首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flagellar pocket (FP) is the only endo- and exocytic organelle in most trypanosomes and, as such, is essential throughout the life cycle of the parasite. The neck of the FP is maintained enclosed around the flagellum via the flagellar pocket collar (FPC). The FPC is a macromolecular cytoskeletal structure and is essential for the formation of the FP and cytokinesis. FPC biogenesis and structure are poorly understood, mainly due to the lack of information on FPC composition. To date, only two FPC proteins, BILBO1 and FPC4, have been characterized. BILBO1 forms a molecular skeleton upon which other FPC proteins can, theoretically, dock onto. We previously identified FPC4 as the first BILBO1 interacting partner and demonstrated that its C-terminal domain interacts with the BILBO1 N-terminal domain (NTD). Here, we report by yeast two-hybrid, bioinformatics, functional and structural studies the characterization of a new FPC component and BILBO1 partner protein, BILBO2 (Tb927.6.3240). Further, we demonstrate that BILBO1 and BILBO2 share a homologous NTD and that both domains interact with FPC4. We have determined a 1.9 Å resolution crystal structure of the BILBO2 NTD in complex with the FPC4 BILBO1-binding domain. Together with mutational analyses, our studies reveal key residues for the function of the BILBO2 NTD and its interaction with FPC4 and evidenced a tripartite interaction between BILBO1, BILBO2, and FPC4. Our work sheds light on the first atomic structure of an FPC protein complex and represents a significant step in deciphering the FPC function in Trypanosoma brucei and other pathogenic kinetoplastids.  相似文献   

2.
Trypanosoma brucei BILBO1 (TbBILBO1) is an essential component of the flagellar pocket collar of trypanosomes. We recently reported the high resolution structure of the N-terminal domain of TbBILBO1. Here, we provide further structural dissections of its other three constituent domains: EF-hand, coiled coil, and leucine zipper. We found that the EF-hand changes its conformation upon calcium binding, the central coiled coil forms an antiparallel dimer, and the C-terminal leucine zipper appears to contain targeting information. Furthermore, interdimer interactions between adjacent leucine zippers allow TbBILBO1 to form extended filaments in vitro. These filaments were additionally found to condense into fibers through lateral interactions. Based on these experimental data, we propose a mechanism for TbBILBO1 assembly at the flagellar pocket collar.  相似文献   

3.
Trypanosoma brucei is a protozoan parasite that is used as a model organism to study such biological phenomena as gene expression, protein trafficking, and cytoskeletal biogenesis. In T. brucei, endocytosis and exocytosis occur exclusively through a sequestered organelle called the flagellar pocket (FP), an invagination of the pellicular membrane. The pocket is the sole site for specific receptors thus maintaining them inaccessible to components of the innate immune system of the mammalian host. The FP is also responsible for the sorting of protective parasite glycoproteins targeted to, or recycling from, the pellicular membrane, and for the removal of host antibodies from the cell surface. Here, we describe the first characterisation of a flagellar pocket cytoskeletal protein, BILBO1. BILBO1 functions to form a cytoskeleton framework upon which the FP is made and which is also required and essential for FP biogenesis and cell survival. Remarkably, RNA interference (RNAi)-mediated ablation of BILBO1 in insect procyclic-form parasites prevents FP biogenesis and induces vesicle accumulation, Golgi swelling, the aberrant repositioning of the new flagellum, and cell death. Cultured bloodstream-form parasites are also nonviable when subjected to BILBO1 RNAi. These results provide the first molecular evidence for cytoskeletally mediated FP biogenesis.  相似文献   

4.
Autosomal dominant polycystic kidney disease (ADPKD) affects over 1:1000 of the worldwide population and is caused by mutations in two genes, PKD1 and PKD2. PKD2 encodes a 968-amino acid membrane spanning protein, Polycystin-2 (PC-2), which is a member of the TRP ion channel family. The C-terminal cytoplasmic tail contains an EF-hand motif followed by a short coiled-coil domain. We have determined the structure of the EF-hand region of PC-2 using NMR spectroscopy. The use of different boundaries, compared with those used in previous studies, have enabled us to determine a high resolution structure and show that the EF hand motif forms a standard calcium-binding pocket. The affinity of this pocket for calcium has been measured and mutants that both decrease and increase its affinity for the metal ion have been created.  相似文献   

