首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitochondrial disorders are a group of pathologies characterized by impairment of mitochondrial function mainly due to defects of the respiratory chain and consequent organellar energetics. This affects organs and tissues that require an efficient energy supply, such as brain and skeletal muscle. They are caused by mutations in both nuclear- and mitochondrial DNA (mtDNA)-encoded genes and their clinical manifestations show a great heterogeneity in terms of age of onset and severity, suggesting that patient-specific features are key determinants of the pathogenic process. In order to correlate the genetic defect to the clinical phenotype, we used a cell culture model consisting of fibroblasts derived from patients with different mutations in the mtDNA-encoded ND5 complex I subunit and with different severities of the illness. Interestingly, we found that cells from patients with the 13514A>G mutation, who manifested a relatively late onset and slower progression of the disease, display an increased autophagic flux when compared with fibroblasts from other patients or healthy donors. We characterized their mitochondrial phenotype by investigating organelle turnover, morphology, membrane potential and Ca2+ homeostasis, demonstrating that mitochondrial quality control through mitophagy is upregulated in 13514A>G cells. This is due to a specific downregulation of mitochondrial Ca2+ uptake that causes the stimulation of the autophagic machinery through the AMPK signaling axis. Genetic and pharmacological manipulation of mitochondrial Ca2+ homeostasis can revert this phenotype, but concurrently decreases cell viability. This indicates that the higher mitochondrial turnover in complex I deficient cells with this specific mutation is a pro-survival compensatory mechanism that could contribute to the mild clinical phenotype of this patient.Mitochondrial disorders include a wide range of pathological conditions characterized by defects in organelle homoeostasis and energy metabolism, in particular in the electron transport chain (ETC) complexes. They are mostly caused by mutations in nuclear- or mtDNA-encoded genes of the respiratory chain complexes leading to a variety of clinical manifestations, ranging from lesions in specific tissues, such as in Leber''s hereditary optic neuropathy, to complex multisystem syndromes, such as myoclonic epilepsy with ragged-red fibers, Leigh syndrome or the mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome (MELAS).1, 2 Despite the detailed knowledge of the molecular defects in these diseases, their pathogenesis remains poorly understood. The heterogeneity of signs and symptoms depends on the diversity of the genetic background and on patient-specific compensatory mechanisms. Several studies investigated the consequences of nuclear DNA mutations on intracellular organelle physiology and Ca2+ homeostasis.3, 4 Here we analyzed a cohort of patients with mutations in the mtDNA-encoded ND5 subunit of NADH dehydrogenase in order to correlate the clinical phenotype with relevant intracellular parameters involved in mitochondrial physiology, such as the rate of autophagy and mitophagy fluxes, mitochondrial Ca2+ dynamics, mitochondrial membrane potential and their functional relationship.Mitochondrial Ca2+ is a key regulator of organelle physiology, and impairment of cation homeostasis is a general feature of many pathological conditions, including mitochondrial diseases.5 In addition, Ca2+ uptake in this organelle has recently been demonstrated to be a fundamental regulator of autophagy.6, 7 Autophagy is involved in physiological organelle turnover and in the removal of damaged or non-functional mitochondria by autophagy (called ‘mitophagy'')8, 9, 10, 11 and is critical for organelle quality control. Given the pivotal role of mitochondrial Ca2+ in the adaptation of adenosine triphosphate (ATP) production to cellular energy demand, the recent identification of the channel responsible for Ca2+ entry into the organelle, the mitochondrial Ca2+ uniporter (MCU), is instrumental for the understanding of the regulation of mitochondrial Ca2+ transport in both physiological and pathological conditions. MCU was identified in 2011,12, 13 and in the following years, molecular insight on its complex regulatory mechanism was obtained. The pore region is composed of MCU, its isoform MCUb14 and essential MCU regulator (EMRE).15 The channel is gated by the Ca2+-sensitive proteins mitochondrial Ca2+ uptake 1 (MICU1) and MICU216, 17, 18, 19 and further regulated by the SLC25A23 protein.20 As to its cellular function, mitochondrial Ca2+ has been shown to stimulate ATP production by positive regulation of three key dehydrogenases of the tricarboxylic acid cycle21 and of the ETC.22 In parallel, unregulated and sustained organelle Ca2+ overload can also lead to the opening of the mitochondrial permeability transition pore,23, 24 with consequent dissipation of mitochondrial membrane potential (ΔΨmt), release of caspase cofactors and activation of the apoptotic cascade.5 Despite the significant molecular understanding of all these cellular processes, their role in the pathogenesis of mitochondrial diseases is still poorly understood. Here we investigated the interplay of these pathways and the possibility of their contribution to determine the severity of the pathology in a cellular model consisting of fibroblasts from patients carrying mutations in the mitochondrial ND5 gene.  相似文献   

2.
Na+ and K+ homeostasis are crucial for plant growth and development. Two HKT transporter/channel classes have been characterized that mediate either Na+ transport or Na+ and K+ transport when expressed in Xenopus laevis oocytes and yeast. However, the Na+/K+ selectivities of the K+-permeable HKT transporters have not yet been studied in plant cells. One study expressing 5′ untranslated region-modified HKT constructs in yeast has questioned the relevance of cation selectivities found in heterologous systems for selectivity predictions in plant cells. Therefore, here we analyze two highly homologous rice (Oryza sativa) HKT transporters in plant cells, OsHKT2;1 and OsHKT2;2, that show differential K+ permeabilities in heterologous systems. Upon stable expression in cultured tobacco (Nicotiana tabacum) Bright-Yellow 2 cells, OsHKT2;1 mediated Na+ uptake, but little Rb+ uptake, consistent with earlier studies and new findings presented here in oocytes. In contrast, OsHKT2;2 mediated Na+-K+ cotransport in plant cells such that extracellular K+ stimulated OsHKT2;2-mediated Na+ influx and vice versa. Furthermore, at millimolar Na+ concentrations, OsHKT2;2 mediated Na+ influx into plant cells without adding extracellular K+. This study shows that the Na+/K+ selectivities of these HKT transporters in plant cells coincide closely with the selectivities in oocytes and yeast. In addition, the presence of external K+ and Ca2+ down-regulated OsHKT2;1-mediated Na+ influx in two plant systems, Bright-Yellow 2 cells and intact rice roots, and also in Xenopus oocytes. Moreover, OsHKT transporter selectivities in plant cells are shown to depend on the imposed cationic conditions, supporting the model that HKT transporters are multi-ion pores.Intracellular Na+ and K+ homeostasis play vital roles in growth and development of higher plants (Clarkson and Hanson, 1980). Low cytosolic Na+ and high K+/Na+ ratios aid in maintaining an osmotic and biochemical equilibrium in plant cells. Na+ and K+ influx and efflux across membranes require the function of transmembrane Na+ and K+ transporters/channels. Several Na+-permeable transporters have been characterized in plants (Zhu, 2001; Horie and Schroeder, 2004; Apse and Blumwald, 2007). Na+/H+ antiporters mediate sequestration of Na+ into vacuoles under salt stress conditions in plants (Blumwald and Poole, 1985, 1987; Sze et al., 1999). Na+ (cation)/H+ antiporters are encoded by six AtNHX genes in Arabidopsis (Arabidopsis thaliana; Apse et al., 1999; Gaxiola et al., 1999; Yokoi et al., 2002; Aharon et al., 2003). A distinct Na+/H+ antiporter, Salt Overly Sensitive1, mediates Na+/H+ exchange at the plasma membrane and mediates cellular Na+ extrusion (Shi et al., 2000, 2002; Zhu, 2001; Ward et al., 2003). Electrophysiological analyses