首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium tuberculosis bacilli display two signature features: acid-fast staining and the capacity to induce long-term latent infections in humans. However, the mechanisms governing these two important processes remain largely unknown. Ser/Thr phosphorylation has recently emerged as an important regulatory mechanism allowing mycobacteria to adapt their cell wall structure/composition in response to their environment. Herein, we evaluated whether phosphorylation of KasB, a crucial mycolic acid biosynthetic enzyme, could modulate acid-fast staining and virulence. Tandem mass spectrometry and site-directed mutagenesis revealed that phosphorylation of KasB occurred at Thr334 and Thr336 both in vitro and in mycobacteria. Isogenic strains of M. tuberculosis with either a deletion of the kasB gene or a kasB_T334D/T336D allele, mimicking constitutive phosphorylation of KasB, were constructed by specialized linkage transduction. Biochemical and structural analyses comparing these mutants to the parental strain revealed that both mutant strains had mycolic acids that were shortened by 4–6 carbon atoms and lacked trans-cyclopropanation. Together, these results suggested that in M. tuberculosis, phosphorylation profoundly decreases the condensing activity of KasB. Structural/modeling analyses reveal that Thr334 and Thr336 are located in the vicinity of the catalytic triad, which indicates that phosphorylation of these amino acids would result in loss of enzyme activity. Importantly, the kasB_T334D/T336D phosphomimetic and deletion alleles, in contrast to the kasB_T334A/T336A phosphoablative allele, completely lost acid-fast staining. Moreover, assessing the virulence of these strains indicated that the KasB phosphomimetic mutant was attenuated in both immunodeficient and immunocompetent mice following aerosol infection. This attenuation was characterized by the absence of lung pathology. Overall, these results highlight for the first time the role of Ser/Thr kinase-dependent KasB phosphorylation in regulating the later stages of mycolic acid elongation, with important consequences in terms of acid-fast staining and pathogenicity.  相似文献   

2.
3.
ESX-3 is one of the five type VII secretion systems encoded by the Mycobacterium tuberculosis genome. We recently showed the essentiality of ESX-3 for M. tuberculosis viability and proposed its involvement in iron and zinc metabolism. In this study we confirmed the role of ESX-3 in iron uptake and its involvement in the adaptation to low zinc environment in M. tuberculosis. Moreover, we unveiled functional differences between the ESX-3 roles in M. tuberculosis and M. smegmatis showing that in the latter ESX-3 is only involved in the adaptation to iron and not to zinc restriction. Finally, we also showed that in M. tuberculosis this secretion system is essential for iron and zinc homeostasis not only in conditions in which the concentrations of these metals are limiting but also in metal sufficient conditions.  相似文献   

4.

Background

Serum antibody-based target identification has been used to identify tumor-associated antigens (TAAs) for development of anti-cancer vaccines. A similar approach can be helpful to identify biologically relevant and clinically meaningful targets in M.tuberculosis (MTB) infection for diagnosis or TB vaccine development in clinically well defined populations.

Method

We constructed a high-content peptide microarray with 61 M.tuberculosis proteins as linear 15 aa peptide stretches with 12 aa overlaps resulting in 7446 individual peptide epitopes. Antibody profiling was carried with serum from 34 individuals with active pulmonary TB and 35 healthy individuals in order to obtain an unbiased view of the MTB epitope pattern recognition pattern. Quality data extraction was performed, data sets were analyzed for significant differences and patterns predictive of TB+/−.

Findings

Three distinct patterns of IgG reactivity were identified: 89/7446 peptides were differentially recognized (in 34/34 TB+ patients and in 35/35 healthy individuals) and are highly predictive of the division into TB+ and TB−, other targets were exclusively recognized in all patients with TB (e.g. sigmaF) but not in any of the healthy individuals, and a third peptide set was recognized exclusively in healthy individuals (35/35) but no in TB+ patients. The segregation between TB+ and TB− does not cluster into specific recognition of distinct MTB proteins, but into specific peptide epitope ‘hotspots’ at different locations within the same protein. Antigen recognition pattern profiles in serum from TB+ patients from Armenia vs. patients recruited in Sweden showed that IgG-defined MTB epitopes are very similar in individuals with different genetic background.

