首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Galectins are a large family of structurally related β-galactoside-binding proteins that play a pivotal role in the control of cell differentiation, proliferation, activation and apoptosis of many different cell types including immune cells. By crosslinking specific glycoconjugates, different members of the galectin family behave as pro-inflammatory or anti-inflammatory “cytokine-like” mediators, acting at different levels of innate and adaptive immune responses. Here we will review recent advances on the role of galectins in key events of the immune and inflammatory response, such as tolerance induction, cell cycle progression, cell adhesion, chemotaxis, antigen presentation and apoptosis. In particular we will examine the influence of individual members of the galectin family in the physiology of different immune cell types involved in innate and adaptive immune responses. Moreover, we will discuss the importance of these sugar-binding proteins as therapeutic targets in Th1- and Th2-mediated immune disorders, an exciting area for future research. Published in 2004.  相似文献   

2.
Galectins are a large family of structurally related beta-galactoside-binding proteins that play a pivotal role in the control of cell differentiation, proliferation, activation and apoptosis of many different cell types including immune cells. By crosslinking specific glycoconjugates, different members of the galectin family behave as pro-inflammatory or anti-inflammatory "cytokine-like" mediators, acting at different levels of innate and adaptive immune responses. Here we will review recent advances on the role of galectins in key events of the immune and inflammatory response, such as tolerance induction, cell cycle progression, cell adhesion, chemotaxis, antigen presentation and apoptosis. In particular we will examine the influence of individual members of the galectin family in the physiology of different immune cell types involved in innate and adaptive immune responses. Moreover, we will discuss the importance of these sugar-binding proteins as therapeutic targets in Th1- and Th2-mediated immune disorders, an exciting area for future research.  相似文献   

3.
4.
The mutational analysis of the galectin family is shedding a different light of this class of molecules. On the one hand, it appears that galectin 1 and galectin 3 are not required for the survival of mice in normal animal house conditions, while on the other hand, there seems to be several subtle, but very complex, consequences of lacking galectins during development.  相似文献   

5.
Among the major cytokines present in inflammatory lesions interleukin-1 (IL-1), tumor necrosis factor alpha (TNF alpha) and interleukin-6 (IL-6) share many biological activities. Since IL-1 alpha, IL-1 beta and TNF alpha have been previously demonstrated to play an important role in connective tissue destruction by stimulating the production of prostaglandin E2 (PGE2) and collagenase, these functions were investigated in the presence or absence of natural human IL-6 (nhIL-6) or recombinant human IL-6 (rhIL-6). IL-6 was found 1 degree to stimulate immunoglobulin A production by the CESS B cell line up to 19 fold without being affected by the presence of IL-1 beta and 2 degrees to stimulate murine thymocytes proliferation up to 2-4 fold, with an increase up to 60-fold in costimulation with either IL-1 alpha or beta. IL-6 alone, even at very high concentrations (up to 200 U/ml and 50 ng/ml), did not induce PGE2 production by fibroblasts and synovial cells. However, IL-1 alpha or beta induced PGE2 production by human dermal fibroblasts and by human synovial cells was inhibited (in 5/8 experiments) up to 62% by addition of IL-6. On the contrary in 2/4 experiments TNF alpha-induced PGE2 production was increased (approximately 2 fold) by the addition of IL-6. IL-1 and TNF alpha-induced collagenase production in synovial cells remained unchanged in the presence of IL-6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Tocotrienols have been shown to possess antioxidant, antitumor, cardioprotective, and antiproliferative effects. This report describes novel immunomodulatory effects of tocotrienols in murine lymphocytes. γ-Tocotrienol (GT) was more effective in suppressing concanavalin A (Con A)-induced T cell proliferation and cytokine production compared to α-tocotrienol (AT) when present continuously in the culture. GT inhibited T cell activation markers and costimulatory molecule. GT modulated intracellular glutathione in lymphocytes, and the suppressive effects of GT could not be abrogated by thiol or nonthiol antioxidants, indicating a poor link between anti-inflammatory properties of tocotrienols and cellular redox status. It was also observed that GT suppressed Con A-induced activation of NF-κB, AP-1, and NF-κB-dependent gene expression. Cellular uptake studies with tocotrienols showed higher accumulation of GT compared to AT. Similar immunosuppressive effects of GT were also observed when administered to mice. In contrast, transient exposure of lymphocytes to GT (4 h) resulted in higher survival and proliferation of lymphocytes in vitro and in vivo in syngeneic and allogeneic hosts. This was attributed to the ability of GT to induce NF-κB, AP-1, and mTOR activation in lymphocytes upon transient exposure. Our results demonstrated that antioxidants such as tocotrienols may exhibit pleiotropic effects by activating multiple mechanisms in cells.  相似文献   