reveal that voltage-independent channels, also named nonselective cation channels, mediate Na+ influx into roots under high external Na+ concentrations (Amtmann et al., 1997; Tyerman et al., 1997; Buschmann et al., 2000; Davenport and Tester, 2000); however, the underlying genes remain unknown.Potassium is the most abundant cation in plants and an essential nutrient for plant growth. The Arabidopsis genome includes 13 genes encoding KUP/HAK/KT transporters (Quintero and Blatt, 1997; Santa-María et al., 1997; Fu and Luan, 1998; Kim et al., 1998), and 17 genes have been identified encoding this family of transporters in rice (Oryza sativa ‘Nipponbare’; Bañuelos et al., 2002). Several KUP/HAK/KT transporters have been characterized as mediating K+ uptake across the plasma membrane of plant cells (Rigas et al., 2001; Bañuelos et al., 2002; Gierth et al., 2005).Ionic balance, especially the Na+/K+ ratio, is a key factor of salt tolerance in plants (Niu et al., 1995; Maathuis and Amtmann, 1999; Shabala, 2000; Mäser et al., 2002a; Tester and Davenport, 2003; Horie et al., 2006; Apse and Blumwald, 2007; Chen et al., 2007; Gierth and Mäser, 2007). Salinity stress is a major problem for agricultural productivity of crops worldwide (Greenway and Munns, 1980; Zhu, 2001). The Arabidopsis AtHKT1;1 transporter plays a key role in salt tolerance of plants by mediating Na+ exclusion from leaves (Mäser et al., 2002a; Berthomieu et al., 2003; Gong et al., 2004; Sunarpi et al., 2005; Rus et al., 2006; Davenport et al., 2007; Horie et al., 2009). athkt1;1 mutations cause leaf chlorosis and elevated Na+ accumulation in leaves under salt stress conditions in Arabidopsis (Mäser et al., 2002a; Berthomieu et al., 2003; Gong et al., 2004; Sunarpi et al., 2005). AtHKT1;1 and its homolog in rice, OsHKT1;5 (SKC1), mediate leaf Na+ exclusion by removing Na+ from the xylem sap to protect plants from salinity stress (Ren et al., 2005; Sunarpi et al., 2005; Horie et al., 2006, 2009; Davenport et al., 2007).The land plant HKT gene family is divided into two classes based on their nucleic acid sequences and protein structures (Mäser et al., 2002b; Platten et al., 2006). Class 1 HKT transporters have a Ser residue at a selectivity filter position in the first pore loop, which is replaced by a Gly in all but one known class 2 HKT transporter (Horie et al., 2001; Mäser et al., 2002b; Garciadeblás et al., 2003). While the Arabidopsis genome includes only one HKT gene, AtHKT1;1 (Uozumi et al., 2000), seven full-length OsHKT genes were found in the japonica rice cv Nipponbare genome (Garciadeblás et al., 2003). Members of class 1 HKT transporters, AtHKT1;1 and SKC1/OsHKT1;5, have a relatively higher Na+-to-K+ selectivity in Xenopus laevis oocytes and yeast than class 2 HKT transporters (Uozumi et al., 2000; Horie et al., 2001; Mäser et al., 2002b; Ren et al., 2005). The first identified plant HKT transporter, TaHKT2;1 from wheat (Triticum aestivum), is a class 2 HKT transporter (Schachtman and Schroeder, 1994). TaHKT2;1 was found to mediate Na+-K+ cotransport and Na+ influx at high Na+ concentrations in heterologous expression systems (Rubio et al., 1995, 1999; Gassmann et al., 1996; Mäser et al., 2002b). Thus, class 1 HKT transporters have been characterized as Na+-preferring transporters with a smaller K+ permeability (Fairbairn et al., 2000; Uozumi et al., 2000; Su et al., 2003; Jabnoune et al., 2009), whereas class 2 HKT transporters function as Na+-K+ cotransporters or channels (Gassmann et al., 1996; Corratgé et al., 2007). In addition, at millimolar Na+ concentrations, class 2 HKT transporters were found to mediate Na+ influx, without adding external K+ in Xenopus oocytes and yeast (Rubio et al., 1995, 1999; Gassmann et al., 1996; Horie et al., 2001). However, the differential cation transport selectivities of the two types of HKT transporters have not yet been analyzed and compared in plant cells.A study of the barley (Hordeum vulgare) and wheat class 2 transporters has suggested that the transport properties of HvHKT2;1 and TaHKT2;1 expressed in yeast are variable, depending on the constructs from which the transporter is expressed, and have led to questioning of the K+ transport activity of HKT transporters characterized in Xenopus oocytes and yeast (Haro et al., 2005). It was further proposed that the 5′ translation initiation of HKT proteins in yeast at nonconventional (non-ATG) sites affects the transporter selectivities of HKT transporters (Haro et al., 2005), although direct evidence for this has not yet been presented. However, recent research has shown a K+ permeability of OsHKT2;1 but not of OsHKT1;1 and OsHKT1;3 in Xenopus oocytes. These three OsHKT transporters show overlapping and also distinctive expression patterns in rice (Jabnoune et al., 2009).The report of Haro et al. (2005) has opened a central question addressed in this study: are the Na+/K+ transport selectivities of plant HKT transporters characterized in heterologous systems of physiological relevance in plant cells, or do they exhibit strong differences in the cation transport selectivities in these nonplant versus plant systems? To address this question, we analyzed the Na+/K+ transport selectivities of the OsHKT2;1 and OsHKT2;2 transporters expressed in cultured tobacco (Nicotiana tabacum ‘Bright-Yellow 2’ [BY2]) cells. OsHKT2;1 and OsHKT2;2 are two highly homologous HKT transporters from indica rice cv Pokkali, sharing 91% amino acid and 93% cDNA sequence identity (Horie et al., 2001). OsHKT2;1 mediates mainly Na+ uptake, which correlates with the presence of a Ser residue in the first pore loop of OsHKT2;1 (Horie et al., 2001, 2007; Mäser et al., 2002b; Garciadeblás et al., 2003). In contrast, OsHKT2;2 mediates Na+-K+ cotransport in Xenopus oocytes and yeast (Horie et al., 2001). Furthermore, at millimolar Na+ concentrations, OsHKT2;2 mediates Na+ influx in the absence of added K+ (Horie et al., 2001). Recent research on oshkt2;1 loss-of-function mutant alleles has revealed that OsHKT2;1 from japonica rice mediates a large Na+ influx component into K+-starved roots, thus compensating for lack of K+ availability (Horie et al., 2007). But the detailed Na+/K+ selectivities of Gly-containing, predicted K+-transporting class 2 HKT transporters have not yet been analyzed in plant cells.Here, we have generated stable OsHKT2;1- and OsHKT2;2-expressing tobacco BY2 cell lines and characterized the cell lines by ion content measurements and tracer influx studies to directly analyze unidirectional fluxes (Epstein et al., 1963). These analyses showed that OsHKT2;1 exhibits Na+ uptake activity in plant BY2 cells in the absence of added K+, but little K+ (Rb+), influx activity. In contrast, OsHKT2;2 was found to function as a Na+-K+ cotransporter/channel in plant BY2 cells, showing K+-stimulated Na+ influx and Na+-stimulated K+ (Rb+) influx. The differential K+ selectivities of the two OsHKT2 transporters were consistently reproduced by voltage clamp experiments using Xenopus oocytes here, as reported previously (Horie et al., 2001). OsHKT2;2 was also found to mediate K+-independent Na+ influx at millimolar external Na+ concentrations. These findings demonstrate that the cation selectivities of OsHKT2;1 and OsHKT2;2 in plant cells are consistent with past findings obtained from heterologous expression analyses under similar ionic conditions (Horie et al., 2001; Garciadeblás et al., 2003; Tholema et al., 2005). Furthermore, the shift in OsHKT2;2 Na+-K+ selectivity depending on ionic editions is consistent with the model that HKT transporters/channels are multi-ion pores (Gassmann et al., 1996; Corratgé et al., 2007). Classical studies of ion channels have shown that ion channels, in which multiple ions can occupy the pore at the same time, can change their relative selectivities depending on the ionic conditions (Hille, 2001). Moreover, the presence of external K+ and Ca2+ was found here to down-regulate OsHKT2;1-mediated Na+ influx both in tobacco BY2 cells and in rice roots. The inhibitory effect of external K+ on OsHKT2;1-mediated Na+ influx into intact rice roots, however, showed a distinct difference in comparison with that of BY2 cells, which indicates a possible posttranslational regulation of OsHKT2;1 in K+-starved rice roots.  相似文献   

3.
4.
5.
