首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
T-cell differentiation antigens: proteins, genes and function   总被引:1,自引:0,他引:1  
T-lymphocyte recognition, activation and function involve anumber of T-cell-specific surface proteins in addition to the receptor for antigen. The structure, function and genetic analysis of four of these T-cell differentiation antigens are discussed.  相似文献   

2.
Cancer emerges when a single cell receives multiple mutations. For example, the inactivation of both alleles of a tumor suppressor gene (TSG) can imply a net reproductive advantage of the cell and might lead to clonal expansion. In this paper, we calculate the probability as a function of time that a population of cells has generated at least one cell with two inactivated alleles of a TSG. Different kinetic laws hold for small and large populations. The inactivation of the first allele can either be neutral or lead to a selective advantage or disadvantage. The inactivation of the first and of the second allele can occur at equal or different rates. Our calculations provide insights into basic aspects of population genetics determining cancer initiation and progression.  相似文献   

3.
The Fyn related kinase FRK, originally called RAK, is a member of a small family of intracellular Src-related tyrosine kinases that includes PTK6 and Srms. These kinases share a conserved gene structure that is distinct from that of the Src family. Expression of FRK and PTK6 was originally identified in melanoma, breast cancer cells and normal intestinal epithelium, and both FRK and PTK6 have been implicated in the regulation of epithelial cell differentiation and apoptosis. Recently FRK was reported to phosphorylate the tumor suppressor PTEN (phosphatase and tensin homolog deleted from chromosome 10), a negative regulator of phosphatidylinositol 3 kinase (PI3K) signaling and AKT activation. FRK-mediated tyrosine phosphorylation of PTEN suppressed its association with NEDD4-1, an E3 ubiquitin ligase that may target it for polyubiquitination and proteosomal degradation. As a positive regulator of PTEN, FRK suppresses AKT signaling and inhibits breast cancer cell tumorgenicity in xenograft models. Both FRK and the related tyrosine kinase PTK6 appear to have multiple context-dependent functions, including the ability to regulate AKT. Although PTK6 negatively regulates AKT signaling in normal tissues in vivo, it may enhance AKT signaling in breast cancer cells. In contrast, FRK, which is expressed in the normal mammary gland but lost in some breast tumors, has tumor suppressor functions in mammary gland cells.  相似文献   

4.
5.
6.
DNA damage tumor suppressor genes and genomic instability   总被引:9,自引:0,他引:9  
Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and the development of cancer in multicellular organisms. The protein kinases ATM and ATR, as well as their downstream substrates Chk1 and Chk2, are central players in checkpoint activation in response to DNA damage. Histone H2AX, ATRIP, as well as the BRCT-motif-containing molecules 53BP1, MDC1, and BRCA1 function as molecular adapters or mediators in the recruitment of ATM or ATR and their targets to sites of DNA damage. The increased chromosomal instability and tumor susceptibility apparent in mutant mice deficient in both p53 and either histone H2AX or proteins that contribute to the nonhomologous end-joining mechanism of DNA repair indicate that DNA damage checkpoints play a pivotal role in tumor suppression.  相似文献   

7.
8.
Comment on: Wang JK, et al. Genes Dev 2010; 24:327-32.  相似文献   

9.
10.
A Web-based database system was constructed and implemented that contains 174 tumor suppressor genes. The database homepage was created to accommodate these genes in a pull-down window so that each gene can be viewed individually in a separate Web page. Information displayed on each page includes gene name, aliases, source organism, chromosome location, expression cells/tissues, gene structure, protein size, gene functions and major reference sources. Queries to the database can be conducted through a user-friendly interface, and query results are returned in the HTML format on dynamically generated web pages. AVAILABILITY: The database is available at http://www.cise.ufl.edu/~yy1/HTML-TSGDB/Homepage.html (data files also at http://www.patcar.org/Databases/Tumor_Suppressor_Genes)  相似文献   

11.
Mutations in the breast cancer 1, early onset (BRCA1) gene confer an increased risk of breast and ovarian cancer in humans. The human MAD (mothers against decapentaplegic, Drosophila) homolog 4 (MADH4) locus is a target for deletion in pancreatic and other cancers. Given the role of the pig in biomedical studies, pig orthologs of BRCA1 and MADH4 were identified and localized in the porcine genome.  相似文献   

12.
Classical tumor suppressor gene discovery has largely involved linkage analysis and loss-of-heterozygosity (LOH) screens, followed by detailed mapping of relatively large chromosomal regions. Subsequent efforts made use of genome-wide PCR-based methods to detect rare homozygous deletions. More recently, high-resolution genomic arrays have been applied to cancer gene discovery. However, accurate characterization of regions of genomic loss is particularly challenging due to sample heterogeneity, the small size of deleted regions and the high frequency of germline copy number polymorphisms. Here, we review the application of genome-wide copy number analysis to the specific problem of identifying tumor suppressor genes.  相似文献   

13.
14.
15.
16.
17.
PTEN: life as a tumor suppressor   总被引:79,自引:0,他引:79  
PTEN, a tumor suppressor located at chromosome 10q23, is mutated in a variety of sporadic cancers and in two autosomal dominant hamartoma syndromes. PTEN is a phosphatase which dephosphorylates phosphatidylinositol (3,4,5)-triphosphate (PtdIns-3,4,5-P3), an important intracellular second messenger, lowering its level within the cell. By dephosphorylating PtdIns-3,4,5-P3, PTEN acts in opposition to phosphatidylinositol 3-kinase (PI3K), which has a pivotal role in the creation of PtdIns-3,4,5-P3. PtdIns-3,4,5-P3 is necessary for the activation of Akt, a serine/threonine kinase involved in cell growth and survival. By blocking the activation of Akt, PTEN regulates cellular processes such as cell cycling, translation, and apoptosis. In this review, we will discuss the identification of PTEN, its mutational status in cancer, its role as a regulator of PI3K, and its domain structure.  相似文献   

18.
19.
20.
MicroRNA-21 targets tumor suppressor genes in invasion and metastasis   总被引:2,自引:0,他引:2  
Zhu S  Wu H  Wu F  Nie D  Sheng S  Mo YY 《Cell research》2008,18(3):350-359
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号