7.
8.
Intracellular functions of galectins   总被引:34,自引:0,他引:34  
Many galectin family members are detected primarily intracellularly in most of the systems studied, although certain members can be found both inside and outside of cells. Specific functions that are consistent with their intracellular localization have now been documented for some of the galectins. Galectin-1 and -3 have been identified as redundant pre-mRNA splicing factors. Galectin-3, -7, and -12 have been shown to regulate cell growth and apoptosis, being either anti-apoptotic or pro-apoptotic. Galectin-3 and -12 have been shown to regulate the cell cycle. In some cases, the mechanisms by which galectins exert their functions have been partially delineated in relation to known intracellular pathways associated with these processes. In addition, a number of intracellular proteins involved in these processes have been identified as the interacting ligands of certain galectins. This review summarizes the intracellular activities displayed by several galectins and discusses the possible underlying mechanisms.  相似文献   

9.
Osteopontin (OPN) is a matricellular protein that mediates diverse biological functions. OPN is involved in normal physiological processes and is implicated in the pathogenesis of a variety of disease states, including atherosclerosis, glomerulonephritis, cancer, and several chronic inflammatory diseases. Through interactions with several integrins, OPN mediates cell migration, adhesion, and survival in many cell types. OPN also functions as a Th1 cytokine, promotes cell-mediated immune responses, and plays a role in chronic inflammatory and autoimmune diseases. Besides its function in inflammation, OPN is also a regulator of biomineralization and a potent inhibitor of vascular calcification.  相似文献   

10.
The galectins are a family of animal lectins that possess similar carbohydrate binding specificities and conserved consensus sequences. The biological properties of mammalian galectins include the regulation of inflammation, cell adhesion, cell proliferation and cell death. Evidence suggests that the biological activities of the galectins are related to their multivalent binding properties since most galectins possess two carbohydrate recognition domains and are therefore bivalent. For example, galectin-1, which is dimeric, binds and cross-links specific glycoprotein counter-receptors on the surface of human T-cells leading to apoptosis [J. Immunol. 163 (1999) 3801]. Different galectin-1 counter-receptors associated with specific phosphatase or kinase activities formed separate clusters on the surface of the cells as a result of the lectin binding to the carbohydrate chains of the respective glycoproteins. Importantly, monovalent galectin-1 is inactive in this system. This indicates that the separation and organization of signaling molecules that result from galectin-1 binding is involved in the apoptotic signal. The separation of specific glycoprotein receptors induced by galectin-1 binding was modeled on the basis of molecular and structural studies of the binding of lectins to multivalent carbohydrates resulting in the formation of specific two- and three-dimensional cross-linked lattices [Biochemistry 36 (1997) 15073]. In this article, the binding and cross-linking properties of galectin-1 and other lectins are reviewed as a model for the biological signal transduction properties of the galectin family of animal lectins.  相似文献   

11.
MgSO(4) exposure before preterm birth is neuroprotective, reducing the risk of cerebral palsy and major motor dysfunction. Neonatal inflammatory cytokine levels correlate with neurologic outcome, leading us to assess the effect of MgSO(4) on cytokine production in humans. We found reduced maternal TNF-α and IL-6 production following in vivo MgSO(4) treatment. Short-term exposure to a clinically effective MgSO(4) concentration in vitro substantially reduced the frequency of neonatal monocytes producing TNF-α and IL-6 under constitutive and TLR-stimulated conditions, decreasing cytokine gene and protein expression, without influencing cell viability or phagocytic function. In summary, MgSO(4) reduced cytokine production in intrapartum women, term and preterm neonates, demonstrating effectiveness in those at risk for inflammation-associated adverse perinatal outcomes. By probing the mechanism of decreased cytokine production, we found that the immunomodulatory effect was mediated by magnesium and not the sulfate moiety, and it was reversible. Cellular magnesium content increased rapidly upon MgSO(4) exposure, and reduced cytokine production occurred following stimulation with different TLR ligands as well as when magnesium was added after TLR stimulation, strongly suggesting that magnesium acts intracellularly. Magnesium increased basal I?Bα levels, and upon TLR stimulation was associated with reduced NF-κB activation and nuclear localization. These findings establish a new paradigm for innate immunoregulation, whereby magnesium plays a critical regulatory role in NF-κB activation, cytokine production, and disease pathogenesis.  相似文献   