Conclusions

A uniform target MTB IgG-epitope recognition pattern exists in pulmonary tuberculosis. Unbiased, high-content peptide microarray chip-based testing of clinically well-defined populations allows to visualize biologically relevant targets useful for development of novel TB diagnostics and vaccines.  相似文献   

5.

Background

The DevR response regulator is implicated in both hypoxic adaptation and virulence of Mycobacterium tuberculosis (M. tb). DevR regulon genes are powerfully induced in vivo implicating them in bacterial adaptation to host control strategies. A better understanding of DevR function will illumine the way for new strategies to control and treat tuberculosis.

Methodology/Principal Findings

Towards this objective, we used a combination of genetic, microbiological, biochemical, cell biological tools and a guinea pig virulence assay to compare the hypoxic adaptation and virulence properties of two novel M. tb strains, namely, a devR disruption mutant, Mut1, that expresses C-terminal truncated N-terminal domain of DevR (DevRNTD) as a fusion protein with AphI (DevRN-Kan), and its complemented strain, Comp1, that expresses intact DevR along with DevRN-Kan. Comp1 bacteria exhibit a defect in DevR-mediated phosphosignalling, hypoxic induction of HspX and also hypoxic survival. In addition, we find that Comp1 is attenuated in virulence in guinea pigs and shows decreased infectivity of THP-1 cells. While Mut1 bacilli are also defective in hypoxic adaptation and early growth in spleen, they exhibit an overall virulence comparable to that of wild-type bacteria.

Conclusions/Significance

The hypoxic defect of Comp1 is associated to a defect in DevR expression level. The demonstrated repression of DevR function by DevRN-Kan suggests that such a knockdown approach could be useful for evaluating the activity of DevRS and other two-component signaling pathways. Further investigation is necessary to elucidate the mechanism underlying Comp1 attenuation.  相似文献   

6.
Mycobacterium tuberculosis (Mtb) mutants lacking rv1411c, which encodes the lipoprotein LprG, and rv1410c, which encodes a putative efflux pump, are dramatically attenuated for growth in mice. Here we show that loss of LprG-Rv1410 in Mtb leads to intracellular triacylglyceride (TAG) accumulation, and overexpression of the locus increases the levels of TAG in the culture medium, demonstrating a role of this locus in TAG transport. LprG binds TAG within a large hydrophobic cleft and is sufficient to transfer TAG from donor to acceptor membranes. Further, LprG-Rv1410 is critical for broadly regulating bacterial growth and metabolism in vitro during carbon restriction and in vivo during infection of mice. The growth defect in mice is due to disrupted bacterial metabolism and occurs independently of key immune regulators. The in vivo essentiality of this locus suggests that this export system and other regulators of metabolism should be considered as targets for novel therapeutics.  相似文献   

7.
Drug resistance in Mycobacterium tuberculosis presents an enormous public health threat. It is typically defined as >1% of drug resistant colonies using the agar proportion method. Detecting small numbers of drug resistant Tb in a population, also known as heteroresistance, is challenging with current methodologies. Here we have utilized digital PCR to detect heteroresistance within M. tuberculosis populations with excellent accuracy versus the agar proportion method. We designed dual TaqMan-MGB probes to detect wild-type and mutant sequences of katG (315), rpoB (531), gyrA (94,95) and rrs (1401), genes that associate with resistance to isoniazid, rifampin, fluoroquinolone, and aminoglycoside respectively. We generated heteroresistant mixtures of susceptible and extensively drug resistant Tb, followed by DNA extraction and digital PCR. Digital PCR yielded a close approximation to agar proportion''s percentages of resistant colonies, and yielded 100% concordance with agar proportion''s susceptible/resistant results. Indeed, the digital PCR method was able to identify mutant sequence in mixtures containing as little as 1000∶1 susceptible:resistant Tb. By contrast, real-time PCR or PCR followed by Sanger sequencing were less sensitive and had little resolution to detect heteroresistance, requiring fully 1∶1 or 10∶1 susceptible:resistant ratios in order to detect resistance. Our assay can also work in sputum so long as sufficient quantities of Tb are present (>1000 cfu/ml). This work demonstrates the utility of digital PCR to detect and quantify heteroresistance in drug resistant Tb, which may be useful to inform treatment decisions faster than agar proportion.  相似文献   