5.
The parasite Trypanosoma brucei lives in the bloodstream of infected mammalian hosts, fully exposed to the adaptive immune system. It relies on a very high rate of endocytosis to clear bound antibodies from its cell surface. All endo- and exocytosis occurs at a single site on its plasma membrane, an intracellular invagination termed the flagellar pocket. Coiled around the neck of the flagellar pocket is a multiprotein complex containing the repeat motif protein T. brucei MORN1 (TbMORN1). In this study, the phenotypic effects of TbMORN1 depletion in the mammalian-infective form of T. brucei were analyzed. Depletion of TbMORN1 resulted in a rapid enlargement of the flagellar pocket. Dextran, a polysaccharide marker for fluid phase endocytosis, accumulated inside the enlarged flagellar pocket. Unexpectedly, however, the proteins concanavalin A and bovine serum albumin did not do so, and concanavalin A was instead found to concentrate outside it. This suggests that TbMORN1 may have a role in facilitating the entry of proteins into the flagellar pocket.  相似文献   

6.
We have determined the major sites responsible for isoaspartate formation during in vitro aging of bovine brain calmodulin under mild conditions. Protein L-isoaspartyl methyltransferase (EC 2.1.1.77) was used to quantify isoaspartate by the transfer of methyl-3H from S-adenosyl-L-[methyl-3H]methionine to the isoaspartyl (alpha-carboxyl) side chain. More than 1.2 mol of methyl-acceptor sites per mol of calmodulin accumulated during a 2-week incubation without calcium at pH 7.4, 37 degrees C. Analysis of proteolytic peptides of aged calmodulin revealed that > 95% of the methylation capacity is restricted to residues in the four calcium-binding domains, which are predicted to be highly flexible in the absence of calcium. We estimate that domains III, IV, and II accumulated 0.72, 0.60, and 0.13 mol of isoaspartate per mol of calmodulin, respectively. The Asn-97-Gly-98 sequence (domain III) is the greatest contributor to isoaspartate formation. Other major sites of isoaspartate formation are Asp-131-Gly-132 and Asp-133-Gly-134 in domain IV, and Asn-60-Gly-61 in domain II. Significant isoaspartate formation was also localized to Asp-20, Asp-22, and/or Asp-24 in domain I, to Asp-56 and/or Asp-58 in domain II, and to Asp-93 and/or Asp-95 in domain III. All of these residues are calcium ligands in the highly conserved EF-hand calcium-binding motif. Thus, other EF-hand proteins may also be subject to isoaspartate formation at these ligands. The results support the idea that isoaspartate formation in structured proteins is strongly influenced by both the C-flanking residue and by local flexibility.  相似文献   

7.
Centrin is an essential component of microtubule-organizing centers in organisms ranging from algae and yeast to humans. It is an EF-hand calcium-binding protein with homology to calmodulin but distinct calcium binding properties. In a previously proposed model, the C-terminal domain of centrin serves as a constitutive anchor to target proteins, and the N-terminal domain serves as the sensor of calcium signals. The three-dimensional structure of the N-terminal domain of Chlamydomonas rheinhardtii centrin has been determined in the presence of calcium by solution NMR spectroscopy. The domain is found to occupy an open conformation typical of EF-hand calcium sensors. Comparison of the N- and C-terminal domains of centrin reveals a structural and biochemical basis for the domain specificity of interactions with its cellular targets and the distinct nature of centrin relative to other EF-hand proteins. An NMR titration of the centrin N-terminal domain with a fragment of the known centrin target Sfi1 reveals binding of the peptide to a discrete site on the protein, which supports the proposal that the N-terminal domain serves as a calcium sensor in centrin.  相似文献   

