首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMO在转录中的抑制作用   总被引:2,自引:2,他引:0  
许多调控基因转录的重要蛋白质能被SUMO (small ubiquitin-related modifier)化修饰,这些蛋白质包括转录因子,转录辅助因子和染色质修饰酶.SUMO化修饰对底物蛋白的活性产生影响,在大多数情况下,与转录活性的抑制有关.最近,对SUMO化调控转录的机制有了新的认识,认为SUMO化的一个重要作用是促进转录因子与转录抑制因子之间的相互作用.另一方面,已经发现转录共抑制因子HDAC (组蛋白去乙酰化酶)可以作为SUMO化的底物、效应因子和调控因子,说明乙酰化和SUMO化之间复杂的相互作用对基因转录调控起着非常重要的作用.  相似文献   

2.
3.
Catabolite Repression Gene of Escherichia coli   总被引:9,自引:6,他引:3       下载免费PDF全文
A catabolite repression gene (cat) which alters the sensitivity of Escherichia coli to catabolite repression has been mapped by transduction and shown to be located between the pyrC and purB genes. When the cat-1 mutation was studied in a number of genetic backgrounds, the results showed that this mutation affects the synthesis of more than one catabolic enzyme but does not completely eliminate catabolic repression under all conditions. It is suggested that this mutation may cause a block in the accumulation of the catabolite effector. Our experiments show that this effector is not glucose-6-phosphate.  相似文献   

4.
5.
6.
基因转录水平的调控是个复杂的过程,该方面的研究多集中于转录激活的机制上,但转录抑制也在基因表达中起重要作用.研究发现,核小体可抑制RNA聚合酶、转录因子与基因的结合,阻断转录起始.另外,基因转录抑制因子也可特异性地作用于转录过程.依作用机理,这些因子又可分为被动抑制因子和主动抑制因子两种.前者主要通过与激活因子竞争性结合基因的DNA结合位点或消弱激活因子与DNA结合的能力而减慢转录速率;后者通过与基因阻遏元件结合,直接抑制转录的起始.  相似文献   

7.
Benkel BF  Hickey DA 《Genetics》1986,114(1):137-144
We have previously shown that dietary glucose can reduce amylase activity in both adults and larvae of Drosophila; this reduction in enzyme activity reflects a reduction in the quantity of amylase protein, rather than an inhibition of enzyme activity. Here, we report that we have now defined conditions in which the repressive effect of glucose can be greater than 100-fold. Moreover, this repression is partially counteracted by the addition of exogenous cyclic AMP. We also show that there is a direct correlation between changes in amylase activity and changes in the amount of translatable mRNA as assayed in microinjected Xenopus oocytes. This means that the glucose repression is occurring at a pretranslational stage.  相似文献   

8.
9.
10.
11.
12.
We have previously proposed that metabolic status is important in the regulation of cucumber malate synthase (MS) and isocitrate lyase (ICL) gene expression during plant development. In this article, we used a cell culture system to demonstrate that intracellular metabolic status does influence expression of both of these genes. Starvation of cucumber cell cultures resulted in the coordinate induction of the expression of MS and ICL genes, and this effect was reversed when sucrose was returned to the culture media. The induction of gene expression was closely correlated with a drop in intracellular sucrose, glucose, and fructose below threshold concentrations, but it was not correlated with a decrease in respiration rate. Glucose, fructose, or raffinose in the culture media also resulted in repression of MS and ICL. Both 2-deoxyglucose and mannose, which are phosphorylated by hexokinase but not further metabolized, specifically repressed MS and ICL gene expression relative to a third glyoxylate cycle gene, malate dehydrogenase. However, the addition of 3-methylglucose, an analog of glucose that is not phosphorylated, did not result in repression of either MS or ICL. It is proposed that the signal giving rise to a change in gene expression originates from the intracellular concentration of hexose sugars or the flux of hexose sugars into glycolysis.  相似文献   