8.
9.
Citrus bacterial canker caused by Xanthomonas axonopodis pv. citri is a serious disease that impacts citrus production worldwide, and X. axonopodis pv. citri is listed as a quarantine pest in certain countries. Biofilm formation is important for the successful development of a pathogenic relationship between various bacteria and their host(s). To understand the mechanisms of biofilm formation by X. axonopodis pv. citri strain XW19, the strain was subjected to transposon mutagenesis. One mutant with a mutation in a two-component response regulator gene that was deficient in biofilm formation on a polystyrene microplate was selected for further study. The protein was designated as BfdR for biofilm formation defective regulator. BfdR from strain XW19 shares 100% amino acid sequence identity with XAC1284 of X. axonopodis pv. citri strain 306 and 30–100% identity with two-component response regulators in various pathogens and environmental microorganisms. The bfdR mutant strain exhibited significantly decreased biofilm formation on the leaf surfaces of Mexican lime compared with the wild type strain. The bfdR mutant was also compromised in its ability to cause canker lesions. The wild-type phenotype was restored by providing pbfdR in trans in the bfdR mutant. Our data indicated that BfdR did not regulate the production of virulence-related extracellular enzymes including amylase, lipase, protease, and lecithinase or the expression of hrpG, rfbC, and katE; however, BfdR controlled the expression of rpfF in XVM2 medium, which mimics cytoplasmic fluids in planta. In conclusion, biofilm formation on leaf surfaces of citrus is important for canker development in X. axonopodis pv. citri XW19. The process is controlled by the two-component response regulator BfdR via regulation of rpfF, which is required for the biosynthesis of a diffusible signal factor.  相似文献   

10.
Cyclic di-AMP is a recently discovered signaling molecule which regulates various aspects of bacterial physiology and virulence. Here we report the characterization of c-di-AMP synthesizing and hydrolyzing proteins from Mycobacterium tuberculosis. Recombinant Rv3586 (MtbDisA) can synthesize c-di-AMP from ATP through the diadenylate cyclase activity. Detailed biochemical characterization of the protein revealed that the diadenylate cyclase (DAC) activity is allosterically regulated by ATP. We have identified the intermediates of the DAC reaction and propose a two-step synthesis of c-di-AMP from ATP/ADP. MtbDisA also possesses ATPase activity which is suppressed in the presence of the DAC activity. Investigations by liquid chromatography -electrospray ionization mass spectrometry have detected multimeric forms of c-di-AMP which have implications for the regulation of c-di-AMP cellular concentration and various pathways regulated by the dinucleotide. We have identified Rv2837c (MtbPDE) to have c-di-AMP specific phosphodiesterase activity. It hydrolyzes c-di-AMP to 5′-AMP in two steps. First, it linearizes c-di-AMP into pApA which is further hydrolyzed to 5′-AMP. MtbPDE is novel compared to c-di-AMP specific phosphodiesterase, YybT (or GdpP) in being a soluble protein and hydrolyzing c-di-AMP to 5′-AMP. Our results suggest that the cellular concentration of c-di-AMP can be regulated by ATP concentration as well as the hydrolysis by MtbPDE.  相似文献   

