首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal''s blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.Abbreviations: NODAT, new-onset diabetes mellitus after transplantationNew-onset diabetes mellitus after transplantation (NODAT, formerly known as posttransplantation diabetes mellitus) is an important consequence of solid-organ transplantation in humans.7-10,15,17,19,21,25-28,31,33,34,37,38,42 A variety of risk factors have been identified including increased age, sex (male prevalence), elevated pretransplant fasting plasma glucose levels, and immunosuppressive therapy.7-10,15,17,19,21,25-28,31,33,34,37,38,42 The relationship between calcineurin inhibitors, such as tacrolimus and cyclosporin, and the development of NODAT is widely recognized in human medicine.7-10,15,17,19,21,25-28,31,33,34,37,38,42 Cynomolgus macaques (Macaca fasicularis) are a commonly used NHP model in organ transplantation research. Cases of natural and induced diabetes of cynomolgus monkeys have been described in the literature;14,43,45 however, NODAT in a macaque model of solid-organ transplantation has not been reported previously to our knowledge.  相似文献   

10.
In the oxidative stress hypothesis of aging, the aging process is the result of cumulative damage by reactive oxygen species. Humans and chimpanzees are remarkably similar; but humans live twice as long as chimpanzees and therefore are believed to age at a slower rate. The purpose of this study was to compare biomarkers for cardiovascular disease, oxidative stress, and aging between male chimpanzees and humans. Compared with men, male chimpanzees were at increased risk for cardiovascular disease because of their significantly higher levels of fibrinogen, IGF1, insulin, lipoprotein a, and large high-density lipoproteins. Chimpanzees showed increased oxidative stress, measured as significantly higher levels of 5-hydroxymethyl-2-deoxyuridine and 8-iso-prostaglandin F, a higher peroxidizability index, and higher levels of the prooxidants ceruloplasmin and copper. In addition, chimpanzees had decreased levels of antioxidants, including α- and β-carotene, β-cryptoxanthin, lycopene, and tocopherols, as well as decreased levels of the cardiovascular protection factors albumin and bilirubin. As predicted by the oxidative stress hypothesis of aging, male chimpanzees exhibit higher levels of oxidative stress and a much higher risk for cardiovascular disease, particularly cardiomyopathy, compared with men of equivalent age. Given these results, we hypothesize that the longer lifespan of humans is at least in part the result of greater antioxidant capacity and lower risk of cardiovascular disease associated with lower oxidative stress.Abbreviations: 5OHmU, 5-hydroxymethyl-2-deoxyuridine; 8isoPGF, 8-iso-prostaglandin F; HDL, high-density lipoprotein; IGF1, insulin-like growth factor 1; LDL, low-density lipoprotein; ROS, reactive oxygen speciesAging is characterized as a progressive reduction in the capacity to withstand the stresses of everyday life and a corresponding increase in risk of mortality. According to the oxidative stress hypothesis of aging, much of the aging process can be accounted for as the result of cumulative damage produced by reactive oxygen species (ROS).6,21,28,41,97 Endogenous oxygen radicals (that is, ROS) are generated as a byproduct of normal metabolic reactions in the body and subsequently can cause extensive damage to proteins, lipids, and DNA.6,41 Various prooxidant elements, in particular free transition metals, can catalyze these destructive reactions.6 The damage caused by ROS can be counteracted by antioxidant defense systems, but the imbalance between production of ROS and antioxidant defenses, over time, leads to oxidative stress and may contribute to the rate of aging.28,97Oxidative stress has been linked to several age-related diseases including neurodegenerative diseases, ophthalmologic diseases, cancer, and cardiovascular disease.21,28,97 Of these, cardiovascular disease remains the leading cause of adult death in the United States and Europe.71 In terms of cardiovascular disease, oxidative stress has been linked to atherosclerosis, hypertension, cardiomyopathy, and chronic heart failure in humans.55,78,84 Increases