8.
Trypanosoma brucei, a unicellular parasite, contains several single-copied organelles that duplicate and segregate in a highly coordinated fashion during the cell cycle. In the procyclic stage, a bi-lobed structure is found adjacent to the single ER exit site and Golgi apparatus, forming both stable and dynamic association with other cytoskeletal components including the basal bodies that seed the flagellum and the flagellar pocket collar that is critical for flagellar pocket biogenesis. To further understand the bi-lobe and its association with adjacent organelles, we performed proteomic analyses on the immunoisolated bi-lobe complex. Candidate proteins were localized to the flagellar pocket, the basal bodies, a tripartite attachment complex linking the basal bodies to the kinetoplast, and a segment of microtubule quartet linking the flagellar pocket collar and bi-lobe to the basal bodies. These results supported an extensive connection among the single-copied organelles in T. brucei, a strategy employed by the parasite for orderly organelle assembly and inheritance during the cell cycle.  相似文献   

9.
Allograft Inflammatory Factor-1 (AIF-1) is a cytoplasmic calcium-binding protein expressed in vascular smooth muscle cells (VSMC) in response to injury or cytokine stimulation. AIF-1 contains a partially conserved EF-hand calcium-binding domain, and participates in VSMC activation by activation of Rac1 and induction of Granulocyte-Colony Stimulating Factor (G-CSF) expression; however, the mechanism whereby AIF-1 mediates these effects is presently uncharacterized. To determine if calcium binding plays a functional role in AIF-1 activity, a single site-specific mutation was made in the EF-hand calcium-binding domain to abrogate binding of calcium (AIF-1DeltaA), which was confirmed by calcium overlay. Functionally, similar to wild-type AIF-1, AIF-1DeltaA was able to polymerize F-actin in vitro. However, in contrast to wild-type AIF-1, over-expression of AIF-1DeltaA was unable to increase migration or proliferation of primary human VSMC. Further, it was unable to activate Rac1, or induce G-CSF expression to the degree as wild-type AIF-1. Taken together, modification of the wild-type EF-hand domain and native calcium-binding activity results in a loss of AIF-1 function. We conclude that appropriate calcium-binding potential is critical in AIF-1-mediated effects on VSMC pathophysiology, and that AIF-1 activity is mediated by Rac1 activation and G-CSF expression.  相似文献   

10.
We characterized a phosphoinositide phospholipase C (PI-PLC) from the procyclic form (PCF) of Trypanosoma brucei. The protein contains a domain organization characteristic of typical PI-PLCs, such as X and Y catalytic domains, an EF-hand calcium-binding motif, and a C2 domain, but it lacks a pleckstrin homology (PH) domain. In addition, the T. brucei PI-PLC (TbPI-PLC) contains an N-terminal myristoylation consensus sequence found only in trypanosomatid PI-PLCs. A peptide containing this N-terminal domain fused to green fluorescent protein (GFP) was targeted to the plasma membrane. TbPI-PLC enzymatic activity was stimulated by Ca2+ concentrations below the cytosolic levels in the parasite, suggesting that the enzyme is constitutively active. TbPI-PLC hydrolyzes both phosphatidylinositol (PI) and phosphatidylinositol 4,5-bisphosphate (PIP2), with a higher affinity for PIP2. We found that modification of a single amino acid in the EF-hand motif greatly affected the protein''s Ca2+ sensitivity and substrate preference, demonstrating the role of this motif in Ca2+ regulation of TbPI-PLC. Endogenous TbPI-PLC localizes to intracellular vesicles and might be using an intracellular source of PIP2. Knockdown of TbPI-PLC expression by RNA interference (RNAi) did not result in growth inhibition, although enzymatic activity was still present in parasites, resulting in hydrolysis of PIP2 and a contribution to the inositol 1,4,5-trisphosphate (IP3)/diacylglycerol (DAG) pathway.  相似文献   