11.
Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, remains one of the most prevalent human pathogens and a major cause of mortality worldwide. Metabolic network is a central mediator and defining feature of the pathogenicity of Mtb. Increasing evidence suggests that lysine succinylation dynamically regulates enzymes in carbon metabolism in both bacteria and human cells; however, its extent and function in Mtb remain unexplored. Here, we performed a global succinylome analysis of the virulent Mtb strain H37Rv by using high accuracy nano-LC-MS/MS in combination with the enrichment of succinylated peptides from digested cell lysates and subsequent peptide identification. In total, 1545 lysine succinylation sites on 626 proteins were identified in this pathogen. The identified succinylated proteins are involved in various biological processes and a large proportion of the succinylation sites are present on proteins in the central metabolism pathway. Site-specific mutations showed that succinylation is a negative regulatory modification on the enzymatic activity of acetyl-CoA synthetase. Molecular dynamics simulations demonstrated that succinylation affects the conformational stability of acetyl-CoA synthetase, which is critical for its enzymatic activity. Further functional studies showed that CobB, a sirtuin-like deacetylase in Mtb, functions as a desuccinylase of acetyl-CoA synthetase in in vitro assays. Together, our findings reveal widespread roles for lysine succinylation in regulating metabolism and diverse processes in Mtb. Our data provide a rich resource for functional analyses of lysine succinylation and facilitate the dissection of metabolic networks in this life-threatening pathogen.Post-translational modifications (PTMs)1 are complex and fundamental mechanisms modulating diverse protein properties and functions, and have been associated with almost all known cellular pathways and disease processes (1, 2). Among the hundreds of different PTMs, acylations at lysine residues, such as acetylation (36), malonylation (7, 8), crotonylation (9, 10), propionylation (1113), butyrylation (11, 13), and succinylation (7, 1416) are crucial for functional regulations of many prokaryotic and eukaryotic proteins. Because these lysine PTMs depend on the acyl-CoA metabolic intermediates, such as acetyl-CoA (Ac-CoA), succinyl-CoA, and malonyl-CoA, lysine acylation could provide a mechanism to respond to changes in the energy status of the cell and regulate energy metabolism and the key metabolic pathways in diverse organisms (17, 18).Among these lysine PTMs, lysine succinylation is a highly dynamic and regulated PTM defined as transfer of a succinyl group (-CO-CH2-CH2-CO-) to a lysine residue of a protein molecule (8). It was recently identified and comprehensively validated in both bacterial and mammalian cells (8, 14, 16). It was also identified in core histones, suggesting that lysine succinylation may regulate the functions of histones and affect chromatin structure and gene expression (7). Accumulating evidence suggests that lysine succinylation is a widespread and important PTM in both eukaryotes and prokaryotes and regulates diverse cellular processes (16). The system-wide studies involving lysine-succinylated peptide immunoprecipitation and liquid chromatography-mass spectrometry (LC-MS/MS) have been employed to analyze the bacteria (E. coli) (14, 16), yeast (S. cerevisiae), human (HeLa) cells, and mouse embryonic fibroblasts and liver cells (16, 19). These succinylome studies have generated large data sets of lysine-succinylated proteins in both eukaryotes and prokaryotes and demonstrated the diverse cellular functions of this PTM. Notably, lysine succinylation is widespread among diverse mitochondrial metabolic enzymes that are involved in fatty acid metabolism, amino acid degradation, and the tricarboxylic acid cycle (19, 20). Thus, lysine succinylation is reported as a functional PTM with the potential to impact mitochondrial metabolism and coordinate different metabolic pathways in human cells and bacteria (14, 1922).Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a major cause of mortality worldwide and claims more human lives annually than any other bacterial pathogen (23). About one third of the world''s population is infected with Mtb, which leads to nearly 1.3 million deaths and 8.6 million new cases of TB in 2012 worldwide (24). Mtb remains a major threat to global health, especially in the developing countries. Emergence of multidrug resistant (MDR) and extensively drug-resistant (XDR) Mtb, and also the emergence of co-infection between TB and HIV have further worsened the situation (2527). Among bacterial pathogens, Mtb has a distinctive life cycle spanning different environments and developmental stages (28). Especially, Mtb can exist in dormant or active states in the host, leading to asymptomatic latent TB infection or active TB disease (29). To achieve these different physiologic states, Mtb developed a mechanism to sense diverse signals from the host and to coordinately regulate multiple cellular processes and pathways (30, 31). Mtb has evolved its metabolic network to both maintain and propagate its survival as a species within humans (3235). It is well accepted that metabolic network is a central mediator and defining feature of the pathogenicity of Mtb (23, 3638). Knowledge of the regulation of metabolic pathways used by Mtb during infection is therefore important for understanding its pathogenicity, and can also guide the development of novel drug therapies (39). On the other hand, increasing evidence suggests that lysine succinylation dynamically regulates enzymes in carbon metabolism in both bacteria and human cells (14, 1922). It is tempting to speculate that lysine succinylation may play an important regulatory role in metabolic processes in Mtb. However, to the best of our knowledge, no succinylated protein in Mtb has been identified, presenting a major obstacle to understand the regulatory roles of lysine succinylation in this life-threatening pathogen.In order to fill this gap in our knowledge, we have initiated a systematic study of the identities and functional roles of the succinylated protein in Mtb. Because Mtb H37Rv is the first sequenced Mtb strain (40) and has been extensively used for studies in dissecting the roles of individual genes in pathogenesis (41), it was selected as a test case. We analyzed the succinylome of Mtb H37Rv by using high accuracy nano-LC-MS/MS in combination with the enrichment of succinylated peptides from digested cell lysates and subsequent peptide identification. In total, 1545 lysine succinylation sites on 626 proteins were identified in this pathogen. The identified succinylated proteins are involved in various biological processes and render particular enrichment to metabolic process. A large proportion of the succinylation sites are present on proteins in the central metabolism pathway. We further dissected the regulatory role of succinylation on acetyl-CoA synthetase (Acs) via site-specific mutagenesis analysis and molecular dynamics (MD) simulations showed that reversible lysine succinylation could inhibit the activity of Acs. Further functional studies showed that CobB, a sirtuin-like deacetylase in Mtb, functions as a deacetylase and as a desuccinylase of Acs in in vitro assays. Together, our findings provide significant insights into the range of functions regulated by lysine succinylation in Mtb.  相似文献   