in oxidant catalysts (prooxidants)—such as copper, iron, and cadmium—have been associated with hypertension, coronary artery disease, atherosclerosis, and sudden cardiac death.98,102,106 Finally, both endogenous and exogenous antioxidants have been linked to decreased risk of cardiovascular disease, although the mechanisms behind this relationship are unclear.11,52,53 However, the oxidative stress hypothesis of aging aims to explain not only the mechanism of aging and age-related diseases (such as cardiovascular disease) in humans but also the differences between aging rates and the manifestations of age-related diseases across species.The differences in antioxidant and ROS levels between animals and humans offer promise for increasing our understanding of human aging. Additional evidence supporting the oxidative stress hypothesis of aging has come from comparative studies linking differences in aging rates across taxa with both antioxidant and ROS levels.4,17-21,58,71,86,105 In mammals, maximum lifespan potential is positively correlated with both serum and tissue antioxidant levels.17,18,21,71,105 Research has consistently demonstrated that the rate of oxidative damage varies across species and is negatively correlated with maximum lifespan potential.4,19,20,58,71,86 However, few studies involved detailed comparisons of hypothesized biochemical indicators of aging and oxidative stress between humans and animals.6 This type of interspecies comparison has great potential for directly testing the oxidative stress hypothesis of aging.Much evolutionary and genetic evidence supports remarkable similarity between humans and chimpanzees.95,100 Despite this similarity, humans have a lifespan of almost twice that of chimpanzees.3,16,47 Most comparative primate aging research has focused on the use of a macaque model,62,81,88 and several biochemical markers of age-related diseases have been identified in both humans and macaque monkeys.9,22,28,81,93,97 Several other species of monkeys have also been used in research addressing oxidative stress, antioxidant defenses, and maximum lifespan potential.18,21,58,105 However, no study to date has examined biochemical indicators of oxidative stress and aging in chimpanzees and humans as a test of the oxidative stress hypothesis for aging. The purpose of this study is to compare biochemical markers for cardiovascular disease, oxidative stress, and aging directly between male chimpanzees and humans. Given the oxidative stress hypothesis for aging and the known role of oxidative stress in cardiovascular disease, we predict that chimpanzees will show higher levels of cardiovascular risk and oxidative stress than humans.  相似文献   

11.
12.
The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.Drought and salinity cause osmotic stress in plants and severely affect crop productivity throughout the world. Plants respond to osmotic stress by changing a number of cellular processes (Xiong et al., 1999; Xiong and Zhu, 2002; Bartels and Sunkar, 2005; Boudsocq and Lauriére, 2005). Some of these changes include activation of stress-responsive genes, regulation of membrane transport at both plasma membrane (PM) and vacuolar membrane (tonoplast) to maintain water and ionic homeostasis, and metabolic changes to produce compatible osmolytes such as Pro (Stewart and Lee, 1974; Krasensky and Jonak, 2012). It has been well established that a specific calcium (Ca2+) signature is generated in response to a particular environmental stimulus (Trewavas and Malhó, 1998; Scrase-Field and Knight, 2003; Luan, 2009; Kudla et al., 2010). The Ca2+ changes are primarily perceived by several Ca2+ sensors such as calmodulin (Reddy, 2001; Luan et al., 2002), Ca2+-dependent protein kinases (Harper and Harmon, 2005), calcineurin B-like proteins (CBLs; Luan et al., 2002; Batistič and Kudla, 2004; Pandey, 2008; Luan, 2009; Sanyal et al., 2015), and other Ca2+-binding proteins (Reddy, 2001; Shao et al., 2008) to initiate various cellular responses.Plant CBL-type Ca2+ sensors interact with and activate CBL-interacting protein kinases (CIPKs) that phosphorylate downstream components to transduce Ca2+ signals (Liu et al., 2000; Luan et al., 2002; Batistič and Kudla, 2004; Luan, 2009). In several