11.
Proteins with EF-hand calcium-binding motifs are essential for many cellular processes, but are also associated with cancer, autism, cardiac arrhythmias, and Alzheimer''s, skeletal muscle and neuronal diseases. Functionally, all EF-hand proteins are divided into two groups: (1) calcium sensors, which function to translate the signal to various responses; and (2) calcium buffers, which control the level of free Ca2+ ions in the cytoplasm. The borderline between the two groups is not clear, and many proteins cannot be described as definitive buffers or sensors. Here, we describe two highly-conserved structural motifs found in all known different families of the EF-hand proteins. The two motifs provide a supporting scaffold for the DxDxDG calcium binding loop and contribute to the hydrophobic core of the EF hand domain. The motifs allow more precise identification of calcium buffers and calcium sensors. Based on the characteristics of the two motifs, we could classify individual EF-hand domains into five groups: (1) Open static; (2) Closed static; (3) Local dynamic; (4) Dynamic; and (5) Local static EF-hand domains.  相似文献   

12.
The genes for four mutant proteins from calbindin D9k, all with mutations in the N-terminal Ca2+-binding domain (pseudo EF-hand) have been synthesized and expressed in Escherichia coli. The purification scheme has been modified to minimize the formation of deamidated proteins. The set of modifications in the pseudo EF-hand is an attempt to turn this site into a structure resembling an archetypal EF-hand, with its characteristic 113Cd-NMR shift (-80 to -110 ppm) and high calcium-binding constants, whereas the C-terminal Ca2(+)-binding site (EF-hand) is kept intact in all mutant proteins. The mutant proteins studied here all have pseudo EF-hands with a lower calcium-binding constant and a higher calcium off-rate to the pseudo EF-hand than the wild-type protein. From the results obtained it is obvious that proline 20 in the pseudo EF-hand, which has been deleted or replaced by glycine in three of the mutants, has a stabilizing effect on calcium binding to that site. Furthermore, the modifications in the pseudo EF-hand seem to have only a local effect, leaving the tertiary structure of the protein and the calcium-binding properties of the unmodified site virtually unchanged.  相似文献   

13.
Sorcin is a 22 kD calcium-binding protein that is found in a wide variety of cell types, such as heart, muscle, brain and adrenal medulla. It belongs to the penta-EF-hand (PEF) protein family, which contains five EF-hand motifs that associate with membranes in a calcium-dependent manner. Prototypic members of this family are the calcium-binding domains of calpain, such as calpain dVI. Full-length human sorcin has been crystallized in the absence of calcium and the structure determined at 2.2 A resolution. Apart from an extended N-terminal portion, the sorcin molecule has a globular shape. The C-terminal domain is predominantly alpha-helical, containing eight alpha-helices and connecting loops incorporating five EF hands. Sorcin forms dimers through the association of the unpaired EF5, confirming this as the mode of association in the dimerization of PEF proteins. Comparison with calpain dVI reveals that the general folds of the individual EF-hand motifs are conserved, especially that of EF1, the novel EF-hand motif characteristic of the family. Detailed structural comparisons of sorcin with other members of PEF indicate that the EF-hand pair EF1-EF2 is likely to correspond to the two physiologically relevant calcium-binding sites and that the calcium-induced conformational change may be modest and localized within this pair of EF-hands. Overall, the results derived from the structural observations support the view that, in sorcin, calcium signaling takes place through the first pair of EF-hands.  相似文献   