Mcl-1 is an antiapoptotic member of the Bcl-2 family frequently upregulated in non-small cell lung carcinoma (NSCLC). We now report the physiological significance of an interaction between Mcl-1 and the mitochondrial outer membrane-localized voltage-dependent anion channel (VDAC) in NSCLC cell lines. Mcl-1 bound with high affinity to VDAC1 and 3 isoforms but only very weakly to VDAC2 and binding was disrupted by peptides based on the VDAC1 sequence. In A549 cells, reducing Mcl-1 expression levels or application of VDAC-based peptides limited Ca2+ uptake into the mitochondrial matrix, the consequence of which was to inhibit reactive oxygen species (ROS) generation. In A549, H1299 and H460 cells, both Mcl-1 knockdown and VDAC-based peptides attenuated cell migration without affecting cell proliferation. Migration was rescued in Mcl-1 knockdown cells by experimentally restoring ROS levels, consistent with a model in which ROS production drives increased migration. These data suggest that an interaction between Mcl-1 and VDAC promotes lung cancer cell migration by a mechanism that involves Ca2+-dependent ROS production.The Bcl-2 proteins are a family of molecules comprised of both pro- and antiapoptotic members essential for the regulation of apoptotic cell death. In the classical paradigm, the antiapoptotic proteins Bcl-2, Bcl-xL and Mcl-1, inhibit cell death during receipt of apoptotic stimuli by binding and sequestering the proapoptotic members.1 It is now appreciated, however, that in the absence of apoptotic stimuli, Bcl-2 proteins have numerous non-canonical interactions that influence diverse cellular functions, although the precise mechanisms are poorly understood.2 Since antiapoptotic Bcl-2 family members are frequently upregulated in cancer, determining if and how these non-canonical interactions confer survival or other advantages to the cancer cell, will be an important step toward identifying new therapeutic targets. One such interaction is with the outer mitochondrial membrane-localized voltage-dependent anion channel (VDAC), a porin channel with three isoforms that serves as a major diffusion pathway for ions and metabolites,3 and whose gating properties are affected by either Bcl-2 or Bcl-xL binding.4, 5, 6We recently identified an important role for Bcl-xL/VDAC interactions in the regulation of mitochondrial [Ca2+].7 Moving Ca2+ from the cytoplasm to the mitochondrial matrix requires transfer across the outer membrane by VDAC3,8 and across the inner membrane by the Ca2+ uniporter.9 Our studies showed that Bcl-xL interacts with VDAC to facilitate Ca2+ uptake into the mitochondrial matrix. It is not known if other Bcl-2 family members, particularly Bcl-2 and Mcl-1, which are also known VDAC binding partners impart the same physiological regulation on mitochondrial [Ca2+]. Furthermore, the specific physiological consequences and significance of this regulation remain to be determined.Increased production and reduced scavenging of reactive oxygen species (ROS) is frequently observed in cancer cells.10 While excessive ROS levels are toxic, sub-lethal production serves an important signaling function, particularly in cancers, were ROS promote cell proliferation, migration and invasion.11, 12, 13, 14, 15 A primary source of ROS are the mitochondria, and a number of mitochondrial signaling pathways are known to be remodeled and contribute to elevated ROS in cancer cells, including those involved in regulating the electron transport chain (ETC) function and metabolic activity.11,16, 17, 18 It is recognized that upregulation of antiapoptotic Bcl-2 proteins are also associated with a pro-oxidant intracellular environment.19, 20, 21, 22 Mechanistically, they are thought to act at the level of the mitochondria to affect the respiratory chain and increase production of ROS. Since matrix [Ca2+] is an important regulator of mitochondrial metabolism,23,24 and as such, contributes to the regulation of mitochondrial ROS production,25 we reasoned that antiapoptotic Mcl-1/VDAC interactions could promote ROS generation by facilitating matrix Ca2+ uptake.Understanding non-canonical roles of Mcl-1 is an important step toward identifying novel therapeutic targets, particularly in cancers where it is highly expressed, such as in non-small cell lung cancer (NSCLC).26,27 Therefore, we hypothesized that Mcl-1 binding to VDAC promotes mitochondrial Ca2+ uptake and ROS production in NSCLC cells and that this is essential in maintaining the cancer cell phenotype. To test this, we assessed the biochemical interaction between Mcl-1 and VDAC and examined the effects of manipulating Mcl-1 expression levels and Mcl-1/VDAC interactions on mitochondrial Ca2+ uptake, ROS generation and NSCLC cell proliferation and migration.  相似文献   

6.
Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic Zn2+ level ([Zn2+]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia–reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the [Zn2+]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the [Zn2+]c but abolished the cytosolic Zn2+ accumulation during reperfusion as well as ROS-elicited increases in the [Zn2+]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the [Zn2+]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury.Transient ischemia is a major cause of chronic neurological disabilities including memory impairment and cognitive dysfunctions in stroke survivors.1, 2 The underlying mechanisms are complicated and multiple, and remain not fully understood.3 It is well documented in rodents, non-human primates and humans that pyramidal neurons in the CA1 region of the hippocampus are particularly vulnerable and these neurons are demised after transient ischemia, commonly referred to as the delayed neuronal death.4 Studies using in vitro and in vivo models of transient ischemia have demonstrated that an increase in the [Zn2+]c or cytosolic Zn2+ accumulation is a critical factor.5, 6, 7, 8, 9, 10, 11 There is evidence supporting a role for ischemia-evoked release of vesicular Zn2+ at glutamatergic presynaptic terminals and subsequent entry into postsynaptic neurons via GluA2-lacking AMPA subtype glutamate receptors (AMPARs) to raise the [Zn2+]c.12, 13, 14, 15, 16 Upon reperfusion, while glutamate release returns to the preischemia level,17 Zn2+ can activate diverse ROS-generating machineries to generate excessive ROS as oxygen becomes available, which in turn elicits further Zn2+ accumulation during reperfusion.18, 19 ROS generation and cytosolic Zn2+ accumulation have a critical role in driving delayed CA1 pyramidal neuronal death,7, 12, 20, 21, 22 but the molecular mechanisms underlying such a vicious positive feedback during reperfusion remain poorly understood.Transient receptor potential melastatin-related 2 (TRPM2) forms non-selective cationic channels; their sensitivity to activation by ROS via a mechanism generating the channel activator ADP-ribose (ADPR) confers diverse cell types including hippocampal neurons with susceptibility to ROS-induced cell death, and thus TRPM2 acts as an important signaling molecule mediating ROS-induced adversities such as neurodegeneration.23, 24, 25, 26 Emergent evidence indeed supports the involvement of TRPM2 in transient ischemia-induced CA1 pyramidal neuronal death.27, 28, 29, 30 This has been attributed to the modulation of NMDA receptor-mediated signaling; despite that ROS-induced activation of the TRPM2 channels results in no change in the excitability of neurons from the wild-type (WT) mice, TRPM2 deficiency appeared to favor prosurvival synaptic Glu2A expression and inhibit prodeath extrasynaptic GluN2B expression.30 A recent study suggests that TRPM2 activation results in extracellular Zn2+ influx to elevate the [Zn2+]c.31 The present study, using TRPM2-deficient mice in conjunction with in vivo and in vitro models of transient global ischemia, provides compelling evidence to show ROS-induced TRPM2 activation during reperfusion as a crucial mechanism determining the delayed cytosolic Zn2+ accumulation, CA1 neuronal death and postischemic memory impairment.  相似文献   

7.
Massive Ca2+ influx into mitochondria is critically involved in cell death induction but it is unknown how this activates the organelle for cell destruction. Using multiple approaches including subcellular fractionation, FRET in intact cells, and in vitro reconstitutions, we show that mitochondrial Ca2+ influx prompts complex II of the respiratory chain to disintegrate, thereby releasing an enzymatically competent sub-complex that generates excessive reactive oxygen species (ROS) for cell death induction. This Ca2+-dependent dissociation of complex II is also observed in model membrane systems, but not when cardiolipin is replaced with a lipid devoid of Ca2+ binding. Cardiolipin is known to associate with complex II and upon Ca2+ binding coalesces into separate homotypic clusters. When complex II is deprived of this lipid, it disintegrates for ROS formation and cell death. Our results reveal Ca2+ binding to cardiolipin for complex II disintegration as a pivotal step for oxidative stress and cell death induction.Cellular calcium ion (Ca2+) overload is known to be of fundamental importance in pathological cell death induction for instance during brain ischemia, ischemia-reperfusion of the heart, and excitotoxicity of neurons.1 Upon entering the cytosol from the extracellular space, Ca2+ ions accumulate in mitochondria at very high levels. An alternative route into mitochondria, observed during many scenarios of cell death, as well as when therapeutically induced by anticancer agents, is through Ca2+ release from the ER. After crossing the ER-mitochondrial junction, the ion is taken up by the mitochondrial calcium uniporter.2, 3 The close apposition of the two organelles ensures that a very high Ca2+ concentration can be reached in mitochondria.4 The direct target of mitochondrial Ca2+ influx for cell death induction, however, is unknown.Cells deficient in complex II of the respiratory chain become resistant to many cell death signals.5 The ability of this complex to produce deleterious amounts of reactive oxygen species (ROS) has been recognized.6, 7 Initial in vitro experiments using blue native gels indicated that during cell death, the sub-complex SDHA/SDHB, which remains enzymatically active,8 is specifically released from the membrane-anchoring SDHC and SDHD complex II subunits.9 It can then remove electrons from the substrate succinate and transfer them to molecular oxygen to generate ROS for cell death induction.5, 9The principal lipid in the inner mitochondrial membrane that harbors the components of the respiratory chain, including complex II, is the diphosphatidylglycerol cardiolipin. This lipid is known to be involved in cell death, although its effects have been connected mostly with cellular sites different from its most prominent residence.10, 11, 12In this study, we investigated whether excessive Ca2+ influx into mitochondria can affect on the integrity of complex II and activate this complex for cell death.  相似文献   

8.