plant species, multiple members have been identified in the CBL and CIPK family (Luan et al., 2002; Kolukisaoglu et al., 2004; Pandey, 2008; Batistič and Kudla, 2009; Weinl and Kudla, 2009; Pandey et al., 2014). Involvement of specific CBL-CIPK pair to decode a particular type of signal entails the alternative and selective complex formation leading to stimulus-response coupling (D’Angelo et al., 2006; Batistič et al., 2010).Several CBL and CIPK family members have been implicated in plant responses to drought, salinity, and osmotic stress based on genetic analysis of Arabidopsis (Arabidopsis thaliana) mutants (Zhu, 2002; Cheong et al., 2003, 2007; Kim et al., 2003; Pandey et al., 2004, 2008; D’Angelo et al., 2006; Qin et al., 2008; Tripathi et al., 2009; Held et al., 2011; Tang et al., 2012; Drerup et al., 2013; Eckert et al., 2014). A few CIPKs have also been functionally characterized by gain-of-function approach in crop plants such as rice (Oryza sativa), pea (Pisum sativum), and maize (Zea mays) and were found to be involved in osmotic stress responses (Mahajan et al., 2006; Xiang et al., 2007; Yang et al., 2008; Tripathi et al., 2009; Zhao et al., 2009; Cuéllar et al., 2010).In this report, we examined the role of the Arabidopsis CIPK21 gene in osmotic stress response by reverse genetic analysis. The loss-of-function mutant plants became hypersensitive to salt and mannitol stress conditions, suggesting that CIPK21 is involved in the regulation of osmotic stress response in Arabidopsis. These findings are further supported by an enhanced tonoplast targeting of the cytoplasmic CIPK21 through interaction with the vacuolar Ca2+ sensors CBL2 and CBL3 under salt stress condition.  相似文献   

13.
A retrospective study using maternal and birth statistics from an open, captive rhesus macaque colony was done to determine the effects of parity, exposure to simian retrovirus (SRV), housing, maternal parity, and maternal birth weight on infant birth weight, viability and gestation length. Retrospective colony statistics for a 23-y period indicated that birth weight, but not gestation length, differed between genders. Adjusted mean birth weights were higher in nonviable infants. Mothers positive for SRV had shorter gestations, but SRV exposure did not affect neonatal birth weights or viability. Infants born in cages had longer gestations than did those born in pens, but neither birth weight nor viability differed between these groups. Maternal birth weight did not correlate with infant birth weight but positively correlated with gestation length. Parity was correlated with birth weight and decreased viability. Increased parity of the mother was associated with higher birth weight of the infant. A transgenerational trend toward increasing birth weight was noted. The birth statistics of this colony were consistent with those of other macaque colonies. Unlike findings for humans, maternal birth weight had little predictive value for infant outcomes in rhesus macaques. Nonviable rhesus infants had higher birth weights, unlike their human counterparts, perhaps due to gestational diabetes occurring in a sedentary caged population. Similar to the situation for humans, multiparity had a protective effect on infant viability in rhesus macaques.Abbreviations: ANCOVA, analysis of covariance; PRL, Primate Research Laboratory; SRV, simian retrovirusThe rhesus macaque (Macaca mulatta) is a useful animal model for human female reproduction studies because the comparative physiology between the 2 species is nearly identical.1.5,49 Some factors that affect birth weight and neonatal viability in both humans and macaques include maternal birth weight, maternal age, maternal parity, and the presence of underlying maternal disease. Even experimentally induced simulated human lifestyle factors can affect neonatal outcome.10,16,17,25,44In humans, maternal birth weight correlates with infant birth weight such that low birth weight mothers themselves have low birth weight infants.8,19,28,30 A similar association has been shown in the macaque.38,39 Because low birth weight is associated with increased neonatal mortality in humans and in macaques, this correlation, if present, may have important predictive