共查询到20条相似文献,搜索用时 15 毫秒
1.
Adam B. Barrett Guy O. Billings Richard G. M. Morris Mark C. W. van Rossum 《PLoS computational biology》2009,5(1)
Recent data indicate that plasticity protocols have not only synapse-specific but also more widespread effects. In particular, in synaptic tagging and capture (STC), tagged synapses can capture plasticity-related proteins, synthesized in response to strong stimulation of other synapses. This leads to long-lasting modification of only weakly stimulated synapses. Here we present a biophysical model of synaptic plasticity in the hippocampus that incorporates several key results from experiments on STC. The model specifies a set of physical states in which a synapse can exist, together with transition rates that are affected by high- and low-frequency stimulation protocols. In contrast to most standard plasticity models, the model exhibits both early- and late-phase LTP/D, de-potentiation, and STC. As such, it provides a useful starting point for further theoretical work on the role of STC in learning and memory. 相似文献
2.
Estrogenic and androgenic steroids can be synthesised in the brain and rapidly modulate synaptic transmission and plasticity through direct interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used whole cell patch clamp recordings in brainstem slices of male rats to explore the influence of ER and AR activation and local synthesis of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) on the long-term synaptic changes induced in the neurons of the medial vestibular nucleus (MVN). Long-term depression (LTD) and long-term potentiation (LTP) caused by different patterns of high frequency stimulation (HFS) of the primary vestibular afferents were assayed under the blockade of ARs and ERs or in the presence of inhibitors for enzymes synthesizing DHT (5α-reductase) and E2 (P450-aromatase) from testosterone (T). We found that LTD is mediated by interaction of locally produced androgens with ARs and LTP by interaction of locally synthesized E2 with ERs. In fact, the AR block with flutamide prevented LTD while did not affect LTP, and the blockade of ERs with ICI 182,780 abolished LTP without influencing LTD. Moreover, the block of P450-aromatase with letrozole not only prevented the LTP induction, but inverted LTP into LTD. This LTD is likely due to the local activation of androgens, since it was abolished under blockade of ARs. Conversely, LTD was still induced in the presence of finasteride the inhibitor of 5α-reductase demonstrating that T is able to activate ARs and induce LTD even when DHT is not synthesized. This study demonstrates a key and opposite role of sex neurosteroids in the long-term synaptic changes of the MVN with a specific role of T-DHT for LTD and of E2 for LTP. Moreover, it suggests that different stimulation patterns can lead to LTD or LTP by specifically activating the enzymes involved in the synthesis of androgenic or estrogenic neurosteroids. 相似文献
3.
This review generalizes and analyzes findings available on the neurochemical mechanisms of induction and expression of NMDA-dependent and NMDA-independent forms of homo- and heterosynaptic long-term depression of synaptic transmission in the hippocampus and cerebellum. Neurochemical mechanisms of depotentiation of synaptic transmission are also considered. The role of long-term depression (depotentiation) in the formation of memory traces and learned skills is discussed. 相似文献
4.
Loes H. Schrama Pierre N. E. de Graan Henk Zwiers Willem Hendrik Gispen 《Journal of neurochemistry》1986,47(6):1843-1848
In the in vitro hippocampal slice preparation a short tetanus induces long-term potentiation (LTP) and an increase in the post hoc phosphorylation of a 52-kDa protein in synaptosomal plasma membranes (SPM) prepared from these slices. This 52-kDa SPM phosphoprotein closely resembles the predominant phosphoprotein in coated vesicles, pp50, with respect to the insensitivity of its phosphorylation to Ca2+/calmodulin and cyclic AMP. This resemblance prompted us to compare in rat brain the 52-kDa SPM protein with pp50 in isolated coated vesicles. Both proteins appear to be very similar on basis of the following criteria: relative molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, peptide mapping, phospho-amino acid content, and isoelectric point. Since coated vesicles are thought to be involved in receptor-mediated endocytosis and membrane recycling, our data suggest that LTP-correlated changes in 52-kDa phosphorylation may reflect increased coated vesicle activity. 相似文献
5.