Transforming growth factor-β1 (TGF-β1) is an important regulator of fibrogenesis in heart disease. In many other cellular systems, TGF-β1 may also induce autophagy, but a link between its fibrogenic and autophagic effects is unknown. Thus we tested whether or not TGF-β1-induced autophagy has a regulatory function on fibrosis in human atrial myofibroblasts (hATMyofbs). Primary hATMyofbs were treated with TGF-β1 to assess for fibrogenic and autophagic responses. Using immunoblotting, immunofluorescence and transmission electron microscopic analyses, we found that TGF-β1 promoted collagen type Iα2 and fibronectin synthesis in hATMyofbs and that this was paralleled by an increase in autophagic activation in these cells. Pharmacological inhibition of autophagy by bafilomycin-A1 and 3-methyladenine decreased the fibrotic response in hATMyofb cells. ATG7 knockdown in hATMyofbs and ATG5 knockout (mouse embryonic fibroblast) fibroblasts decreased the fibrotic effect of TGF-β1 in experimental versus control cells. Furthermore, using a coronary artery ligation model of myocardial infarction in rats, we observed increases in the levels of protein markers of fibrosis, autophagy and Smad2 phosphorylation in whole scar tissue lysates. Immunohistochemistry for LC3β indicated the localization of punctate LC3β with vimentin (a mesenchymal-derived cell marker), ED-A fibronectin and phosphorylated Smad2. These results support the hypothesis that TGF-β1-induced autophagy is required for the fibrogenic response in hATMyofbs.Interstitial fibrosis is common to many cardiovascular disease etiologies including myocardial infarction (MI),1 diabetic cardiomyopathy2 and hypertension.3 Fibrosis may arise due to maladaptive cardiac remodeling following injury and is a complex process resulting from activation of signaling pathways, such as TGF-β1.4 TGF-β1 signaling has broad-ranging effects that may affect cell growth, differentiation and the production of extracellular matrix (ECM) proteins.5, 6 Elevated TGF-β1 is observed in post-MI rat heart7 and is associated with fibroblast-to-myofibroblast phenoconversion and concomitant activation of canonical Smad signaling.8 The result is a proliferation of myofibroblasts, which then leads to inappropriate deposition of fibrillar collagens, impaired cardiac function and, ultimately, heart failure.9, 10Autophagy is necessary for cellular homeostasis and is involved in organelle and protein turnover.11, 12, 13, 14 Autophagy aids in cell survival by providing primary materials, for example, amino acids and fatty acids for anabolic pathways during starvation conditions.15, 16 Alternatively, autophagy may be associated with apoptosis through autodigestive cellular processes, cellular infection with pathogens or extracellular stimuli.17, 18, 19, 20 The overall control of cardiac fibrosis is likely due to the complex functioning of an array of regulatory factors, but to date, there is little evidence linking autophagy with fibrogenesis in cardiac tissue.11, 12, 13, 14, 15, 16, 17, 18, 21, 22Recent studies have demonstrated that TGF-β1 may not only promote autophagy in mouse fibroblasts and human tubular epithelial kidney cells15, 23, 24 but can also inhibit this process in fibroblasts extracted from human patients with idiopathic pulmonary fibrosis.25 Moreover, it has recently been reported that autophagy can negatively15 and positively25, 26, 27 regulate the fibrotic process in different model cell systems. In this study, we have explored the putative link between autophagy and TGF-β1-induced fibrogenesis in human atrial myofibroblasts (hATMyofbs) and in a model of MI rat heart.  相似文献   

9.
Excessive N-methyl-D-aspartate receptor (NMDAR) activation and the resulting activation of neuronal nitric oxide synthase (nNOS) cause neuronal injury. Homer1b/c facilitates NMDAR-PSD95-nNOS complex interactions, and Homer1a is a negative competitor of Homer1b/c. We report that Homer1a was both upregulated by and protected against NMDA-induced neuronal injury in vitro and in vivo. The neuroprotective activity of Homer1a was associated with NMDA-induced Ca2+ influx, oxidative stress and the resultant downstream signaling activation. Additionally, we found that Homer1a functionally regulated NMDAR channel properties in neurons, but did not regulate recombinant NR1/NR2B receptors in HEK293 cells. Furthermore, we found that Homer1a detached the physical links among NR2B, PSD95 and nNOS and reduced the membrane distribution of NMDAR. NMDA-induced neuronal injury was more severe in Homer1a homozygous knockout mice (KO, Homer1a−/−) when compared with NMDA-induced neuronal injury in wild-type mice (WT, Homer1a+/+). Additionally, Homer1a overexpression in the cortex of Homer1a−/− mice alleviated NMDA-induced neuronal injury. These findings suggest that Homer1a may be a key neuroprotective endogenous molecule that protects against NMDA-induced neuronal injury by disassembling NR2B-PSD95-nNOS complexes and reducing the membrane distribution of NMDARs.Glutamate (Glu) acts on glutamate receptors, such as the N-methyl-D-aspartate receptor (NMDAR), and leads to neuronal hyper-excitability and death in a dose-dependent manner.1 NMDAR activation induces Ca2+ influx and specifically activates neuronal nitric oxide synthase (nNOS) and downstream signaling pathways.2, 3, 4 Ca2+ influx is involved in glutamate-induced apoptosis caused by the activation of apoptosis-related signaling pathways, mitochondrial dysfunction and ROS induction.3, 4 Additionally, nNOS has been reported to contribute to NMDA-induced excitotoxicity.5, 6 Considering that direct NMDAR inhibition has not yet demonstrated favorable efficacy in most clinic trails and further considering the remarkable role of nNOS in NMDA-induced neuronal death,7 measures that can effectively protect neurons from NMDA-induced neuronal injury are urgently needed and represent a worthwhile research goal.Homer proteins belong to the postsynaptic density (PSD) family and consist of two major groups: the short-form Homer proteins (Homer1a and Ania3) and the long-form Homer proteins (Homer1b/c, Homer2 and Homer3).8 Homer1b/c has a conserved N-terminal Ena/VASP homology 1 domain and binds to group I metabotropic glutamate receptors (mGluRs), inositol triphosphate receptors and Shank family proteins.9, 10, 11, 12 Homer1b/c regulates surface receptor expression,13, 14 clustering,15 transient receptor potential family channels and mGluRs coupled to ion channels.10, 16, 17, 18, 19 Additionally, because of its C-terminal coiled-coil (CC) domains, Homer1b/c can self-multimerize, form multiprotein complexes and facilitate signal transduction to downstream pathways. Homer1a, which lacks the CC domain, is believed to compete with constitutive Homer1b/c and disrupt the association of multiple Homer1b/c complexes.Notably, Homer1b/c can interact with the Glu-induced Ca2+ influx pathway by binding to Shank, a NMDAR complex adaptor protein (NMDAR-PSD95-GKAP-Shank-Homer1b/c).12, 20 Furthermore, Homer1a also interacts with Shank, NMDA, nNOS and other Homer1b/c target proteins. Homer1a has a negative regulatory role by physically replacing certain target proteins, and is involved in the regulation of a variety of cellular and molecular functions in neurological diseases.21, 22, 23, 24, 25 Nevertheless, the mechanisms of action and associations between Homer1a and NMDA-induced neuronal injury have not yet been studied. Here, we aimed to investigate the possible neuroprotective effects of Homer1a and explore the mechanisms underlying Homer1a activity in NMDA-induced neuronal injury.  相似文献   

10.