value.11,20,21,32,45,47,53 One objective of this study was to establish whether maternal birth weight correlated with neonatal birth weight and viability in this colony of rhesus macaques.The relationship between parity, age, and birth outcomes in humans is controversial because multiparous and grand multiparous women tend to be of lower socioeconomic status, older, and have many confounding lifestyle factors.2,24,27,56 In macaques, low parity and young age are associated with reproductive failure.50 In pigtailed macaques (Macaca nemestrina), increased parity was associated with decreased neonatal viability but increased birth weight. Despite their lower parity, younger mothers in the colony of pigtailed macaques produced lower birth-weight infants, but more viable infants, compared with those of older mothers.17 The positive correlation between birth weight and viability merits further investigation in rhesus macaques. One objective of the current study was to determine whether maternal parity and age affected birth weight and neonatal viability in our rhesus macaque colony.The lifestyle factors of alcohol consumption, cigarettes, caffeine, drug use, diabetes and exercise have all been shown to influence birth weight and gestation length in humans and macaques.4,7,15,22,26,35,40,42,44,51,55 Captive animals can become obese and develop insulin-resistant diabetes, which prolongs gestation and produces oversized infants that are less healthy.21,46,51 Because exercise is a preventative lifestyle factor for obesity and diabetes, it would be useful to compare active animals with sedentary ones.30 Previous retrospective colony studies in pigtail macaques show that cage type, location, and social housing have significant effects on birth weight and birth outcome.18,19 Another objective of the current study was to determine whether housing in cages (sedentary animals) or group pens (active animals) influenced gestation length, birth weight, and viability in our rhesus macaques.Another factor in birth outcome is the disease status of the mother. Viral infections, particularly of adenoviruses and immunosuppressive retroviruses, are associated with low birth weight and infant mortality in humans and nonhuman primates.13,21,25,33, 34,52,53 A previous report describes maternal transmission of simian retrovirus in a colony of pigtailed macaques with concurrent immunosuppression, low birth weight, and increased infant mortality in viremic mothers.33 However, some evidence suggests that lentiviral antibodies in amniotic fluid may protect against in utero infection.23 Further confounding the effects of retroviruses on reproductive outcome, animals infected horizontally can be viremic but serologically negative, and animals with sufficient, detectable immune responses may have provirus latent in their tissues.33 Because simian retrovirus (SRV) was endemic in the subject rhesus colony and most data were retrospective thus preventing confirmation of viremia, another objective was to determine whether seropositivity of the dam was associated with neonatal viability, gestation length, and infant birth weight.  相似文献   

14.
15.
16.
Chemoresistance in cancer has previously been attributed to gene mutations or deficiencies. Bax or p53 deficiency can lead to resistance to cancer drugs. We aimed to find an agent to overcome chemoresistance induced by Bax or p53 deficiency. Here, we used immunoblot, flow-cytometry analysis, gene interference, etc. to show that genistein, a major component of isoflavone that is known to have anti-tumor activities in a variety of models, induces Bax/p53-independent cell death in HCT116 Bax knockout (KO), HCT116 p53 KO, DU145 Bax KO, or DU145 p53 KO cells that express wild-type (WT) Bak. Bak knockdown (KD) only partially attenuated genistein-induced apoptosis. Further results indicated that the release of AIF and endoG also contributes to genistein-induced cell death, which is independent of Bak activation. Conversely, AIF and endoG knockdown had little effect on Bak activation. Knockdown of either AIF or endoG alone could not efficiently inhibit apoptosis in cells treated with genistein, whereas an AIF, endoG, and Bak triple knockdown almost completely attenuated apoptosis. Next, we found