首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upstream open reading frames (uORFs) are often found in the 5′-leader regions of eukaryotic mRNAs and can negatively modulate the translational efficiency of the downstream main ORF. Although the effects of most uORFs are thought to be independent of their encoded peptide sequences, certain uORFs control translation of the main ORF in a peptide sequence-dependent manner. For genome-wide identification of such peptide sequence-dependent regulatory uORFs, exhaustive searches for uORFs with conserved amino acid sequences have been conducted using bioinformatic analyses. However, whether the conserved uORFs identified by these bioinformatic approaches encode regulatory peptides has not been experimentally determined. Here we analyzed 16 recently identified Arabidopsis thaliana conserved uORFs for the effects of their amino acid sequences on the expression of the main ORF using a transient expression assay. We identified five novel uORFs that repress main ORF expression in a peptide sequence-dependent manner. Mutational analysis revealed that, in four of them, the C-terminal region of the uORF-encoded peptide is critical for the repression of main ORF expression. Intriguingly, we also identified one exceptional sequence-dependent regulatory uORF, in which the stop codon position is not conserved and the C-terminal region is not important for the repression of main ORF expression.  相似文献   

2.
3.

Background  

The translational efficiency of an mRNA can be modulated by upstream open reading frames (uORFs) present in certain genes. A uORF can attenuate translation of the main ORF by interfering with translational reinitiation at the main start codon. uORFs also occur by chance in the genome, in which case they do not have a regulatory role. Since the sequence determinants for functional uORFs are not understood, it is difficult to discriminate functional from spurious uORFs by sequence analysis.  相似文献   

4.
O Donz  P F Spahr 《The EMBO journal》1992,11(10):3747-3757
The Rous sarcoma virus (RSV) RNA leader sequence carries three open reading frames (uORFs) upstream of the AUG initiator of the gag gene. We studied, in vivo, the role of these uORFs by changing two or three nucleotides of the three AUGs or by deleting the first uORF. Our results show that (i) unlike most previously characterized uORFs, which decrease translation, the first uORF (AUG1) of RSV acts as an enhancer of translation, since absence of the first AUG decreased translation; AUG3 also modulates translation, probably by interfering with scanning ribosomes as described for other upstream ORFs, and mutation of AUG2 had no effect on translation. (ii) Mutation of each of the upstream AUGs lowered the infectivity of progeny virions. (iii) Unexpectedly, mutation of AUG1 and/or AUG3 dramatically reduced RNA packaging by 50-to 100-fold, unlike mutation of AUG2 which did not alter RNA packaging efficiency. Additional mutants in the vicinity of uORF1 and uORF3 were constructed in order to elucidate the mechanism by which uORFs affect RNA packaging: a translation model requiring uORFs 1 and 3, and involving ribosome pausing at AUG 3 is discussed.  相似文献   

5.
6.
Rous sarcoma virus (RSV) RNA leader contains three short upstream open reading frames. We have shown recently that both uORFs 1 and 3 influence in vivo translation of the downstream gag gene and are involved in the virus RNA packaging process. In this report, we have studied the translational events occurring at the upstream AUGs in vivo. We show that (i) the first and third AUGs are efficient translational initiation sites; (ii) ribosomes reinitiate efficiently at AUG3; and (iii) deletions in the intercistronic distance between uORF1 and 3 (which is well conserved among avian strains) prevent ribosome initiation at AUG3, thus increasing translation efficiency at the downstream AUGgag. The roles of the uORFs in translation and packaging are discussed.  相似文献   

7.
Upstream AUGs (uAUGs) and upstream open reading frames (uORFs) are common features of mRNAs that encode regulatory proteins and have been shown to profoundly influence translation of the main ORF. In this study, we employed a series of artificial 5′-untranslated regions (5′-UTRs) containing one or more uAUGs/uORFs to systematically assess translation initiation at the main AUG by leaky scanning and reinitiation mechanisms. Constructs containing either one or two uAUGs in varying contexts but without an in-frame stop codon upstream of the main AUG were used to analyse the leaky scanning mechanism. This analysis largely confirmed the ranking of different AUG contextual sequences that was determined previously by Kozak. In addition, this ranking was the same for both the first and second uAUGs, although the magnitude of initiation efficiency differed. Moreover, ~10% of ribosomes exhibited leaky scanning at uAUGs in the most favourable context and initiated at a downstream AUG. A second group of constructs containing different numbers of uORFs, each with optimal uAUGs, were used to measure the capacity for reinitiation. We found significant levels of initiation at the main ORF even in constructs containing four uORFs, with nearly 10% of ribosomes capable of reinitiating five times. This study shows that for mRNAs containing multiple uORFs/uAUGs, ribosome reinitiation and leaky scanning are efficient mechanisms for initiation at their main AUGs.  相似文献   