We have labeled recycling synaptic vesicles at the somatic Bufo marinus neuromuscular junction with the styryl dye FM2-10 and provide direct evidence for refractoriness of exocytosis associated with a muscle activity-dependent form of long-term depression (LTD) at this synapse. FM2-10 dye unloading experiments demonstrated that the rate of vesicle exocytosis from the release ready pool (RRP) of vesicles was more than halved in the LTD (induced by 20 min of low frequency stimulation). Recovery from LTD, observed as a partial recovery of nerve-evoked muscle twitch amplitude, was accompanied by partial recovery of the refractoriness of RRP exocytosis. Unexpectedly, paired pulse plasticity, another routinely used indicator of presynaptic forms of synaptic plasticity, was unchanged in the LTD. We conclude that the LTD induces refractoriness of the neuromuscular vesicle release machinery downstream of presynaptic calcium entry. 相似文献
6.
Joanna Sowa Bartosz Bobula Katarzyna Glombik Joanna Slusarczyk Agnieszka Basta-Kaim Grzegorz Hess 《PloS one》2015,10(3)
The effects of prenatal stress procedure were investigated in 3 months old male rats. Prenatally stressed rats showed depressive-like behavior in the forced swim test, including increased immobility, decreased mobility and decreased climbing. In ex vivo frontal cortex slices originating from prenatally stressed animals, the amplitude of extracellular field potentials (FPs) recorded in cortical layer II/III was larger, and the mean amplitude ratio of pharmacologically-isolated NMDA to the AMPA/kainate component of the field potential—smaller than in control preparations. Prenatal stress also resulted in a reduced magnitude of long-term potentiation (LTP). These effects were accompanied by an increase in the mean frequency, but not the mean amplitude, of spontaneous excitatory postsynaptic currents (sEPSCs) in layer II/III pyramidal neurons. These data demonstrate that stress during pregnancy may lead not only to behavioral disturbances, but also impairs the glutamatergic transmission and long-term synaptic plasticity in the frontal cortex of the adult offspring. 相似文献
7.
8.
Deheng Wang Zhenzhong Cui Qingwen Zeng Hui Kuang L. Phillip Wang Joe Z. Tsien Xiaohua Cao 《PloS one》2009,4(10)
One major theory in learning and memory posits that the NR2B gene is a universal genetic factor that acts as rate-limiting molecule in controlling the optimal NMDA receptor''s coincidence-detection property and subsequent learning and memory function across multiple animal species. If so, can memory function be enhanced via transgenic overexpression of NR2B in another species other than the previously reported mouse species? To examine these crucial issues, we generated transgenic rats in which NR2B is overexpressed in the cortex and hippocampus and investigated the role of NR2B gene in NMDA receptor-mediated synaptic plasticity and memory functions by combining electrophysiological technique with behavioral measurements. We found that overexpression of the NR2B subunit had no effect on CA1-LTD, but rather resulted in enhanced CA1-LTP and improved memory performances in novel object recognition test, spatial water maze, and delayed-to-nonmatch working memory test. Our slices recordings using NR2A- and NR2B-selective antagonists further demonstrate that the larger LTP in transgenic hippocampal slices was due to contribution from the increased NR2B-containing NMDARs. Therefore, our genetic experiments suggest that NR2B at CA1 synapses is not designated as a rate-limiting factor for the induction of long-term synaptic depression, but rather plays a crucial role in initiating the synaptic potentiation. Moreover, our studies provide strong evidence that the NR2B subunit represents a universal rate-limiting molecule for gating NMDA receptor''s optimal coincidence-detection property and for enhancing memory function in adulthood across multiple mammalian species. 相似文献
9.