that the Akt-Bid pathway mediates Bak-induced caspase-dependent and AIF- and endoG-induced caspase-independent cell death. Moreover, downstream caspase-3 could enhance the release of AIF and endoG as well as Bak activation via a positive feedback loop. Taken together, our data elaborate the detailed mechanisms of genistein in Bax/p53-independent apoptosis and indicate that caspase-3-enhanced Bid activation initiates the cell death pathway. Our results also suggest that genistein may be an effective agent for overcoming chemoresistance in cancers with dysfunctional Bax and p53.Mammalian cell death proceeds through a highly regulated program called apoptosis that is highly dependent on the mitochondria.1 Mitochondrial outer membrane (MOM) multiple apoptotic stresses permeabilize the MOM, resulting in the release of apoptogenic factors including cytochrome c, Smac, AIF, and endoG.2, 3, 4 Released cytochrome c activates Apaf-1, which assists in caspase activation. Then, activated caspases cleave cellular proteins and contribute to the morphological and biochemical changes associated with apoptosis. Bcl-2 family proteins control a crucial apoptosis checkpoint in the mitochondria.2, 5, 6, 7 Multidomain proapoptotic Bax and Bak are essential effectors responsible for the permeabilization of the MOM, whereas anti-apoptotic Bcl-2, Bcl-xL, and Mcl-1 preserve mitochondrial integrity and prevent cytochrome c efflux triggered by apoptotic stimuli. The third Bcl-2 subfamily of proteins, BH3-only molecules (BH3s), promotes apoptosis by either activating Bax/Bak or inactivating Bcl-2/Bcl-xL/Mcl-1.8, 9, 10, 11, 12 Upon apoptosis, the ‘activator'' BH3s, including truncated Bid (tBid), Bim, and Puma, activate Bax and Bak to mediate cytochrome c efflux, leading to caspase activation.8, 11, 12 Conversely, antiapoptotic Bcl-2, Bcl-xL, and Mcl-1 sequester activator BH3s into inert complexes, which prevents Bax/Bak activation.8, 9 Although it has been proposed that Bax and Bak activation occurs by default as long as all of the anti-apoptotic Bcl-2 proteins are neutralized by BH3s,13 liposome studies clearly recapitulate the direct activation model in which tBid or BH3 domain peptides derived from Bid or Bim induce Bax or Bak oligomerization and membrane permeabilization.12, 14, 15Numerous studies have demonstrated a critical role for Bax in determining tumor cell sensitivity to drug induction and in tumor development. Bax has been reported to be mutated in colon16, 17 and prostate cancers,18, 19 contributing to tumor cell survival and promoting clonal expansion. Bax has been shown to restrain tumorigenesis20 and is necessary for tBid-induced cancer cell apoptosis.21 Loss of Bax has been reported to promote tumor development in animal models.22 Bax knockout (KO) renders HCT116 cells resistant to a series of apoptosis inducers.23, 24, 25 p53 has been reported to be a tumor suppressor,26 and its mutant can cause chemoresistance in cancer cells.27, 28, 29 Moreover, p53 is often inactivated in solid tumors via deletions or point mutations.30, 31 Thus, it is necessary to find an efficient approach or agent to overcome chemoresistance caused by Bax and/or p53 mutants.Few studies have focused on the role of Bak in tumor cell apoptosis and cancer development. Bak mutations have only been shown in gastric and colon cancer cells.32 Some studies have revealed that Bak is a determinant of cancer cell apoptosis.33, 34 Some studies have even demonstrated that Bak renders Bax KO cells sensitive to drug induction.33, 35 In this study, we are the first group to show that tBid induces Bak activation and the release of AIF and endoG in colon cancer cells, which causes cellular apoptosis independent of Bax/p53. We also found that caspase-3 is activated in apoptosis. Interestingly, downstream caspase-3 can strengthen Bak activation and the release of AIF and endoG during apoptosis via a feedback loop. Furthermore, we reveal that Akt upregulates apoptosis progression. These results will help us to better understand the function of mitochondrial apoptotic protein members in apoptosis and cancer therapies. Furthermore, our experiments may provide a theoretical basis for overcoming chemoresistance in cancer cells.  相似文献   

17.
18.
19.