14.
α-Ketoglutarate decarboxylase (α-KDE1) is a Krebs cycle enzyme found in the mitochondrion of the procyclic form (PF) of Trypanosoma brucei. The bloodstream form (BF) of T. brucei lacks a functional Krebs cycle and relies exclusively on glycolysis for ATP production. Despite the lack of a functional Krebs cycle, α-KDE1 was expressed in BF T. brucei and RNA interference knockdown of α-KDE1 mRNA resulted in rapid growth arrest and killing. Cell death was preceded by progressive swelling of the flagellar pocket as a consequence of recruitment of both flagellar and plasma membranes into the pocket. BF T. brucei expressing an epitope-tagged copy of α-KDE1 showed localization to glycosomes and not the mitochondrion. We used a cell line transfected with a reporter construct containing the N-terminal sequence of α-KDE1 fused to green fluorescent protein to examine the requirements for glycosome targeting. We found that the N-terminal 18 amino acids of α-KDE1 contain overlapping mitochondrion- and peroxisome-targeting sequences and are sufficient to direct localization to the glycosome in BF T. brucei. These results suggest that α-KDE1 has a novel moonlighting function outside the mitochondrion in BF T. brucei.  相似文献   

15.
Plasmodium falciparum perforin like proteins (PfPLPs) are an important arsenal for the entry and exit of malaria parasites. These proteins bind and oligomerize on the membrane in calcium dependent manner and form an open pore. The calcium dependent pore forming activity of PLPs is usually conferred by their C2 like C-terminal domain. Here, we have tried to elucidate the calcium binding residues in the C-terminal domain of PfPLP1, a member of P. falciparum PLPs, playing a crucial role in calcium dependent egress of blood stage parasites. Through our in silico study, we have found that the C-terminal domain of all PfPLPs is rich in β-pleated sheets and is structurally similar to C2 domain of human perforin. Furthermore, homology search based on 3-D structure of PfPLP1 confirmed that it is structurally homologous to the calcium binding C2 domain of many proteins. On further elucidation of the calcium-binding pocket of the C2 like domain of PfPLP1 showed that it binds to two calcium molecules. The calcium-binding pocket could be a target of novel chemotherapeutics for studying functional role of PfPLPs in parasite biology as well as for limiting blood stage growth of malaria parasite.  相似文献   