Alejandra Rangel Noelia Madro?al Agnès Gruart i. Massó Rosalina Gavín Franc Llorens Lauro Sumoy Juan María Torres José María Delgado-García José Antonio Del Río 《PloS one》2009,4(10)
Background
Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic electroencephalographic (EEG) disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational isoform (PrPsc) of the natural cellular prion protein (PrPc) encoded by the Prnp gene. Although several roles have been attributed to PrPc, its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp knockout mice described minor changes, later studies report altered behavior. To date, most functional PrPc studies on synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation.Methodology/Principal Findings
Here we explore the role of PrPc expression in neurotransmission and neural excitability using wild-type, Prnp −/− and PrPc-overexpressing mice (Tg20 strain). By correlating histopathology with electrophysiology in living behaving mice, we demonstrate that both Prnp −/− mice but, more relevantly Tg20 mice show increased susceptibility to KA, leading to significant cell death in the hippocampus. This finding correlates with enhanced synaptic facilitation in paired-pulse experiments and hippocampal LTP in living behaving mutant mice. Gene expression profiling using Illumina™ microarrays and Ingenuity pathways analysis showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission were co-regulated in Prnp −/− and Tg20 mice. Lastly, RT-qPCR of neurotransmission-related genes indicated that subunits of GABAA and AMPA-kainate receptors are co-regulated in both Prnp −/− and Tg20 mice.Conclusions/Significance
Present results demonstrate that PrPc is necessary for the proper homeostatic functioning of hippocampal circuits, because of its relationships with GABAA and AMPA-Kainate neurotransmission. New PrPc functions have recently been described, which point to PrPc as a target for putative therapies in Alzheimer''s disease. However, our results indicate that a “gain of function” strategy in Alzheimer''s disease, or a “loss of function” in prionopathies, may impair PrPc function, with devastating effects. In conclusion, we believe that present data should be taken into account in the development of future therapies. 相似文献10.
In studies on transversal slices of the rat dorsal hippocampus, we found that low-frequency tetanic stimulation of the medial perforant pathway (2 sec-1, 7.5 min) results in long-term depression (LTD) of field EPSP of granular cells in the dentate gyrus. This synaptic plasticity phenomenon was weakened by calmodulin, nitric oxide synthase, and protein kinase C inhibitors, trifluoperazine (1 M), N-nitro-L-arginine (5 M), and polymixin B (50 M), respectively, but was enhanced by a nonselective inhibitor of cAMP phosphodiesterases, 1-isobuthyl-3-methylxanthine (100 M), and a calcineurin inhibitor, cyclosporin A (50 M). The nootropic activity-possessing drugs piracetam, carbacetam, and etimizole suppressed, in a dose-dependent manner, the induction and expression of the studied form of LTD of synaptic transmission, but glycine did not. We assume that Ca2+- and protein kinase G-mediated increase in the activity of calmodulin is the main link in the induction of this LTD form. Calmodulin, via NO synthase and adenylate cyclase, increases the activities of protein kinase C, a substrate of the latter, and inhibitor 1. Under the influence of piracetam, carbacetam, and etimizole, the calmodulin concentration in the cytoplasm of dendritic spines attains a level sufficient for activation of Ca2+/calmodulin-dependent protein kinase, which provides for the phosphorylation of AMPA receptors and interferes with the development of LTD of synaptic transmission. 相似文献
11.
12.
13.
14.
The author briefly summarizes his own experimental data obtained earlier and reports evidence in favor of the contribution of postsynaptic AMPA receptor channels to the mechanisms underlying modifications of excitatory synaptic transmission in the CNS (in particular, in neocortical and hippocampal neuronal circuits). 相似文献
15.