Although cellular prion protein (PrPc) has been suggested to have physiological roles in neurogenesis and angiogenesis, the pathophysiological relevance of both processes remain unknown. To elucidate the role of PrPc in post-ischemic brain remodeling, we herein exposed PrPc wild type (WT), PrPc knockout (PrP−/−) and PrPc overexpressing (PrP+/+) mice to focal cerebral ischemia followed by up to 28 days reperfusion. Improved neurological recovery and sustained neuroprotection lasting over the observation period of 4 weeks were observed in ischemic PrP+/+ mice compared with WT mice. This observation was associated with increased neurogenesis and angiogenesis, whereas increased neurological deficits and brain injury were noted in ischemic PrP−/− mice. Proteasome activity and oxidative stress were increased in ischemic brain tissue of PrP−/− mice. Pharmacological proteasome inhibition reversed the exacerbation of brain injury induced by PrP−/−, indicating that proteasome inhibition mediates the neuroprotective effects of PrPc. Notably, reduced proteasome activity and oxidative stress in ischemic brain tissue of PrP+/+ mice were associated with an increased abundance of hypoxia-inducible factor 1α and PACAP-38, which are known stimulants of neural progenitor cell (NPC) migration and trafficking. To elucidate effects of PrPc on intracerebral NPC homing, we intravenously infused GFP+ NPCs in ischemic WT, PrP−/− and PrP+/+ mice, showing that brain accumulation of GFP+ NPCs was greatly reduced in PrP−/− mice, but increased in PrP+/+ animals. Our results suggest that PrPc induces post-ischemic long-term neuroprotection, neurogenesis and angiogenesis in the ischemic brain by inhibiting proteasome activity.Endogenous neurogenesis persists in the adult rodent brain within distinct niches such as the subventricular zone (SVZ) of the lateral ventricles,1, 2, 3, 4 which host astrocyte-like neural stem cells and neural progenitor cells (NPCs). Focal cerebral ischemia stimulates neurogenesis, and NPCs proliferate and migrate towards the site of lesion where they eventually differentiate.5, 6, 7 In light of low differentiation rates and high cell death rates of new-born cells,6, 8, 9 post-stroke neurogenesis is scarce.10Cellular prion protein (PrPc) is a glycoprotein that is attached to cell membranes by means of a glycosylphosphatidylinositol anchor.11 Although PrPc is ubiquitously expressed, it is most abundant within the central nervous system. Conversion into its misfolded isoform PrPsc causes neurodegenerative diseases such as Creutzfeldt-Jacob disease.11, 12 While a large body of studies analyzed the role of PrPsc in the context of transmissible spongiform encephalopathies, little is known about the physiological role of PrPc. Studies performed during both ontogenesis and adulthood suggest that PrPc regulates neuronal proliferation and differentiation, synaptic plasticity and angiogenesis.13, 14, 15, 16, 17, 18 The role of these processes under pathophysiological conditions, however, is largely unknown.Previous reports suggested a role of PrPc in post-ischemic neuroprotection.19, 20, 21, 22, 23, 24 Thus, PrPc was found to be overexpressed in ischemic brain tissue.19, 20, 21, 22, 23, 24 PrPc deficiency aggravated ischemic brain injury, possibly via enhanced ERK-1/2 activation and reduced phosphorylation of Akt, thus ultimately culminating in increased caspase-3 activity,21, 24 whereas PrPc overexpression protected against ischemia.19, 20, 21, 22, 23, 24 Nevertheless, these studies focused on acute injury processes with a maximal observation period of 3 days, leaving the biological role of PrPc in post-stroke neurogenesis and angiogenesis unanswered. To clarify the role of PrPc in the post-acute ischemic brain, we herein exposed PrPc wild type (WT), PrPc knockout (PrP−/−) and PrPc overexpressing (PrP+/+) mice to focal cerebral ischemia induced by intraluminal middle cerebral artery (MCA) occlusion, evaluating effects of PrPc on neurological recovery, ischemic injury, neurogenesis and angiogenesis, as well as the homing and efficacy of exogenously delivered NPCs.  相似文献   

11.
Glycogen synthase kinase-3β (GSK3β) is a multifunctional kinase whose inhibition is known to limit myocardial ischemia–reperfusion injury. However, the mechanism mediating this beneficial effect still remains unclear. Mitochondria and sarco/endoplasmic reticulum (SR/ER) are key players in cell death signaling. Their involvement in myocardial ischemia–reperfusion injury has gained recognition recently, but the underlying mechanisms are not yet well understood. We questioned here whether GSK3β might have a role in the Ca2+ transfer from SR/ER to mitochondria at reperfusion. We showed that a fraction of GSK3β protein is localized to the SR/ER and mitochondria-associated ER membranes (MAMs) in the heart, and that GSK3β specifically interacted with the inositol 1,4,5-trisphosphate receptors (IP3Rs) Ca2+ channeling complex in MAMs. We demonstrated that both pharmacological and genetic inhibition of GSK3β decreased protein interaction of IP3R with the Ca2+ channeling complex, impaired SR/ER Ca2+ release and reduced the histamine-stimulated Ca2+ exchange between SR/ER and mitochondria in cardiomyocytes. During hypoxia reoxygenation, cell death is associated with an increase of GSK3β activity and IP3R phosphorylation, which leads to enhanced transfer of Ca2+ from SR/ER to mitochondria. Inhibition of GSK3β at reperfusion reduced both IP3R phosphorylation and SR/ER Ca2+ release, which consequently diminished both cytosolic and mitochondrial Ca2+ concentrations, as well as sensitivity to apoptosis. We conclude that inhibition of GSK3β at reperfusion diminishes Ca2+ leak from IP3R at MAMs in the heart, which limits both cytosolic and mitochondrial Ca2+ overload and subsequent cell death.Glycogen synthase kinase-3 (GSK3) was originally identified as a phosphorylating kinase for glycogen synthase.1, 2 It has two isoforms, α and β, that possess strong homology in their kinase domains with, however, distinct functions.3 GSK3 is constitutively active but it can be inhibited by phosphorylation on serine 21 (Ser21) for GSK3α and Ser9 for GSK3β.4 In the heart, GSK3β has several important roles in cardiac hypertrophy5 and ischemia–reperfusion (IR) injury.6 Accumulating evidence indicates that phospho-Ser9-GSK3β-mediated cytoprotection is achieved by an increased threshold for permeability transition pore (PTP) opening.6, 7, 8, 9 The mechanism by which GSK3β delays PTP opening still remains unclear. It has been reported that GSK3β could interact with ANT at the inner mitochondrial membrane in the heart9 and/or to phosphorylate voltage-dependent anion channel (VDAC) and cyclophilin D (CypD) in cancer cells.10, 11 GSK3β also has other proposed mechanisms of action, including a poorly characterized role in calcium (Ca2+) homeostasis regulation12 and protein–protein interactions,9 as well as functions in different subcellular fractions such as the nucleus, cytosol and mitochondria.13Reperfusion is the most powerful intervention to salvage ischemic myocardium. However, it can also paradoxically lead to cardiomyocyte injury and death.14 One of the main actors of this lethal reperfusion injury is cellular Ca2+ overload,15 which results in part from excessive sarco/endoplasmic reticulum (SR/ER) Ca2+ release and Ca2+ influx through the plasma membrane (e.g. through L-type Ca2+channel and NCX (sodium-calcium exchanger)).16 Although ryanodine receptors (RyRs) are the major cardiac SR/ER Ca2+-release channels involved in excitation–contraction coupling (ECC)17 and ischemia–reperfusion (IR) injury,18 recent studies reported an increasing role for inositol 1,4,5-trisphosphate receptors (IP3Rs) Ca2+-release channels in the modulation of ECC and cell death.19, 20 Ca2+-handling proteins of ER and mitochondria are highly concentrated at mitochondria-associated ER membranes (MAMs), providing a direct and proper mitochondrial Ca2+ signaling, including VDAC, Grp75 and IP3R1.20, 21, 22Here, we provide evidence that, following IR, a fraction of cellular GSK3β is localized at the SR/ER and MAMs. At the MAMs interface, GSK3β can specifically interact and regulate the protein composition of the IP3R Ca2+ channeling complex and modulate Ca2+ transfer between SR/ER and mitochondria. These findings support a novel mechanism of action of GSK3β in cell death process during reperfusion injury.  相似文献   

12.
13.