12.
Atherosclerosis is a chronic disease of the arterial wall where both innate and adaptive immuno-inflammatory mechanisms are involved. Inflammatory cytokines are implicated in the development and progression of atherosclerotic lesions. Immunomodulatory therapies have been proposed for the treatment of atherosclerosis. Therefore, the aim of this study was to investigate the systemic anti-inflammatory and immunomodulatory effects of atorvastatin, cyclosporine A (CsA), and tacrolimus (FK506) on plasma inflammatory markers in atherosclerotic rabbits. Male New Zealand rabbits were randomized into five groups each of 12 animals. Standard diet-fed group served as control, and the cholesterol-fed group received a diet supplemented with 1% cholesterol alone, cholesterol + atorvastatin, cholesterol + FK506, and cholesterol + CsA. Serum levels of lipid profile parameters (triglycerides, cholesterol, and high-density lipoprotein) were measured using colorimetric methods. Serum levels of C-reactive protein (CRP), interleukin-6 (Il-6), and interferon-gamma (INF-γ) were measured in all studied groups using ELISA techniques. Our results revealed a significant decrease (p < 0.001) in the serum levels of lipid profile parameters, CRP, Il-6, and INF-γ in atorvastatin-treated group compared with the cholesterol-fed group. On the other hand, a non-significant difference was observed for the same parameters in either FK506- or CsA-treated groups compared with the cholesterol-fed group. In conclusion, atorvastatin has a systemic anti-inflammatory role that far surpassed the cholesterol reduction effect alone. FK506 or CsA failed to suppress elevated plasma inflammatory markers. Thus, low doses of these two immunomodulating drugs could not have generalized systemic anti-inflammatory or immunosuppressive effects.  相似文献   

13.
Glycosylation is a common posttranslational modification of proteins and lipids of the secretory pathway that generates binding sites for galactose-specific lectins or galectins. Branching of Asn-linked (N-)glycans by the N-acetylglucosaminyltransferases (Mgat genes) increases affinity for galectins. Both tissue-specific expression of the enzymes and the metabolic supply of sugar-nucleotides to the ER and Golgi regulate glycan distribution while protein sequences specify NXS/T site multiplicity, providing metabolic and genetic contributions to galectin-glycoprotein interactions. Galectins cross-link glycoproteins forming dynamic microdomains or lattices that regulate various mediators of cell adhesion, migration, proliferation, survival and differentiation. There are a similar number of galactose-specific galectins in C. elegans and humans, but expression of higher-affinity branched N-glycans are a more recent feature of vertebrate evolution. Galectins might be considered a reading code for repetition of the minimal units of binding [Gal(NAc)β1-3/4GlcNAc] and NXS/T site multiplicity in proteins. The rapidly evolving and structurally complex Golgi modifications to surface receptors are interpreted through affinity for the lattice, which regulates receptor levels as a function of the cellular environment, and thereby the probability of various cell fates. Many important questions remain concerning the regulation of the galectins, the glycan ligands and lattice interaction with other membrane domains and endocytic pathways.  相似文献   