In a co-culture of dissociated neurons of lumbar dorsal root ganglia (DRG) and spinal dorsal horn (DH) neurons of newborn
rats, we examined peculiarities of induction of long-term depression (LTD) of synaptic transmission through synapses formed
by primary afferents on DH neurons. Induction of LTD was provided by low-frequency (5 sec−1) microstimulation of single DRG neurons. Ion currents were simultaneously recorded in pre- and post-synaptic cells using
a dual whole-cell path-clamp technique. Parameters of evoked excitatory and inhibitory postsynaptic currents (eEPSCs and eIPSCs,
respectively) initiated in DH neurons by intracellular stimulation of DRG neurons were analyzed. Monosynaptic eEPSC mediated
by activation of AMPA receptors demonstrated no sensitivity to blockers of NMDA and kainate receptors (20 μM DL-AP5 and 10 μM SIM 2081, respectively), but were entirely blocked upon applications of 10 μM DNQX. Monosynaptic glycinergic
eIPSCs found in some of the DH neurons were blocked by 1 μM strychnine and were insensitive to 10 μM bicuculline and blockers
of glutamatergic neurotransmission, DL-AP5 and DNQX. Long-lasting (360 sec) low-frequency stimulation of DRG neurons did not affect the amplitude of glycineinduced
eIPSCs in DH neurons. At the same time, such stimulation of DRG neurons evoked a drop in the amplitude of AMPA-activated eEPSCs
in DH neurons to 41.6 ± 2.5%, on average, as compared with the analogous index in the control. This effect lasted at least
20 min after stimulation. Long-term depression of glutamatergic transmission in DH neurons was observed at the holding potential
of −70 mV and did not change after applications of 10 μM bicuculline and 1 μM strychnine. The LTD intensity depended on the
duration of low-frequency stimulation of primary afferent neurons. Sequential stimulation of DRG neurons lasting 120, 160,
200, and 240 sec resulted in decreases in the eEPSC amplitude in DH neurons to 85.6 ± 3.9, 62.7 ± 4.3, 51.8 ± 3.5, and 41.6
±2.5% with respect to control values. Our findings show that use-dependent induction of homosynaptic LTD of glutamatergic
transmission is possible at the level of a separate pair of synaptically connected DRG and DH neurons under co-culturing conditions.
Such LTD of glutamatergic synaptic transmission mostly mediated by activation of AMPA receptors depends on the duration of
activation of a presynaptic DRG neuron and does not need depolarization of a postsynaptic DH neuron. 相似文献
16.
Activation of protein kinase C (PKC) is one of the biochemical pathways thought to be activated during activity-dependent synaptic plasticity in the brain, and long-term potentiation (LTP) and long-term depression (LTD) are two of the most extensively studied models of synaptic plasticity. Here we have examined changes in the in situ phosphorylation level of two major PKC substrates, myristoylated alanine-rich C kinase substrate (MARCKS) and growth-associated protein (GAP)-43/B-50, after pharmacological stimulation or induction of LTP or LTD in the CA1 field of the hippocampus. We find that direct PKC activation with phorbol esters, K+-induced depolarization, and activation of metabotropic glutamate receptors increase the in situ phosphorylation of both MARCKS and GAP-43/B-50. The induction of LTP increased the in situ phosphorylation of both MARCKS and GAP-43/B-50 at 10 min following high-frequency stimulation, but only GAP-43/B-50 phosphorylation remained elevated 60 min after LTP induction. Furthermore, blockade of LTP induction with the NMDA receptor antagonist D-2-amino-5-phosphonopentanoic acid prevented elevations in GAP-43/B-50 phosphorylation but did not prevent the elevation in MARCKS phosphorylation 10 min following LTP induction. The induction of LTD resulted in a reduction in GAP-43/B-50 phosphorylation but did not affect MARCKS phosphorylation. Together these findings show that activity-dependent synaptic plasticity elicits PKC-mediated phosphorylation of substrate proteins in a highly selective and coordinated manner and demonstrate the compartmentalization of PKC-substrate interactions. Key Words: Protein kinase C-Myristoylated alanine-rich C kinase substrate-Growth-associated protein-43-Long-term potentiation-Long-term depression-(RS)-alpha-Methyl-4-carboxyphenylglycine-D-2-Amino-5-ph osphonopentanoic acid-Glutamate. 相似文献
17.