Extracellular calmodulin (ExtCaM) regulates stomatal movement by eliciting a cascade of intracellular signaling events including heterotrimeric G protein, hydrogen peroxide (H2O2), and Ca2+. However, the ExtCaM-mediated guard cell signaling pathway remains poorly understood. In this report, we show that Arabidopsis (Arabidopsis thaliana) NITRIC OXIDE ASSOCIATED1 (AtNOA1)-dependent nitric oxide (NO) accumulation plays a crucial role in ExtCaM-induced stomatal closure. ExtCaM triggered a significant increase in NO levels associated with stomatal closure in the wild type, but both effects were abolished in the Atnoa1 mutant. Furthermore, we found that ExtCaM-mediated NO generation is regulated by GPA1, the Gα-subunit of heterotrimeric G protein. The ExtCaM-dependent NO accumulation was nullified in gpa1 knockout mutants but enhanced by overexpression of a constitutively active form of GPA1 (cGα). In addition, cGα Atnoa1 and gpa1-2 Atnoa1 double mutants exhibited a similar response as did Atnoa1. The defect in gpa1 was rescued by overexpression of AtNOA1. Finally, we demonstrated that G protein activation of NO production depends on H2O2. Reduced H2O2 levels in guard cells blocked the stomatal response of cGα lines, whereas exogenously applied H2O2 rescued the defect in ExtCaM-mediated stomatal closure in gpa1 mutants. Moreover, the atrbohD/F mutant, which lacks the NADPH oxidase activity in guard cells, had impaired NO generation in response to ExtCaM, and H2O2-induced stomatal closure and NO accumulation were greatly impaired in Atnoa1. These findings have established a signaling pathway leading to ExtCaM-induced stomatal closure, which involves GPA1-dependent activation of H2O2 production and subsequent AtNOA1-dependent NO accumulation.Plant guard cells control opening and closure of the stomata in response to phytohormones (e.g. abscisic acid [ABA]) and various environmental signals such as light and temperature, thereby regulating gas exchange for photosynthesis and water status via transpiration (Schroeder et al., 2001). Cytosolic calcium ([Ca2+]i) has been shown to be a key second messenger that changes in response to multiple stimuli in guard cells (McAinsh et al., 1995; Grabov and Blatt, 1998; Wood et al., 2000). A large proportion of Ca2+ is localized in extracellular space. It has been shown that external Ca2+ concentration ([Ca2+]o) promotes stomatal closure and induces oscillation in [Ca2+]i in guard cells (MacRobbie, 1992; McAinsh et al., 1995; Allen et al., 2001). However, how the guard cells perceive [Ca2+]o concentration and convert [Ca2+]o changes into [Ca2+]i changes was not understood until a calcium-sensing receptor (CAS) in the plasma membrane of guard cells in Arabidopsis (Arabidopsis thaliana) was identified (Han et al., 2003). The external Ca2+ (Ca2+o)-induced [Ca2+]i increase is abolished in CAS antisense lines (Han et al., 2003). Both [Ca2+]o and [Ca2+]i show diurnal oscillation that is determined by stomatal conductance, whereas the amplitude of [Ca2+]i oscillation is reduced in CAS antisense lines (Tang et al., 2007). The reduced amplitude of [Ca2+]i diurnal oscillation in response to Ca2+o treatment suggests the potential existence of other [Ca2+]o sensor(s) that may transmit [Ca2+]o information into the [Ca2+]i response in coordination with CAS. Extracellular calmodulin (ExtCaM) could be such an additional [Ca2+]o sensor.Calmodulin is a well-known Ca2+ sensor that is activated upon binding of Ca2+. It has been shown that calmodulin exists not only intracellularly but also extracellularly in many plant species (Biro et al., 1984; Sun et al., 1994, 1995; Cui et al., 2005). ExtCaM has been implicated in several important biological functions, such as the promotion of cell proliferation, pollen germination, and tube growth (Sun et al., 1994, 1995; Ma and Sun, 1997; Ma et al., 1999; Cui et al., 2005; Shang et al., 2005). ExtCaM is found in the cell wall of guard cells in Vicia faba and in the epidermis of Arabidopsis by immunogold labeling/electron microscopy and western-blot analyses, respectively, and the endogenous CaM in the extracellular space has been shown to regulate stomatal movements (Chen et al., 2003; Xiao et al., 2004). Under natural conditions, once the activity of ExtCaM has been inhibited by its membrane-impermeable antagonist W7-agrose or CaM antibody, stomatal opening under light is enhanced and stomatal closure in darkness is inhibited in V. faba and Arabidopsis (Chen et al., 2003; Xiao et al., 2004). [Ca2+]i and cytosolic hydrogen peroxide (H2O2) changes, two events involved in ExtCaM-regulated stomatal movement (Chen et al., 2004), are likely regulated by light/darkness (Chen and Gallie, 2004; Tang et al., 2007), suggesting that ExtCaM plays an important physiological role in the regulation of stomatal diurnal rhythm. Calmodulin-binding proteins have been found in the protoplast of suspension-cultured Arabidopsis cells, supporting the idea that ExtCaM functions as a peptide-signaling molecule (Cui et al., 2005). Furthermore, ExtCaM triggers [Ca2+]i elevation in guard cells of V. faba and Arabidopsis and in lily (Lilium daviddi) pollen (Chen et al., 2004; Xiao et al., 2004; Shang et al., 2005). These observations support the notion that ExtCaM could be a potential [Ca2+]o sensor for external calcium, and this external calcium sensing could subsequently regulate the [Ca2+]i level through a signaling cascade.It is interesting that ExtCaM and ABA induce some parallel changes in second messengers in guard cell signaling. Our previous studies show that ExtCaM induces [Ca2+]i increase and H2O2 generation through the Gα-subunit (GPA1) of a heterotrimeric G protein, and increased H2O2 further elevates [Ca2+]i (Chen et al., 2004). G protein, Ca2+, and H2O2 are well-known second messengers in ABA-induced guard cell signaling (McAinsh et al., 1995; Grabov and Blatt, 1998; Pei et al., 2000; Wang et al., 2001; Zhang et al., 2001; Liu et al., 2007). However, the signaling cascade triggered by ExtCaM in guard cells is poorly understood. New ABA signaling components in guard cells could provide a clue in the study of the molecular mechanism of ExtCaM guard cell signaling.Recently, nitric oxide (NO) has been shown to serve as an important signal molecule involved in many aspects of developmental processes, including floral transition, root growth, root gravitropism, adventitious root formation, xylogenesis, seed germination, and orientation of pollen tube growth (Beligni and Lamattina, 2000; Pagnussat et al., 2002; He et al., 2004; Prado et al., 2004; Gabaldón et al., 2005; Stohr and Stremlau, 2006). Increasing evidence points to a role for NO as an essential component in ABA signaling in guard cells (Garcia-Mata and Lamattina, 2001, 2002; Neill et al., 2002). It has been shown that nitrate reductase (NR) reduces nitrite to NO, and the nia1, nia2 NR-deficient mutant in Arabidopsis showed reduced ABA induction of stomatal closure (Desikan et al., 2002; Bright et al., 2006). Although animal nitric oxide synthase (NOS) activity has been detected in plants and inhibitors of mammalian NOS impair NO production in plants (Barroso et al., 1999; Corpas et al., 2001), the gene(s) encoding NOS in plants is still not clear. AtNOS1 in Arabidopsis was initially reported to encode a protein containing NOS activity (Guo et al., 2003). However, recent studies have raised critical questions regarding the nature of AtNOS1 and suggested that AtNOS1 appears not to encode a NOS (Crawford et al., 2006; Zemojtel et al., 2006). However, the originally described Atnos1 mutant is deficient in NO accumulation (Crawford et al., 2006). Consequently, AtNOS1 was renamed AtNOA1 (for NITRIC OXIDE ASSOCIATED1; Crawford et al., 2006). Therefore, the Atnoa1 mutant provides a useful tool for dissecting the function of NO in plants. At present, the molecules that regulate NO generation in ABA-mediated guard cell signaling are not clear. Evidence suggests that H2O2, a second messenger important for the regulation of many developmental processes and stomatal movement (Pei et al., 2000; Zhang et al., 2001; Coelho et al., 2002; Demidchik et al., 2003; Kwak et al., 2003), regulates NO generation in guard cells (Lum et al., 2002; He et al., 2005; Bright et al., 2006).Given the parallel signaling events induced by ABA and ExtCaM, we investigated whether NO is involved in the regulation of ExtCaM-induced stomatal closure in Arabidopsis and whether it is linked to G protein and H2O2, two key regulators of both ExtCaM and ABA regulation of stomatal movements. Using Arabidopsis mutants (e.g. GPA1 null mutants, the NO-producing mutant Atnoa1, and the guard cell H2O2 synthetic enzymatic mutant atrbohD/F) combined with pharmacological analysis, we present compelling evidence to establish a linear functional relationship between Gα, H2O2, and NO in ExtCaM guard cell signaling.  相似文献   

14.
15.
16.
Mitochondrial alterations are critically involved in increased vulnerability to disease during aging. We investigated the contribution of mitochondria–sarcoplasmic reticulum (SR) communication in cardiomyocyte functional alterations during aging. Heart function (echocardiography) and ATP/phosphocreatine (NMR spectroscopy) were preserved in hearts from old mice (>20 months) with respect to young mice (5–6 months). Mitochondrial membrane potential and resting O2 consumption were similar in mitochondria from young and old hearts. However, maximal ADP-stimulated O2 consumption was specifically reduced in interfibrillar mitochondria from aged hearts. Second generation proteomics disclosed an increased mitochondrial protein oxidation in advanced age. Because energy production and oxidative status are regulated by mitochondrial Ca2+, we investigated the effect of age on mitochondrial Ca2+ uptake. Although no age-dependent differences were found in Ca2+ uptake kinetics in isolated mitochondria, mitochondrial Ca2+ uptake secondary to SR Ca2+ release was significantly reduced in cardiomyocytes from old hearts, and this effect was associated with decreased NAD(P)H regeneration and increased mitochondrial ROS upon increased contractile activity. Immunofluorescence and proximity ligation assay identified the defective communication between mitochondrial voltage-dependent anion channel and SR ryanodine receptor (RyR) in cardiomyocytes from aged hearts associated with altered Ca2+ handling. Age-dependent alterations in SR Ca2+ transfer to mitochondria and in Ca2+ handling could be reproduced in cardiomyoctes from young hearts after interorganelle disruption with colchicine, at concentrations that had no effect in aged cardiomyocytes or isolated mitochondria. Thus, defective SR–mitochondria communication underlies inefficient interorganelle Ca2+ exchange that contributes to energy demand/supply mistmach and oxidative stress in the aged heart.Age is the main independent risk factor for cardiovascular morbidity and mortality.1 It increases heart vulnerability to cardiac diseases as well as the severity of their clinical manifestations, and reduces the efficacy of cardioprotective interventions.2 At the cellular level, some of the structural and functional age-dependent changes resemble those of failing cardiac myocytes.3, 4 Specifically, disturbed Ca2+ homeostasis and excitation–contraction coupling,5 as well as deficient mitochondrial energetics6 and excessive ROS production,7 have been consistently reported in senescent cardiomyocytes. These subcellular alterations likely contribute to the reduced adaptive capacity to stress (exercise, β-adrenergic stimulation) and increased vulnerability to disease of the aged hearts.In cardiac cells, electrochemical coupling and metabolic adaptations are based upon the coordination between sarcoplasmic reticulum (SR) and mitochondria tightly interconnected forming an interface to support local ionic exchange and signal transduction in a beat-to-beat basis.8 This privileged interorganelle communication facilitates mitochondrial ATP transport for SR Ca2+ cycling and ensures energy replenishment by reciprocal Ca2+ and ADP exchange. Ca2+ is taken up by mitochondria using a low-affinity uniporter whose activity is driven by the elevated Ca2+ concentration in the microenvironment present around ryanodine receptors (RyR).9 Indeed, the kinetics of mitochondrial Ca2+ uptake is more dependent on the concentration of Ca2+ at the SR–mitochondria contact points than on bulk cytosolic Ca2+ concentration.8 Mitochondrial Ca2+ uptake allows energy supply–demand matching through the activation of Krebs cycle dehydrogenases and electron transport chain activity, and at the same time it regulates the regeneration of Krebs-coupled antioxidative defenses (NAD(P)H).10Defective SR–mitochondria cross talk has been causally linked to the abnormal mitochondrial Ca2+ uptake in failing hearts and may underlie their increased oxidative stress.11 Also, in diabetic cardiomyopathy, intracellular Ca2+ overload and depletion of energy stores appear to develop as a consequence of sequential SR–mitochondria dysfunction.12 Atrial fibrillation has been associated with an increased fusion of mitochondria and a subsequent increased colocalization of giant mitochondria with SR, a subcellular remodeling process that contributes to the perpetuation of the arrhythmia.13 Because mitochondria are highly dynamic structures, some molecular links have been proposed to provide a stable physical interorganelle bridge14, 15 while others appear to facilitate direct tunneling of Ca2+ and other signaling mediators.16 In the present study, we hypothesized that aging may negatively impact on mitochondria–SR communication by mechanisms involving defective Ca2+ transmission, and we identified reduced physical interaction between RyR and mitochondrial voltage-dependent anion channel (VDAC) as the main responsible of this effect.  相似文献   

17.