13.
14.
The gene nmrA of Aspergillus nidulans has been isolated and found to be a homolog of the Neurospora crassa gene nmr-1, involved in nitrogen metabolite repression. Deletion of nmrA results in partial derepression of activities subject to nitrogen repression similar to phenotypes observed for certain mutations in the positively acting areA gene.  相似文献   

15.
16.
17.
There are two homologous thyroid hormone (TH) receptors (TRs α and β), which are members of the nuclear hormone receptor (NR) family. While TRs regulate different processes in vivo and other highly related NRs regulate distinct gene sets, initial studies of TR action revealed near complete overlaps in their actions at the level of individual genes. Here, we assessed the extent that TRα and TRβ differ in target gene regulation by comparing effects of equal levels of stably expressed exogenous TRs +/− T3 in two cell backgrounds (HepG2 and HeLa). We find that hundreds of genes respond to T3 or to unliganded TRs in both cell types, but were not able to detect verifiable examples of completely TR subtype-specific gene regulation. TR actions are, however, far from identical and we detect TR subtype-specific effects on global T3 response kinetics in HepG2 cells and many examples of TR subtype specificity at the level of individual genes, including effects on magnitude of response to TR +/− T3, TR regulation patterns and T3 dose response. Cycloheximide (CHX) treatment confirms that at least some differential effects involve verifiable direct TR target genes. TR subtype/gene-specific effects emerge in the context of widespread variation in target gene response and we suggest that gene-selective effects on mechanism of TR action highlight differences in TR subtype function that emerge in the environment of specific genes. We propose that differential TR actions could influence physiologic and pharmacologic responses to THs and selective TR modulators (STRMs).  相似文献   

18.
19.
To further our understanding of the RNAi machinery within the human nucleus, we analyzed the chromatin and RNA binding of Argonaute 2 (AGO2) within human cancer cell lines. Our data indicated that AGO2 binds directly to nascent tRNA and 5S rRNA, and to the genomic loci from which these RNAs are transcribed, in a small RNA- and DICER-independent manner. AGO2 chromatin binding was not observed at non-TFIIIC-dependent RNA polymerase III (Pol III) genes or at extra-TFIIIC (ETC) sites, indicating that the interaction is specific for TFIIIC-dependent Pol III genes. A genome-wide analysis indicated that loss of AGO2 caused a global increase in mRNA expression level among genes that flank AGO2-bound tRNA genes. This effect was shown to be distinct from that of the disruption of DICER, DROSHA, or CTCF. We propose that AGO2 binding to tRNA genes has a novel and important regulatory role in human cells.  相似文献   

20.
Xist是与X染色体失活相关的非编码基因,它在合子期基因组开始表达,是胚胎发育早期表达的第一个印记基因。探讨了特异性抑制Xist的TALER-REPRESSOR(TALER)载体转染到胎牛成纤维细胞对Xist基因的抑制作用,并以抑制Xist基因表达的细胞作为核供体制作克隆胚胎,研究Xist基因抑制对牛克隆胚早期发育的影响。结果显示,与对照组细胞相比,TALER载体将Xist相对表达量下调了93.85%,说明本试验设计的载体转染系统能够有效抑制Xist基因的表达。选取Xist抑制表达阳性的转染细胞用于体细胞核移植试验,克隆胚胎发育结果显示,试验组和对照组的卵裂率、8细胞发育率、桑葚胚发育率和囊胚发育率分别为78.8%vs 75.1%(P0.05,无显著差异)、54.4%vs 50.6%(P0.05,无显著差异)、12.3%vs 27.8%(P0.01,差异极显著)、0 vs 26.6%(P0.01,差异极显著)。综上所述,试实验设计的特异性抑制Xist表达的TALER载体可有效抑制雌性胎牛成纤维细胞中Xist的表达。供体细胞Xist这种基因下调可使克隆胚胎2-8细胞率略有提升,但囊胚期和桑葚胚率明显降低。因此,其机制尚待于进一步探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号