12.
Recent evidence indicates that the prevalence of diseases caused by nontuberculous mycobacteria (NTM) has been increasing in both human and animals. In this study, antibody profiles of NTM in rhesus monkeys (Macaca mulatta) were determined and compared with those of monkeys infected with Mycobacterium tuberculosis complex (MTBC). Antibodies against 10 M. tuberculosis proteins, purified protein derivative (PPD), and mammalian old tuberculin (MOT) were detected in 14 monkeys naturally infected with NTM by indirect ELISA. Sera from 10 monkeys infected with MTBC and 10 healthy monkeys were set as controls. All antigens showed high serological reactivities to MTBC infections and low reactivities in healthy monkeys. NTM infections showed strong antibody responses to MOT and PPD; moderate antibody responses to 16kDa, U1, MPT64L, 14kDa, and TB16.3; and low antibody responses to 38kDa, Ag85b, CFP10, ESAT-6, and CFP10-ESAT-6. According to the criteria of MTBC, only CFP10, ESAT-6, and CFP10-ESAT-6 showed negative antibody responses in all NTM infections. Taken together, these results suggest that positive results of a PPD/MOT-based ELISA in combination with results of antibodies to M. tuberculosis-specific antigens, such as CFP10 and ESAT-6, could discriminate NTM and MTBC infections. Two positive results indicate an MTBC infection, and a negative result for an M. tuberculosis-specific antigen may preliminarily predict an NTM infection.  相似文献   

13.
In chronic infection, Mycobacterium tuberculosis bacilli are thought to enter a metabolic program that provides sufficient energy for maintenance of the protonmotive force, but is insufficient to meet the demands of cellular growth. We sought to understand this metabolic downshift genetically by targeting succinate dehydrogenase, the enzyme which couples the growth processes controlled by the TCA cycle with the energy production resulting from the electron transport chain. M. tuberculosis contains two operons which are predicted to encode succinate dehydrogenase enzymes (sdh-1 and sdh-2); we found that deletion of Sdh1 contributes to an inability to survive long term stationary phase. Stable isotope labeling and mass spectrometry revealed that Sdh1 functions as a succinate dehydrogenase during aerobic growth, and that Sdh2 is dispensable for this catalysis, but partially overlapping activities ensure that the loss of one enzyme can incompletely compensate for loss of the other. Deletion of Sdh1 disturbs the rate of respiration via the mycobacterial electron transport chain, resulting in an increased proportion of reduced electron carrier (menaquinol) which leads to increased oxygen consumption. The loss of respiratory control leads to an inability to recover from stationary phase. We propose a model in which succinate dehydrogenase is a governor of cellular respiration in the adaptation to low oxygen environments.  相似文献   