18.
Oxygen-glucose deprivation (OGD) leads to depression of evoked synaptic transmission, for which the mechanisms remain unclear. We hypothesized that increased presynaptic [Ca2+]i during transient OGD contributes to the depression of evoked field excitatory postsynaptic potentials (fEPSPs). Additionally, we hypothesized that increased buffering of intracellular calcium would shorten electrophysiological recovery after transient ischemia. Mouse hippocampal slices were exposed to 2 to 8 min of OGD. fEPSPs evoked by Schaffer collateral stimulation were recorded in the stratum radiatum, and whole cell current or voltage clamp recordings were performed in CA1 neurons. Transient ischemia led to increased presynaptic [Ca2+]i, (shown by calcium imaging), increased spontaneous miniature EPSP/Cs, and depressed evoked fEPSPs, partially mediated by adenosine. Buffering of intracellular Ca2+ during OGD by membrane-permeant chelators (BAPTA-AM or EGTA-AM) partially prevented fEPSP depression and promoted faster electrophysiological recovery when the OGD challenge was stopped. The blocker of BK channels, charybdotoxin (ChTX), also prevented fEPSP depression, but did not accelerate post-ischemic recovery. These results suggest that OGD leads to elevated presynaptic [Ca2+]i, which reduces evoked transmitter release; this effect can be reversed by increased intracellular Ca2+ buffering which also speeds recovery. 相似文献
19.
Cavalier Mélanie Ben Sedrine Azza Thevenet Lea Crouzin Nadine Guiramand Janique de Jésus Ferreira Marie-Céleste Cohen-Solal Catherine Barbanel Gérard Vignes Michel 《Neurochemical research》2019,44(3):609-616
Neurochemical Research - Maternal immune challenge has proved to induce moderate to severe behavioral disabilities in the offspring. Cognitive/behavioral deficits are supported by changes in... 相似文献
20.
Kim D. Allen Andrei V. Gourov Christopher Harte Peng Gao Clarice Lee Darlene Sylvain Joshua M. Splett William C. Oxberry Paula S. van de Nes Matthew J. Troy-Regier Jason Wolk Juan M. Alarcon A. Iván Hernández 《PloS one》2014,9(8)
Long-term memory (LTM) formation requires new protein synthesis and new gene expression. Based on our work in Aplysia, we hypothesized that the rRNA genes, stimulation-dependent targets of the enzyme Poly(ADP-ribose) polymerase-1 (PARP-1), are primary effectors of the activity-dependent changes in synaptic function that maintain synaptic plasticity and memory. Using electrophysiology, immunohistochemistry, pharmacology and molecular biology techniques, we show here, for the first time, that the maintenance of forskolin-induced late-phase long-term potentiation (L-LTP) in mouse hippocampal slices requires nucleolar integrity and the expression of new rRNAs. The activity-dependent upregulation of rRNA, as well as L-LTP expression, are poly(ADP-ribosyl)ation (PAR) dependent and accompanied by an increase in nuclear PARP-1 and Poly(ADP) ribose molecules (pADPr) after forskolin stimulation. The upregulation of PARP-1 and pADPr is regulated by Protein kinase A (PKA) and extracellular signal-regulated kinase (ERK)—two kinases strongly associated with long-term plasticity and learning and memory. Selective inhibition of RNA Polymerase I (Pol I), responsible for the synthesis of precursor rRNA, results in the segmentation of nucleoli, the exclusion of PARP-1 from functional nucleolar compartments and disrupted L-LTP maintenance. Taken as a whole, these results suggest that new rRNAs (28S, 18S, and 5.8S ribosomal components)—hence, new ribosomes and nucleoli integrity—are required for the maintenance of long-term synaptic plasticity. This provides a mechanistic link between stimulation-dependent gene expression and the new protein synthesis known to be required for memory consolidation. 相似文献