8.
Regulation of mRNA translation and stability plays an important role in the control of gene expression during embryonic development. We have recently shown that the tissue-specific expression of the RAR beta 2 gene in mouse embryos is regulated at the translational level by short upstream open reading frames (uORFs) In the 5'-untranslated region (Zimmer, A., A.M. Zimmer, and K. Reynolds. 1994. J. Cell Biol. 127:1111- 1119). To gain insight into the molecular mechanism, we have performed a systematic mutational analysis of the uORFs. Two series of constructs were tested: in one series, each uORF was individually inactivated by introducing a point mutation in its start codon; in the second series, all but one ORF were inactivated. Our results indicate that individual uORFs may have different functions. uORF4 seems to inhibit translation of the major ORF in heart and brain, while uORFs 2 and 5 appear to be important for efficient translation in all tissues. To determine whether the polypeptide encoded by uORF4 or the act of translating it, is the significant event, we introduced point mutations to create silent mutations or amino acid substitutions in uORF4. Our results indicate that the uORF4 amino acid coding sequence is important for the inhibitory effect on translation of the downstream major ORF.  相似文献   

9.
Four short upstream open reading frames (uORFs) in the mRNA leader are required for the translational control of GCN4 expression in response to amino acid availability. Data are reviewed demonstrating that the fourth (3' proximal) uORF is sufficient to establish the repressed levels of GCN4 expression, while the first uORF functions as a positive regulatory element under starvation conditions to stimulate GCN4 translation. Furthermore, positive and negative trans-acting regulatory factors, the activities of which appear to be modulated according to amino acid availability, exert their effects on GCN4 expression through the uORFs. Direct comparison of the uORFs indicates that there are important nucleotide sequence differences between uORF1 and 4, and that these are located primarily around the termination codons of these elements. Recent findings suggest that the sequences that mediate repression of GCN4 expression are complex, but can be overcome under starvation conditions by ribosomes that have previously translated uORF1.  相似文献   

10.
A novel form of translational regulation is described for the key polyamine biosynthetic enzyme S-adenosylmethionine decarboxylase (AdoMetDC). Plant AdoMetDC mRNA 5' leaders contain two highly conserved overlapping upstream open reading frames (uORFs): the 5' tiny and 3' small uORFs. We demonstrate that the small uORF-encoded peptide is responsible for constitutively repressing downstream translation of the AdoMetDC proenzyme ORF in the absence of increased polyamine levels. This first example of a sequence-dependent uORF to be described in plants is also functional in Saccharomyces cerevisiae. The tiny uORF is required for normal polyamine-responsive AdoMetDC mRNA translation, and we propose that this is achieved by control of ribosomal recognition of the occluded small uORF, either by ribosomal leaky scanning or by programmed -1 frameshifting. In vitro expression demonstrated that both the tiny and the small uORFs are translated. This tiny/small uORF configuration is highly conserved from moss to Arabidopsis thaliana, and a more diverged tiny/small uORF arrangement is found in the AdoMetDC mRNA 5' leader of the single-celled green alga Chlamydomonas reinhardtii, indicating an ancient origin for the uORFs.  相似文献   

11.
12.
13.
The Kaposi''s sarcoma-associated herpesvirus (KSHV) ORF36 protein kinase is translated as a downstream gene from the ORF35-37 polycistronic mRNA via a unique mechanism involving short upstream open reading frames (uORFs) located in the 5′ untranslated region. Here, we confirm that ORF35-37 is functionally dicistronic during infection and demonstrate that mutation of the dominant uORF restricts KSHV replication. Leaky scanning past the uORFs facilitates ORF35 expression, while a reinitiation mechanism after translation of the uORFs enables ORF36 expression.  相似文献   