14.
15.
Proceeding from the known views of the functioning of the immune system, the main mechanism of its effector activity in fighting foreign material is development of an inflammatory process. The process also involves other systems or components, which results in the formation of a functional system intended for the most efficient elimination of the foreign agent. Thus, an inflammatory process is a normal defensive reaction of the body and, in a favorable case, reflects the normal work of the immune system. Two types of the inflammatory response have been identified depending on the character of the functional system formed: the subclinical inflammatory response (SIR) to minor stimuli and the clinically full-blown inflammatory response (FIR) to high doses of an antigen. A normally proceeding acute inflammatory process is clearly differentiated from a chronic inflammatory process (CIP). The latter may proceed with an impaired or normal reaction of the immune system to a foreign agent (specific and nonspecific CIPs) or with a hyperreaction of the immune system (allergic CIPs). A preformed dominant of the unbalanced functioning of the immune system is maintained by a CIP focus in a shock organ and underlies the CIP. However, this extends only to the FIR functional system. Adaptive activation of the SIR inhibits the unbalance dominant in any CIP. These theoretical conceptions underlie an original method of dosed immunotherapy, which consists in SIR activation with low doses of various agents in order to normalize the inflammatory process. Considering the different reactivity of the body in different individuals, the main problems are selection of the starting dose and further control of the doses administered. This difficulty has been overcome as a result of the development of a simple sensitive test for controlling the drug dose. Practical application of the proposed principle enabled stable results to be obtained in curing CIPs.Translated from Fiziologiya Cheloveka, Vol. 31, No. 1, 2005, pp. 100–113.Original Russian Text Copyright © 2005 by Lebedev, Ponyakina, Kozachenko.  相似文献   

16.
17.
Insect galectins: roles in immunity and development   总被引:3,自引:0,他引:3  
As evidenced by the reviews in this special issue of Glycoconjugate Journal, much research is focused on determining functions for mammalian galectins. However, the identification of precise functions for mammalian galectins may be complicated by redundancy in tissue expression and in target cell recognition of the many mammalian galectins. Therefore, lower organisms may be useful in deciphering precise functions for galectins. Unfortunately, some genetically manipulable model systems such as Caenorhabditis elegans may have more galectins than mammals. Recently, galectins were identified in two well-studied insect systems, Drosophila melanogaster and Anopheles gambiae. In addition to the powerful genetic manipulation available in these insect models, there is a sophisticated understanding of many biological processes in these organisms that can be directly compared and applied to mammalian systems. Understanding the roles of galectins in insects may provide insight into precise functions of galectins in mammals.  相似文献   

18.
As evidenced by the reviews in this special issue of Glycoconjugate Journal, much research is focused on determining functions for mammalian galectins. However, the identification of precise functions for mammalian galectins may be complicated by redundancy in tissue expression and in target cell recognition of the many mammalian galectins. Therefore, lower organisms may be useful in deciphering precise functions for galectins. Unfortunately, some genetically manipulable model systems such as Caenorhabditis elegans may have more galectins than mammals. Recently, galectins were identified in two well-studied insect systems, Drosophila melanogaster and Anopheles gambiae. In addition to the powerful genetic manipulation available in these insect models, there is a sophisticated understanding of many biological processes in these organisms that can be directly compared and applied to mammalian systems. Understanding the roles of galectins in insects may provide insight into precise functions of galectins in mammals. Published in 2004.  相似文献   

19.
炎症性肠病(inflammatory bowel disease,IBD)包括溃疡性结肠炎(ulcerative colitis,UC)和克罗恩病(Crohn’s disease,CD)。随着对肠道微生物群在IBD发病机制中作用的认识不断深入,近年来益生菌广泛应用于IBD治疗。大量临床试验结果表明,益生菌治疗IBD的疗效主要体现在对UC和贮袋炎的治疗,对CD的疗效不明确。益生菌治疗IBD可能通过促进肠道微生物群平衡、改善肠道屏障功能、调节肠道黏膜免疫及营养物质代谢等途径。  相似文献   

20.
Amyotrophic lateral sclerosis (ALS) is a severe progressive neurodegenerative disease. The cause is unknown, but genetic abnormalities have been identified in subjects with familial ALS and also in subjects with sporadic ALS. Environmental factors such as occupational exposure have been shown to be risk factors for the development of ALS. Patients differ in their clinical features and differ in the clinical course of disease. Immune abnormalities have been found in the central nervous system by pathological studies and also in the blood and CSF of subjects with ALS. Inflammation and immune abnormalities are also found in animals with a model of ALS due to mutations in the SOD1 gene. Previously it has been considered that immune abnormalities might contribute to the pathogenesis of disease. However more recently it has become apparent that an immune response can occur as a response to damage to the nervous system and this can be protective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号