During virus infection and autoimmune disease, inflammatory dendritic cells (iDCs) differentiate from blood monocytes and infiltrate infected tissue. Following acute infection with hepatotropic viruses, iDCs are essential for re-stimulating virus-specific CD8+ T cells and therefore contribute to virus control. Here we used the lymphocytic choriomeningitis virus (LCMV) model system to identify novel signals, which influence the recruitment and activation of iDCs in the liver. We observed that intrinsic expression of Toso (Faim3, FcμR) influenced the differentiation and activation of iDCs in vivo and DCs in vitro. Lack of iDCs in Toso-deficient (Toso–/–) mice reduced CD8+ T-cell function in the liver and resulted in virus persistence. Furthermore, Toso–/– DCs failed to induce autoimmune diabetes in the rat insulin promoter-glycoprotein (RIP-GP) autoimmune diabetes model. In conclusion, we found that Toso has an essential role in the differentiation and maturation of iDCs, a process that is required for the control of persistence-prone virus infection.More than 500 million people worldwide suffer from chronic infections with hepatitis B or hepatitis C viruses.1 Although both viruses are poorly cytopathic, persistence of either virus can lead to chronic liver inflammation and potentially cause liversteatosis, liver cirrhosis, end-stage liver failure or hepatocellular carcinoma. Virus-specific CD8+ T cells are a major determinant governing the outcome of viral hepatitis due to their antiviral activity against virus-infected hepatocytes.2, 3, 4, 5 However, during prolonged infection, virus-specific CD8+ T cells are exhausted, resulting in their loss of function and consequently virus persistence.1, 6 Regulators influencing CD8+ T-cell function during chronic virus infection still remain ill defined.Inflammatory dendritic cells (iDCs) can develop from a subset of monocytes recruited to the site of inflammation.7, 8 This monocyte subset is characterized by the expression of CD115+/Ly6Chi/CCR2+.7 iDCs express CD11c, CD11b, and Ly6C.9, 10, 11 IDCs that exhibit tumor necrosis factor (TNF)-α production and inducible nitric oxide synthase (iNOS) were named TNF-α and iNOS producing DCs (Tip-DCs). iDCs contribute to the elimination of pathogens following bacterial infection.12, 13, 14 During infection with influenza virus, iDCs enhance CD8+ T-cell immunopathology, but have limited impact on viral replication.11, 15 According to recent observations, chronic activation of toll-like receptor 9 leads to intrahepatic myeloid-cell aggregates (iMATE).16 These aggregates, which contain iDCs, are essential for T-cell activation and therefore participate in virus control.16 Co-stimulatory signals from either direct cell contact or from cytokines in combination with continued antigen contact in iMATEs lead to proliferation and activation of virus-specific T cells.16 These observations suggest that infiltration of professional antigen-presenting cells into target organs is important for the maintenance of strong antiviral cytotoxic CD8+ T-cell activity. Factors regulating iDC infiltration into the liver remain poorly understood.Toso is a membrane protein whose extracellular domain has homology to the immunoglobulin variable (IgV) domains. The cytoplasmic region has partial homology to the FAST kinase (Fas-activated serine/threonine kinase).17 Toso is expressed on B cells and activated T cells17 and is overexpressed in B-cell lymphomas.18, 19 Expression of Toso can influence survival of macrophages.20 Originally, Toso was described as an inhibitor of FAS signaling.17, 21 More recently, a role of Toso in IgM binding and TNFR signaling was also demonstrated22, 23, 24 and consistently, Toso-deficient animals are protected from lipopolysaccharide (LPS)-induced septic shock.24, 25 Recently, we identified a role of Toso in the activation of granulocytes, monocytes, and DCs.26, 27, 28 During infection with Listeria, the expression of Toso regulated granulocyte function.26, 27 The role of Toso in the function of monocytes and other myeloid cells still remains to be further elucidated.In this study, we investigated the role of Toso during chronic viral infection by using the murine lymphocytic choriomeningitis virus (LCMV). We report that Toso promotes the differentiation and maturation of iDCs at virus-infected sites, which were essential for effector CD8+ T-cell function and in accelerating the control of the virus. We further tested the role of Toso in the rat insulin promoter-glycoprotein (RIP-GP) autoimmune diabetes model and found that Toso was required to trigger diabetes in RIP-GP mice. Taken together, we have identified an essential role of Toso in the differentiation and maturation of iDCs, which is essential for the control of persistence-prone virus infection and triggering of autoimmune disease.  相似文献   

18.