14.
15.
Expression of the GCN4 gene of Saccharomyces cerevisiae is regulated at the translational level by short open reading frames (uORFs) present in the leader sequence of its mRNA. Under conditions of amino acid sufficiency, these sequences restrict the flow of initiating ribosomes to the GCN4 AUG start codon. Mutational analysis of GCN4 has led to a model in which ribosomes must translate the 5'-proximal uORF1 and reassemble an initiation complex in order to translate GCN4. This reassembly process is thought to be rapid when amino acids are abundant, such that reinitiation occurs at uORF2, uORF3, or uORF4. Reinitiation at these sites prevents translation of GCN4, presumably because ribosomes dissociate from the mRNA following termination at uORFs 2 to 4. Because of reduced initiation factor activity under starvation conditions, a substantial fraction of ribosomal subunits scanning downstream from uORF1 are not ready to reinitiate when they reach uORFs 2 to 4, but become competent to do so while scanning the additional sequences between uORF4 and GCN4. Examination of the effects of point mutations in the ATG codons of the different uORFs suggests a quantitative model for this control mechanism that describes the probability of reinitiation as a function of the distance scanned downstream from uORF1. This model accounts for the phenotypes of a number of deletion and insertion mutations that alter the intercistronic spacing between the uORFs and GCN4. The correspondence between observed and predicted results implies that the differential rates of reinitiation at GCN4 versus uORFs 2 to 4 are determined largely by the different scanning times required to reach each of these start sites following translation of uORF1. In addition, it supports the notion that an increased scanning-time requirement for reinitiation in amino acid-starved cells forms the basis for translational derepression of GCN4 expression.  相似文献   

16.
Methionine synthase is a key enzyme poised at the intersection of folate and sulfur metabolism and functions to reclaim homocysteine to the methionine cycle. The 5' leader sequence in human MS is 394 nucleotides long and harbors two open reading frames (uORFs). In this study, regulation of the main open reading frame by the uORFs has been elucidated. Both uORFs downregulate translation as demonstrated by mutation of the upstream AUG codons (uAUG) either singly or simultaneously. The uAUGs are capable of recruiting the 40S ribosomal complex as revealed by their ability to drive reporter expression in constructs in which the luciferase is fused to the uORFs. uORF2, which is predicted to encode a 30 amino acid long polypeptide, has a clustering of rare codons encoding arginine and proline. Mutation of a tandemly repeated rare codon for arginine at positions 3 and 4 in uORF2 to either common codons for the same amino acid or common codons for alanine results in complete alleviation of translation inhibition. This suggests a mechanism for ribosome stalling and demonstrates that the cis-effects on translation by uORF2 is dependent on the nucleotide sequence but is apparently independent of the sequence of the encoded peptide. This study reveals complex regulation of the essential housekeeping gene, methionine synthase, by the uORFs in its leader sequence.  相似文献   

17.
18.
19.
20.
In Arabidopsis thaliana, XIPOTL1 encodes a phosphoethanolamine N-methyltransferase with a central role in phosphatidylcholine biosynthesis via the methylation pathway. To gain further insights into the mechanisms that regulate XIPOTL1 expression, the effect of upstream open reading frame 30 (uORF30) on the translation of the major ORF (mORF) in the presence or absence of endogenous choline (Cho) or phosphocholine (PCho) was analysed in Arabidopsis seedlings. Dose-response assays with Cho or PCho revealed that both metabolites at physiological concentrations are able to induce the translational repression of a mORF located downstream of the intact uORF30, without significantly altering its mRNA levels. PCho profiles showed a correlation between increased endogenous PCho levels and translation efficiency of a uORF30-containing mORF, while no correlation was detectable with Cho levels. Enhanced expression of a uORF30-containing mORF and decreased PCho levels were observed in the xipotl1 mutant background relative to wild type, suggesting that PCho is the true mediator of uORF30-driven translational repression. In Arabidopsis, endogenous PCho content increases during plant development and affects root meristem size, cell division, and cell elongation. Because XIPOTL1 is preferentially expressed in Arabidopsis root tips, higher PCho levels are found in roots than shoots, and there is a higher sensitivity of this tissue to translational uORF30-mediated control, it is proposed that root tips are the main site for PCho biosynthesis in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号