the course of analogous reaction of L-lysine with malondialdehyde (the secondary product of the free radical derived oxidation of lipids), the formation of organic free radicals or superoxide radical was not observed.  相似文献   

19.
Free radical scavenging efficiency of Nano-Se in vitro   总被引:6,自引:0,他引:6  
In this study, we showed that smaller size particles of Nano-Se have better scavenging effects on the following free radicals: carbon-centered free radicals (R*) generated from 2,2'-azo-bis-(2-amidinopropane) hydrochloride (AAPH), the relatively stable free radical 1,1-diphenyl-2-picryhydrazyl (DPPH), the superoxide anion (O2*-) generated from the xanthine/xanthine oxidase (X/XO) system, singlet oxygen (1O2) generated by irradiated hemoporphyrin. Furthermore, the three sizes of Nano-Se studied also show protective effects against the oxidation of DNA. The three samples all have potential size-dependent characteristics on scavenging the free radicals. Although in this study we regarded Nano-Se as a whole without considering interactions between BSA and the red selenium nano-particles, there is the possibility that the apparent free radical scavenging effects may be partially contributed by such interactions.  相似文献   

20.
With a variety of forms of ischemic and toxic tissue injury, cellular accumulation of Ca2+ and generation of oxygen free radicals may have adverse effects upon cellular and, in particular, mitochondrial membranes. Damage to mitochondria, resulting in impaired ATP synthesis and diminished activity of cellular energy-dependent processes, could contribute to cell death. In order to model, in vitro, conditions present post-ischemia or during toxin exposure, the interactions between Ca2+ and oxygen free radicals on isolated renal mitochondria were characterized. The oxygen free radicals were generated by hypoxanthine and xanthine oxidase to simulate in vitro one of the sources of oxygen free radicals in the early post-ischemic period in vivo. With site I substrates, pyruvate and malate, Ca2+ pretreatment, followed by exposure to oxygen free radicals, resulted in an inhibition of electron transport chain function and complete uncoupling of oxidative phosphorylation. These effects were partially mitigated by dibucaine, a phospholipase A2 inhibitor. With the site II substrate, succinate, the electron transport chain defect was not manifest and respiration remained partially coupled. The electron transport chain defect produced by Ca2+ and oxygen free radicals was localized to NADH CoQ reductase. Calcium and oxygen free radicals reduced mitochondrial ATPase activity by 55% and adenine nucleotide translocase activity by 65%. By contrast oxygen free radicals alone reduced ATPase activity by 32% and had no deleterious effects on translocase activity. Dibucaine partially prevented the Ca2+-dependent reduction in ATPase activity and totally prevented the Ca2+-dependent translocase damage observed in the presence of oxygen free radicals. These findings indicate that calcium potentiates oxygen free radical injury to mitochondria. The Ca2+-induced potentiation of oxygen free radical injury likely is due in part to activation of phospholipase A2. This detrimental interaction associated with Ca2+ uptake by mitochondria and exposure of the mitochondria to oxygen free radicals may explain the enhanced cellular injury observed during post-ischemic reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号