Lung cancer represents the leading cause of cancer-related death in developed countries. Despite the advances in diagnostic and therapeutic techniques, the 5-year survival rate remains low. The research for novel therapies directed to biological targets has modified the therapeutic approach, but the frequent engagement of resistance mechanisms and the substantial costs, limit the ability to reduce lung cancer mortality. MicroRNAs (miRNAs) are small noncoding RNAs with known regulatory functions in cancer initiation and progression. In this study we found that mir-660 expression is downregulated in lung tumors compared with adjacent normal tissues and in plasma samples of lung cancer patients with poor prognosis, suggesting a potential functional role of this miRNA in lung tumorigenesis. Transient and stable overexpression of mir-660 using miRNA mimics reduced migration, invasion, and proliferation properties and increased apoptosis in p53 wild-type lung cancer cells (NCI-H460, LT73, and A549). Furthermore, stable overexpression using lentiviral vectors in NCI-H460 and A549 cells inhibited tumor xenograft growth in immunodeficient mice (95 and 50% reduction compared with control, respectively), whereas the effects of mir-660 overexpression were absent in H1299, a lung cancer cell line lacking p53 locus, both in in vitro and in vivo assays. We identified and validated mouse double minute 2 (MDM2) gene, a key regulator of the expression and function of p53, as a new direct target of mir-660. In addition, mir-660 expression reduced both mRNA and protein expression of MDM2 in all cell lines and stabilized p53 protein levels resulting in an upregulation of p21WAF1/CIP1 in p53 wild-type cells. Our finding supports that mir-660 acts as a tumor suppressor miRNA and we suggest the replacement of mir-660 as a new therapeutic approach for p53 wild-type lung cancer treatment.Lung cancer is the leading cause of cancer death worldwide, resulting in >1.4 million deaths/year.1 Lung tumors are often discovered as locally advanced or metastatic disease, and despite improvements in molecular diagnosis and targeted therapies, the overall 5-year survival rate remains in the 10–20% range. Indeed, nonsmall cell lung cancer (NSCLC) is poorly chemosensitive to most of the available agents with response rates ranging from 10 to 25%.2 The discovery of recurrent mutations in the epidermal growth factor receptor (EGFR) kinase,3 as well as gene fusion products involving the anaplastic lymphoma kinase (ALK),4 has led to a marked change in the treatment of patients with lung adenocarcinoma, the most common type of lung cancer.5, 6 To date, patients with mutations in the EGFR gene, suitable for targeting by EGFR tyrosine kinase inhibitors, represent roughly 10%, whereas the subgroup of tumors with ALK rearrangements, targeted by ALK inhibitors, is only ~5%.7 Thus, the majority of lung tumors lack effective treatment and novel therapeutic strategies are still needed.MicroRNAs (miRNAs) are short noncoding RNAs, 20–24 nucleotides long, that have important roles in almost all biological pathways,8, 9, 10, 11 and influence cancer-relevant processes, such as proliferation,12 cell cycle,13 apoptosis,14 and migration.15 Many studies have reported the critical role of miRNAs in lung cancer pathogenesis and their potential as biomarkers for lung cancer risk stratification,16 outcome prediction,17 and classification of histological subtypes.18, 19 miRNAs are actively released by various cell types and can be detected in biological fluids, such as plasma and serum, making them suitable as circulating biomarkers in NSCLC.20, 21There is limited evidence of mir-660 deregulation in cancer and little is known about its role in lung tumorigenesis and its putative target genes. Mir-660 has been reported to be upregulated in chronic lymphocytic leukemia22, 23 and in leukemic cells after treatment with 4-hydroxynonenal, a compound that induces differentiation and blocks proliferation of leukemic cells.24 In a previous study we demonstrated that mir-660 was one of the 24 miRNAs deregulated in plasma samples of NSCLC patients identified in a low-dose computed tomography (LDCT) screening trial.20The p53 tumor suppressor protein is a key regulator of cell cycle G0/G1 checkpoint, senescence, and apoptosis in response to cellular stress signals.25, 26 Mouse double minute 2 (MDM2), a p53–E3 ubiquitin ligase,27 is the principal negative regulator of the expression level and function of p53.28, 29 Several studies have illustrated different mechanisms of p53 regulation by MDM2,30, 31 such as binding transactivation region of p53,32, 33 promoting nuclear export and cytoplasmic accumulation of p53 by monoubiquitination,34, 35 and inducing p53 proteosomal degradation by polyubiquitination.36 In addition, MDM2 gene has been reported to be amplified or overexpressed in a variety of human cancers, such as sarcoma,37 lymphoma,38 breast cancer,39 lung cancer,40 and testicular germ cell tumor.41 Several miRNAs targeting MDM2 have been identified, such as the mir-143/mir-145 cluster that can be induced by p53,42 as well as mir-25 and mir-32, known to inhibit tumor glioblastoma growth in mouse brain.43In this study, we report that mir-660 is downregulated in tissue and plasma samples of lung cancer patients and demonstrate that mir-660 replacement impairs the functionality of p53 wild-type (wt) lung cancer cells and inhibits in vitro and in vivo tumor growth. We showed that all the effects observed after mir-660 overexpression were absent in p53 ko cells, identified MDM2 as mir-660 direct target gene and indicate impairment of the MDM2/p53 interaction as the mechanism underlying tumor growth inhibition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号