16.
African trypanosomes express a family of dually acylated, EF-hand calcium-binding proteins called the calflagins. These proteins associate with lipid raft microdomains in the flagellar membrane, where they putatively function as calcium signaling proteins. Here we show that these proteins bind calcium with high affinity and that their expression is regulated during the life cycle stage of the parasite, with protein levels approximately 10-fold higher in the mammalian bloodstream form than in the insect vector procyclic stage. We also demonstrate a role for the calflagins in mammalian infection, as inhibition of the entire calflagin family by RNA interference dramatically increased host survival and attenuated parasitemia in a mouse model of sleeping sickness. In contrast to infection with parental wild-type parasites, which demonstrated an unremitting parasitemia and death within 6 to 10 days, infection with calflagin-depleted parasites demonstrated prolonged survival associated with a sudden decrease in parasitemia at approximately 8 days postinfection. Subsequent relapsing and remitting waves of parasitemia thereafter were associated with alternate expression of the variant surface glycoprotein, suggesting that initial clearance was antigen specific. Interestingly, despite the notable in vivo phenotype and flagellar localization of the calflagins, in vitro analysis of the calflagin-deficient parasites demonstrated normal proliferation, flagellar motility, and morphology. Further analysis of the kinetics of surface antibody clearance also did not demonstrate a deficit in the calflagin-deficient parasites; thus, the molecular basis for the altered course of infection is independent of an effect on parasite cell cycle progression, motility, or degradation of surface-bound antibodies.The protozoan parasite Trypanosoma brucei is the causative agent of African sleeping sickness, a fatal disease endemic to regions throughout sub-Saharan Africa. Incidence rates of human T. brucei infection have risen dramatically in the past 30 to 50 years, leading to renewed emphasis by the World Health Organization on disease surveillance and control among the millions of people at risk of infection. T. brucei also infects cattle to cause nagana, a disease which renders vast regions unsuitable for livestock and poses a major barrier to economic development in afflicted areas (30).T. brucei is transmitted to its mammalian host via the bite of the infected tsetse fly, when parasites are introduced into the host circulation during a blood meal. To thrive in both the insect vector and the mammalian host, T. brucei has evolved digenetic life cycle stages; the two most commonly studied life cycle stages are the procyclic stage from the fly midgut and the bloodstream form found in the mammalian host. Programmed differentiation between these stages regulates broad aspects of parasite biology, enabling adaptation to either environment. In the mammalian host, avoiding clearance by the humoral immune response is particularly important, and T. brucei has evolved sophisticated mechanisms to this end. Bloodstream form parasites are covered by a thick monolayer of variant surface glycoprotein (VSG) that blocks the access of host antibodies to underlying invariant antigens (2). VSG is highly immunogenic, and VSG-specific antibodies facilitate the clearance of parasites from the blood. However, the parasite undergoes antigenic variation, a process whereby the parasite spontaneously switches from the expression of a single VSG type to that of another of the hundreds in its genomic repertoire. The new parasite clone is resistant to the existing antibodies and persists until antibodies to the new VSG are produced, thus selecting for another antigen variant and propagating the cycle. T. brucei has coevolved with primates for millions of years, and antigenic variation is not its sole means of immune evasion. Additional mechanisms such as host immunosuppression (20), motility-driven internalization and degradation of surface-bound antibodies (13, 22), and the shedding of VSG molecules (7) are each likely to contribute to the survival of T. brucei in the hostile environment of its mammalian host. However, the signaling and genetic pathways by which T. brucei regulates stage-specific adaptations to its environment remain poorly understood.Calcium signaling plays critical roles in virtually every eukaryotic cell type, and trypanosomes are no exception. Regulated changes in intracellular calcium are important for trypanosome replication, differentiation, cell invasion, and virulence (24). The importance of calcium regulation in trypanosomes is further underscored by the presence of a specialized organelle, the acidocalcisome, which contains a major intracellular reservoir of calcium (9). Cellular responses to calcium fluctuations are mediated by calcium-binding proteins. In addition to calmodulin, T. brucei expresses a family of EF-hand proteins named the calflagins. They were discovered as the predominant T. brucei proteins to bind a hydrophobic resin in a calcium-dependent manner (35, 36). These proteins specifically localize to the flagellum, an organelle which, in addition to its obvious role in cellular motility, compartmentalizes signaling proteins, including adenylate cyclases and phosphodiesterases (26, 27). In the flagellum, calflagins associate with lipid raft microdomains, which in many cell types serve as recruitment platforms for signaling molecules (32). We have recently elucidated the role of acylation in calflagin trafficking and raft association and identified the calflagin-specific palmitoyl acyltransferase (11). However, the precise functions of these abundant proteins remain unknown. The calflagins show homology with Trypanosoma cruzi FCaBP, an immunodominant protein with similar flagellar enrichment yet an unidentified biologic function (12). Outside of the common EF-hand domains, the calflagins display only minimal homology to proteins in organisms outside the kinetoplastid lineage.To elucidate the function of T. brucei calflagins, we assessed the consequences of calflagin inhibition to T. brucei in vivo during host infection and in vitro. We can now report for the first time that calflagin expression influences the outcome of parasite infection, as mice infected with calflagin-deficient cells demonstrate a sudden decrease in parasitemia approximately 1 week postinfection. This drop is associated with prolonged host survival and outgrowth of parasites expressing alternative VSG molecules, indicating selective pressure against the initial dominant VSG molecule and suggesting that the primary deficit of calflagin-deficient cells is one of enhanced sensitivity to the host adaptive immune response. We demonstrate that the molecular mechanisms underlying this effect are not due to altered parasite proliferation, motility, or clearance of surface-bound antibodies.  相似文献   

17.
The Escherichia coli lytic transglycosylase Slt35 contains a single metal ion-binding site that resembles EF-hand calcium-binding sites. The Slt35 EF-hand is only the second observation of such a domain in a prokaryotic protein. Two crystal structures at 2.1 A resolution show that both Ca2+ ions and Na+ ions can bind to the EF-hand domain, but in subtly different configurations. Heat-induced unfolding studies demonstrate that Ca2+ ions are preferentially bound, and that only Ca2+ ions significantly increase the melting temperature of Slt35. This shows that the EF-hand calcium-binding domain is important for the stability of Slt35.  相似文献   