Pathological cardiac hypertrophy is a major risk factor associated with heart failure, a state concomitant with increased cell death. However, the mechanism governing progression of hypertrophy to apoptosis at the single-cell level remains elusive. Here, we demonstrate annexin A6 (Anxa6), a calcium (Ca2+)-dependent phospholipid-binding protein critically regulates the transition of chronic hypertrophied cardiomyocytes to apoptosis. Treatment of the H9c2(2-1) cardiomyocytes with hypertrophic agonists upregulates and relocalizes Anxa6 with increased cytosolic punctate appearance. Live cell imaging revealed that chronic exposure to hypertrophic agonists such as phenylephrine (PE) compromises the mitochondrial membrane potential (ΔΨm) and morphological dynamics. Such chronic hypertrophic induction also activated the caspases 9 and 3 and induced cleavage of the poly-(ADP-ribose) polymerase 1 (Parp1), which are the typical downstream events in the mitochondrial pathways of apoptosis. An increased rate of apoptosis was evident in the hypertrophied cardiomyocytes after 48–72 h of treatment with the hypertrophic agonists. Anxa6 was progressively associated with the mitochondrial fraction under chronic hypertrophic stimulation, and Anxa6 knockdown severely abrogated mitochondrial network and dynamics. Ectopically expressed Anxa6 protected the mitochondrial morphology and dynamics under PE treatment, and also increased the cellular susceptibility to apoptosis. Biochemical analysis showed that Anxa6 interacts with Parp1 and its 89 kDa cleaved product in a Ca2+-dependent manner through the N-terminal residues (1–28). Furthermore, expression of Anxa6S13E, a mutant dominant negative with respect to Parp1 binding, served as an enhancer of mitochondrial dynamics, even under chronic PE treatment. Chemical inhibition of Parp1 activity released the cellular vulnerability to apoptosis in Anxa6-expressing stable cell lines, thereby shifting the equilibrium away from cell death. Taken together, the present study depicts a dual regulatory function of Anxa6 that is crucial for balancing hypertrophy with apoptosis in cardiomyocytes.Complex machineries govern the life and death decisions in mammalian cells through a dynamic equilibrium, which is essential for physiological homeostasis.1 Such equilibrium is critical for cardiac myocytes because of their terminally differentiated states and low proliferative capacities. Stress response in cardiomyocytes often involves a switch between survival and cell death pathways.2, 3, 4 Cardiomyocyte hypertrophy is an adaptive response to stress, which may turn maladaptive and fatal,5 as evident in cardiovascular disorders that leads to heart failure.6 Hypertrophied phenotypes are also associated with a balance between cell growth and programmed cell death.7 These processes are aided by several patrolling proteins, which sense and operate to ameliorate the anomalies.8, 9 Understanding the dynamics of such signaling events is vital for the development of novel therapeutic strategies.Anxa6 belongs to the annexin family of calcium (Ca2+)/phospholipid-binding proteins.10 A major cardiac annexin,11 Anxa6 has diverse functions ranging from handling intracellular Ca2+ signaling, cholesterol transport,12 Ras inactivation13 and vesicular traffic.14 Anxa6 mostly functions as an intracellular scaffold.15 Although mice with targeted depletion of the Anxa6 gene remain viable,16 functional redundancies within the annexin family have been proposed to compensate for the loss of Anxa6 function.17, 18 A 10-fold overexpression of Anxa6 targeted to the heart developed cardiomyopathies in mice, whereas cardiomyocytes from Anxa6-knockout mice exhibited increased contractility and altered Ca2+ turnover.19, 20 Such contradictory findings may indicate participation of Anxa6 in counterbalancing signaling mechanisms. Moreover, end-stage heart failures have been reported to be associated with downregulation of Anxa6, and, in general, Anxa6 has compensatory roles in chronic pathological conditions.20, 21, 22 However, the function of differential Anxa6 expression or dynamics in chronic cardiomyocyte hypertrophy is poorly understood.We have reported the interactions of Anxa6 with the sarcomeric α-actinin and its role in cardiomyocyte contractility.23 Recently, we have characterized a role of Anxa6 in the antihypertrophic signaling via the regulation of atrial natriuretic peptide (ANP) secretion.24 The mechanistic spectrum of Anxa6 in the earlier study was limited to a short-term (24 h) exposure of H9c2 cardiomyocytes to the α1-adrenergic receptor agonist phenylephrine (PE). The dynamics of Anxa6 within this small window yielded valuable insight into the spatiotemporal regulation of hypertrophic signaling. Here, we extended the study to understand the dynamics of Anxa6 under chronic hypertrophic conditions. The mechanodeficient H9c2(2-1) cardiomyocyte line has been instrumental in our study to rule out the contributions of Anxa6 towards contractility,23 owing to its multidimensional scaffold activity and functional compensations.17, 18 The H9c2 cardiomyocytes have been extensively characterized and ARE an established animal origin-free model for studying signal-transduction pathways in cardiomyocytes, including hypertrophy.25, 26Adrenergic stimulation is crucial in compensatory and pathological cardiac hypertrophy, an early state that may proceed towards heart failure.27 Cardiac hypertrophy at advanced stages (chronic) is associated with mitochondrial dysfunction, which also contributes to cardiac decompensation.28 To explore the temporal events under chronic hypertrophy, we analyzed the effects of adrenergic induction on mitochondrial membrane potential (ΔΨm) and morphological dynamics, parameters that are directly correlated with mitochondrial dysfunction and programmed cell death.29, 30, 31 Anxa6 has been reported to be associated with mitochondria in some cell types.17, 32, 33 In the present study, we aim to understand the functions of Anxa6 under chronic hypertrophic conditions that may progress towards apoptosis.  相似文献   

19.
Mycobacterium tuberculosis infection generates pulmonary granulomas that consist of a caseous, necrotic core surrounded by an ordered arrangement of macrophages, neutrophils and T cells. This inflammatory pathology is essential for disease transmission and M. tuberculosis has evolved to stimulate inflammatory granuloma development while simultaneously avoiding destruction by the attracted phagocytes. The most abundant phagocyte in active necrotic granulomas is the neutrophil. Here we show that the ESAT-6 protein secreted by the ESX-1 type VII secretion system causes necrosis of the neutrophils. ESAT-6 induced an intracellular Ca2+ overload followed by necrosis of phosphatidylserine externalised neutrophils. This necrosis was dependent upon the Ca2+ activated protease calpain, as pharmacologic inhibition prevented this secondary necrosis. We also observed that the ESAT-6 induced increase in intracellular Ca2+, stimulated the production of neutrophil extracellular traps characterised by extruded DNA and myeloperoxidase. Thus we conclude that ESAT-6 has a leukocidin function, which may facilitate bacterial avoidance of the antimicrobial action of the neutrophil while contributing to the maintenance of inflammation and necrotic pathology necessary for granuloma formation and TB transmission.Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a leading source of mortality by infectious disease, with one-third of the world''s population infected, 8.6 million new cases of TB and 1.3 million deaths annually.1 The fundamental feature of TB transmission is the generation of a pulmonary tubercle lesion that contains a cuff of immune cells surrounding a necrotic core laden with extracellular bacteria. This lesion may ‘cavitate'' into the airways of the lung releasing the bacteria to allow transmission via the respiratory route. The essential contribution of macrophage and neutrophil cell death to the generation of this pathology has been recognised in many studies; however, notably in a comprehensive study of TB lesion development, Medlar2 observed that the polymorphonuclear cells were attracted to lesions following the death of mononuclear cells and that the bulk of necrotic tissue in human caseating tubercle lesions represented dead polymorphonuclear cells.We now know that the bacterium has evolved mechanisms to regulate the mode and timing of macrophage cell death.3, 4, 5, 6, 7 After initial infection into the lungs, it is supposed that the bacterium is phagocytosed by alveolar macrophages which migrate into the interstitium of the lung.8 The bacterium is able to replicate intracellularly in the macrophage, inhibiting apoptosis until at a certain bacterial load it induces necrosis of the macrophage.9 The ensuing inflammation attracts monocytes and neutrophils from post-capillary venules that engulf the released bacteria, and thus sequential rounds of replication and inflammation enable the generation of the tubercle lesion. However, although we are beginning to understand the mechanisms of macrophage cell death control,4, 5, 6 we know very little about how M. tuberculosis modulates neutrophil death.It is also clear that in some circumstances neutrophils have an antimycobacterial capacity,10,11 which may be mediated by the direct generation of reactive oxygen species (ROS) or by apoptosis of the infected neutrophils and subsequent efferocytosis of the apoptotic body combined with ROS-dependent killing.12,13 Additionally, neutrophil apoptosis has been linked to effective generation of adaptive immunity in M. tuberculosis infection.14 However, to counter this, M. tuberculosis has been recently shown to inhibit neutrophil apoptosis14 and furthermore, has been observed to induce necrosis.11,12 Interestingly, neutrophil necrosis only occurs on exposure to virulent strains which express the region of difference 1 (RD1) which encodes a type VII secretion system (ESX) that secretes proteins including the abundant early secretory antigen-6 (ESAT-6).12,15, 16, 17 Thus the bacterial induction of pro-inflammatory neutrophil necrosis may have dual benefit to the pathogen by removing the antimicrobial threat of the neutrophil while simultaneously facilitating the generation of the necrotic cavitating lesions that drive TB transmission.The mechanism of necrosis in neutrophils can be varied and controlled. The most recent to be described is ‘NETosis'',18,19 whereby death of the neutrophil results in formation of a structure made of DNA with a histone backbone which contains neutrophil elastase, myeloperoxidase (MPO) and metalloproteinases. These ‘traps'' are known to be produced in vivo and associate with bacteria in some infections.18,20, 21, 22 Importantly they have been shown to be produced by M. tuberculosis infected neutrophils in vitro23 although with no bactericidal activity. As well as ‘NETosis'' there are also other described mechanisms of neutrophil death, one of which is ‘secondary necrosis''. In vitro aging, without any stimuli, results in the necrosis of neutrophils that have undergone apoptosis (termed secondary necrosis). Previous investigations have shown that neutrophils that have externalised phosphatidylserine, and are therefore ‘apoptotic'', can undergo secondary necrosis caused by a Ca2+ influx leading to the activation of a subtype of Ca2+ activated protease, calpain.24 This we termed Ca2+ Induced Necrosis (CAIN). In the present study, we elucidate the molecular events that link the RD1 encoded ESX-1 type VII secretion system with neutrophil necrosis. We chose to investigate the ESAT-6 protein, which is secreted by ESX-1, because it interacts with lipid membranes and is thought to be pore-forming,25, 26, 27, 28 thus it has the potential to influence intracellular Ca2+. Furthermore, calpain has been shown previously to be active in M.bovis infections that were dependent on the RD1 locus.29 ESAT-6 has also been shown to have cytotoxic effects to pneumocytes30 and T lymphocytes.31 Therefore, this study aimed to determine if ESAT-6 had a leukocidin action, and if so, whether this was dependent on intracellular flux of Ca2+, activation of calpain, and further, if this resulted in the formation of neutrophil extracellular traps (NETs).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号