14.
15.
Computational protein design is a reverse procedure of protein folding and structure prediction, where constructing structures from evolutionarily related proteins has been demonstrated to be the most reliable method for protein 3-dimensional structure prediction. Following this spirit, we developed a novel method to design new protein sequences based on evolutionarily related protein families. For a given target structure, a set of proteins having similar fold are identified from the PDB library by structural alignments. A structural profile is then constructed from the protein templates and used to guide the conformational search of amino acid sequence space, where physicochemical packing is accommodated by single-sequence based solvation, torsion angle, and secondary structure predictions. The method was tested on a computational folding experiment based on a large set of 87 protein structures covering different fold classes, which showed that the evolution-based design significantly enhances the foldability and biological functionality of the designed sequences compared to the traditional physics-based force field methods. Without using homologous proteins, the designed sequences can be folded with an average root-mean-square-deviation of 2.1 Å to the target. As a case study, the method is extended to redesign all 243 structurally resolved proteins in the pathogenic bacteria Mycobacterium tuberculosis, which is the second leading cause of death from infectious disease. On a smaller scale, five sequences were randomly selected from the design pool and subjected to experimental validation. The results showed that all the designed proteins are soluble with distinct secondary structure and three have well ordered tertiary structure, as demonstrated by circular dichroism and NMR spectroscopy. Together, these results demonstrate a new avenue in computational protein design that uses knowledge of evolutionary conservation from protein structural families to engineer new protein molecules of improved fold stability and biological functionality.  相似文献   

16.
New tools are needed to study the intracellular pathogen Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), to facilitate new drug discovery and vaccine development. We have developed methodology to genetically incorporate unnatural amino acids into proteins in Mycobacterium smegmatis, BCG and Mtb, grown both extracellularly in culture and inside host cells. Orthogonal mutant tRNATyr/tyrosyl-tRNA synthetase pairs derived from Methanococcus jannaschii and evolved in Escherichia coli incorporate a variety of unnatural amino acids (including photocrosslinking, chemically reactive, heavy atom containing, and immunogenic amino acids) into proteins in response to the amber nonsense codon. By taking advantage of the fidelity and suppression efficiency of the MjtRNA/pIpaRS pair in mycobacteria, we are also able to use p-iodophenylalanine to induce the expression of proteins in mycobacteria both extracellularly in culture and inside of mammalian host cells. This provides a new approach to regulate the expression of reporter genes or mycobacteria endogenous genes of interest. The establishment of the unnatural amino acid expression system in Mtb, an intracellular pathogen, should facilitate studies of TB biology and vaccine development.  相似文献   

17.
18.
19.
20.
Suppressor of cytokine signalling 3 (SOCS3) negatively regulates STAT3 activation in response to several cytokines such as those in the gp130-containing IL-6 receptor family. Thus, SOCS3 may play a major role in immune responses to pathogens. In the present study, the role of SOCS3 in M. tuberculosis infection was examined. All Socs3fl/fl LysM cre, Socs3fl/fl lck cre (with SOCS3-deficient myeloid and lymphoid cells, respectively) and gp130F/F mice, with a mutation in gp130 that impedes binding to SOCS3, showed increased susceptibility to infection with M. tuberculosis. SOCS3 binding to gp130 in myeloid cells conveyed resistance to M. tuberculosis infection via the regulation of IL-6/STAT3 signalling. SOCS3 was redundant for mycobacterial control by macrophages in vitro. Instead, SOCS3 expression in infected macrophages and DCs prevented the IL-6-mediated inhibition of TNF and IL-12 secretion and contributed to a timely CD4+ cell-dependent IFN-γ expression in vivo. In T cells, SOCS3 expression was essential for a gp130-independent control of infection with M. tuberculosis, but was neither required for the control of infection with attenuated M. bovis BCG nor for M. tuberculosis in BCG-vaccinated mice. Socs3fl/fl lck cre mice showed an increased frequency of γδ+ T cells in different organs and an enhanced secretion of IL-17 by γδ+ T cells in response to infection. Socs3fl/fl lck cre γδ+ T cells impaired the control of infection with M. tuberculosis. Thus, SOCS3 expression in either lymphoid or myeloid cells is essential for resistance against M. tuberculosis via discrete mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号