18.
Tcb2 is a putative calcium-binding protein from the membrane-associated cytoskeleton of the ciliated protozoan Tetrahymena thermophila. It has been hypothesized to participate in several calcium-mediated processes in Tetrahymena, including ciliary movement, cell cortex signaling, and pronuclear exchange. Sequence analysis suggests that the protein belongs to the calmodulin family, with N- and C-terminal domains connected by a central linker, and two helix-loop-helix motifs in each domain. However, its calcium-binding properties, structure and precise biological function remain unknown. Interestingly, Tcb2 is a major component of unique contractile fibers isolated from the Tetrahymena cytoskeleton; in these fibers, addition of calcium triggers an ATP-independent type of contraction. Here we report the 1H, 13C and 15N backbone and side-chain chemical shift assignments of the C-terminal domain of the protein (Tcb2-C) in the absence and presence of calcium ions. 1H–15N HSQC spectra show that the domain is well folded both in the absence and presence of calcium, and undergoes a dramatic conformational change upon calcium addition. Secondary structure prediction from chemical shifts reveals an architecture encountered in other calcium-binding proteins, with paired EF-hand motifs connected by a flexible linker. These studies represent a starting point for the determination of the high-resolution solution structure of Tcb2-C at both low and high calcium levels, and, together with additional structural studies on the full-length protein, will help establish the molecular basis of Tcb2 function and unique contractile properties.  相似文献   

19.
Low energy modes have been calculated for the largest possible number of available representatives (>150) of EF-hand domains belonging to different members of the calcium-binding EF-hand protein superfamily. These proteins are the major actors in signal transduction. The latter, in turn, relies on the dynamical properties of the systems, in particular on the relative movements of the four helices characterizing each EF-hand domain upon calcium binding. The peculiar structural and dynamical features of this protein superfamily are systematically investigated by a novel approach, where the lowest energy (essential) modes are described in the space of the six interhelical angles among the four helices constituting the EF-hand domain. The modes, obtained through a general and transferable coarse-graining scheme, identify the easy directions of helical motions. It is found that, for most proteins, the two lowest energy modes are sufficient to capture most of the helices' fluctuation dynamics. Strikingly, the comparison of such modes for all possible pairs of EF-hand domain representatives reveals that only few easy directions are preferred within this large protein superfamily. This enables us to introduce a novel dynamics-based classification of EF-hand domains that complements existing structure-based characterizations from an unexplored biological perspective.  相似文献   

20.
A DNA sequence encoding a protein with predicted EF-hand and dynein light chain binding domains was identified in a Fasciola hepatica EST library. Sequence analysis of the encoded protein revealed that the most similar known protein was the Fasciola gigantica protein FgCaBP3 and so this newly identified protein was named FhCaBP3. Molecular modelling of FhCaBP3 predicted a highly flexible N-terminal region, followed by a domain containing two EF-hand motifs the second of which is likely to be a functioning divalent ion binding site. The C-terminal domain of the protein contains a dynein light chain like region. Interestingly, molecular modelling predicts that calcium ion binding to the N-terminal domain destabilises the β-sheet structure of the C-terminal domain. FhCaBP3 can be expressed in, and purified from, Escherichia coli. The recombinant protein dimerises and the absence of calcium ions appeared to promote dimerisation. Native gel shift assays demonstrated that the protein bound to calcium and manganese ions, but not to magnesium, barium, zinc, strontium, nickel, copper or cadmium ions. FhCaBP3 interacted with the calmodulin antagonists trifluoperazine, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and chlorpromazine as well as the myosin regulatory light chain-binding drug praziquantel. Despite sequence and structural similarities to other members of the same protein family from F. hepatica, FhCaBP3 has different biochemical properties to the other well characterised family members, FH22 and FhCaBP4. This suggests that each member of this trematode calcium-binding family has discrete functional roles within the organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号